Role of dppf Monoxide in the Transmetalation Step of the Suzuki–Miyaura Coupling Reaction

To cite this version:
Pierre-Adrien Payard, Antoine Bohn, Damien Tocqueville, Khaoula Jaouadi, Emile Escoude, et al.. Role of dppf Monoxide in the Transmetalation Step of the Suzuki–Miyaura Coupling Reaction. Organometallics, 2021, 10.1021/acs.organomet.1c00090. hal-03201941

HAL Id: hal-03201941
https://hal.sorbonne-universite.fr/hal-03201941
Submitted on 19 Apr 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
On the Role of Dppf Monoxide in the Transmetalation step of the Suzuki-Miyaura Coupling Reaction

[a] Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France. [b] Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 Place Jussieu, 75252 Paris Cedex 05, France. [c] Discovery Product Development and Supply, Janssen Pharmaceutica, Hochstrasse 201, 8200 Schaffhausen (Switzerland). [d] PSL University, Institute of Chemistry for Health and Life Sciences, I-CL&HS, CNRS-Chimie ParisTech, 11 rue P. et M. Curie, F-75005 Paris 05 (France).

Suzuki Coupling • Palladium • Transmetalation • dppf • Diphosphine monoxide

ABSTRACT: Diphosphine ligands are frequently used in palladium-catalyzed Suzuki-Miyaura (S-M) reactions. Despite their widespread application in both academic and industrial settings, their role in the B-to-Pd transmetalation has not been firmly established. We combined electrochemistry, NMR spectroscopy and DFT calculations to elucidate the role of dppf (1,1'-bis(diphenylphosphino)ferrocene) in this key elementary step of the S-M reaction. We observed that excess dppf inhibits transmetalation involving PhB(OH)2 and dppf-ligated arylpalladium(II) complexes, while an optimal [base]/[PhB(OH)2] ratio maximizes the concentration of a [Pd-O-B] key intermediate. In situ oxidation of dppf to the diphosphine monoxide dppfO can take place in the presence of base, leading to dppfO-ligated arylpalladium(II) complexes, which readily undergo transmetalation at room temperature. These findings suggest guidelines for the rational optimization of diphosphine-promoted S-M reactions.

The metal-catalyzed cross-coupling of organoboron derivatives with electrophiles, known as the Suzuki-Miyaura (S-M) reaction, has become one of the most important synthetic transformations in modern organic chemistry.1,2 It is widely applied on industrial scale to manufacture active pharmaceutical ingredients and fine chemicals.3 The mechanism of this reaction has been the subject of several experimental and theoretical studies.4,5,6,7 As displayed in Scheme 1, it is generally admitted to involve three elementary steps: an oxidative addition (OA), a transmetalation (TM), and a reductive elimination (RE). As it generally limits the rate of the overall cross-coupling process, the TM step has been the subject of several thorough mechanistic studies.

The TM can either proceed through the addition of the boronate [Ar'B(OH)2]+ to OA product5b, 6a-d, 8g-h, or from the association of the boronic acid with the Pd hydroxo complex (Scheme 1).5g-e, 5i

The rate of this step can be finely tuned by the base/boronic acid ratio,5g, 5i and the Denmark group first gave experimental evidence of the key intermediate: the heterobimetallic [Pd-O-B] key species, which completed the description of the mechanistic scenario (Scheme 1).5b, 5i, 5o, 5q

Diphosphines such as 1,1'-bis(diphenylphosphino)ferrocene (dppf), 1,2-bis(diphenylphosphino)ethane (dppe), and 1,3-bis(diphenylphosphino)propane (dppp) are commonly used ligands in palladium-catalyzed Suzuki-Miyaura cross-couplings.8k The mechanistic picture emerging from existing studies, which almost exclusively focus on monodentate phosphine ligands, is difficult to extend to chelating diphosphines in a straightforward manner.

In particular, a mechanistic model should explain how bidentate ligands can accommodate the formation of the key [Pd-O-B] and [Pd-O-B]+ species, both of which are necessary for the TM to occur according to the mechanism reported in Scheme 1. This issue has not been addressed systematically in the literature. Denmark and co-workers observed a slightly reduced transmetalation rate when dppf was employed instead of PPh3, and conjectured the need of generating a coordinatively unsaturated intermediate,9 whose nature could not be firmly established. A theoretical study focusing on the S-M reaction promoted by complexes of the model ligand H3PCH2-CH2PH2 investigated only an associative mechanism, for which very high energy barriers were computed.6d

Scheme 1. General mechanism of the S-M cross-coupling reaction.

In particular, a mechanistic model should explain how bidentate ligands can accommodate the formation of the key [Pd-O-B] and [Pd-O-B]+ species, both of which are necessary for the TM to occur according to the mechanism reported in Scheme 1. This issue has not been addressed systematically in the literature. Denmark and co-workers observed a slightly reduced transmetalation rate when dppf was employed instead of PPh3, and conjectured the need of generating a coordinatively unsaturated intermediate,9 whose nature could not be firmly established. A theoretical study focusing on the S-M reaction promoted by complexes of the model ligand H3PCH2-CH2PH2 investigated only an associative mechanism, for which very high energy barriers were computed.6d
Scheme 2. Hypothesis on the role of dppfO in S-M reactions proposed in this paper.

These two reports and the frequent use of diphosphine ligands in S-M cross-couplings prompted us to investigate the B-to-Pd transmetalation in the case of diphosphines. We observed that oxidation of dppf, a diphosphine widely used in S-M reactions applied to the total synthesis of natural products, could take place under conditions mimicking a typical catalytic reaction, yielding the monoxide dppfO. Our results highlight the potentially crucial role of this \textit{in situ} generated species in diphosphine-mediated S-M reactions (Scheme 2).

Results and Discussion

The oxidative addition complex cis-[Pd(Ar)Br(dppf)] (2, Ar = 4-F-C$_6$H$_4$) was prepared by ligand exchange between trans-[Pd(Ar)Br(PPh$_3$)$_2$] (1) and dppf (Figure 1A) to study TM involving PhB(OH)$_2$ using tetrabutylammonium hydroxide (TBAOH) as a base.

In the case of complex 1 in the presence of additional PPh$_3$ (2 equiv), the coupling reaction was almost complete after 5 min (Figure S5a). Formation of Ar-Ph followed a first order law with an apparent rate constant of $k_{app} = 3.3 \times 10^{-3}$ s$^{-1}$.

In stark contrast, in the case of complex 2, in the presence of 1 equiv of dppf (Figure 1B, green curve), TM is very slow and only 20% conversion was observed after 90 min. Under these conditions, the kinetics could be fitted by a first order rate law and the apparent rate constant was estimated to be $k_{app} = 3.2 \times 10^{-5}$ s$^{-1}$ (Figures S5). The ratio between the two rate constants is about 100, which corresponds to a difference in activation energy of approximately 3 kcal mol$^{-1}$.

These observations indicate that dppf strongly inhibits B-to-Pd transmetalation. The TM turns out to be the second elementary step of the S-M reaction to be inhibited by excess dppf, as it has been shown that extra diphosphine also inhibits OA by hampering the formation of the reactive 14-electron complex [Pd(0)(dppf)].

Figure 1.

A. Synthesis of complex 2 by ligand exchange from 1. B. Reaction monitoring of the formation of 4-fluoro-1,1’-biphenyl from 2 (20 mM in DMF) with PhB(OH)$_2$ (10 equiv) and 6 equiv of TBAOH (1.5 M in H$_2$O) at 20 °C, in the presence of varying amounts of dppf. C. Most favored pathways for the TM and RE with dppf and PPh$_3$ as ligands (see Figure S4 for the alternative trans pathway), studied by DFT calculations. Computed relative Gibbs free energies are reported in kcal mol$^{-1}$ at 298 K. Enthalpies (kcal mol$^{-1}$) and entropies (cal K$^{-1}$ mol$^{-1}$) are reported in parentheses.
To rationalize these kinetic results, we estimated the energy barriers of the TM by DFT calculations (see the computational details in the Supporting Information) (Figures 1C and S6). The slower TM rate with dppf than that with PPh3 could possibly be due to a dissociative mechanism in contrast with the working hypothesis previously formulated by Huang et al.30 Indeed, as first demonstrated by Goossen and Thiel28 the TM with PPh3- ligated Pd(II) requires partial phosphine decoordination and takes place via a four-centered transition-state involving the concerted formation of Pd-C bond and cleavage of Pd-B bonds. Similar behavior is predicted for dppf (Figures 1C and S6).

Starting from complex [Pd-O-B], the cleavage of one P-Pd bond can be assisted by one OH of the boronate moiety to form complex B. This release is endothermic (+12.8 kcal mol\(^{-1}\)) and almost entropically neutral (+9.8 cal mol\(^{-1}\) K\(^{-1}\)), leading to an overall endergonic process. For comparison, the same process involving PPh3 lies 2.6 kcal mol\(^{-1}\) lower in energy (+7.3 kcal mol\(^{-1}\)) driven by the strong positive entropic contribution (+59.3 cal mol\(^{-1}\) K\(^{-1}\)). Nonetheless, complex B cannot directly take part into TM since the phenyl moiety on the boron center is too far from the Pd-center (d(Ph-Pd) = 3.42 Å). Therefore, prior to TM a ligand exchange between the OH and Ph linked to the boron atom is thus required, leading to the formation of complex C. Two pre-TM complexes cisC (12.8 kcal mol\(^{-1}\)) and transC (15.7 kcal mol\(^{-1}\)) can be formed depending on the relative position of the two aromatic rings with respect to the Pd-center. For clarity, in the main text and figures we will refer only to the most stable cis conformer, while all data corresponding to the trans conformer are available in the Supporting Information. In the case of dppf, both isomers are 4.5 kcal mol\(^{-1}\) higher in free energy compared to the PPh3 analogues. Finally, both cis and trans transition states were optimized, lying at 24.5 and 27.5 kcal mol\(^{-1}\) respectively. The energy barrier for phosphine decoordination directly impacts these transition states. In the case of PPh3, the most favourable TS-cis was localized at +21.9 kcal mol\(^{-1}\), i.e. about 3 kcal mol\(^{-1}\) lower compared to dppf, corresponding roughly to a factor 10\(^2\) on the kinetics of the reaction.11 Both experimental and theoretical studies, thus, point towards a slower transmetalation rate when using diposphine ligands. However, when the formation of the coupling product Ar-Ph was monitored in the absence of added dppf, the reaction proceeded faster, and it was essentially complete after 30 min (Figure 1B, black curve). In the latter case, kinetic curve of formation of Ar-Ph displayed an induction period, which is either typical of an autocatalytic reaction or hints at the in-situ generation of an active species from a less reactive precursor.12 The induction period varies from nearly 1 h at low base concentration to a few seconds at high base concentration (Figure S23). This is in agreement with the instantaneous reaction reported by Denmark and co-workers,33 as the TM was studied starting from complex 3 with 1 equiv of boronic acid (corresponding to \([\text{OH}^-]/[\text{PhB(OH)}_2]=1\)). Consistently with the concentration profiles (Figure 2C), this induction period probably results from the formation of a reactive species generated from either complex 3 or 4. To shed light on this surprising behavior, we investigated in more details the nature of potential intermediates of the dppf-mediated S-M coupling.

2. Intermediates of the TM Step

When treated with TBAOH at \(-20^\circ C\), complex 2, characterized by its reduction potential \(R_2\) at \(-1.75\ V\ vs\ SCE\) in DMF, evolved to a new complex with a reduction peak \(R_3\) at \(-2.2\ V\) (Figures 2A and S8). This new peak was assigned to the corresponding hydroxo complex \([\text{Pd(3Ar)(OH)(dppf)}]\) and the structure was confirmed by \(^{31}\text{P}[\text{H}]\) and \(^{19}\text{F}[\text{H}]\) NMR (Figures S9 to S11).50 While the hydroxo complex 3 was stable at \(-20^\circ C\), it rapidly decomposed at room temperature in the absence of PhB(OH)\(_2\), thereby generating dppfO, as attested by CV showing the characteristic reduction peak of the latter compound (\(R_5\) at \(-2.46\ V\ vs\ SCE\), Figure 2D). At the same time, the formation of fluoro-benzene and 4-fluoro-1,1'-biphenyl was also observed by \(^{19}\text{F}[\text{H}]\) NMR (Figures S10 and S24). In analogy with the well-described reduction of Pd(II) pre-catalysts in basic media,9 complex 3 probably evolved through a reductive elimination to give dppfO-ligated Pd(0) along with the protodemetalation product ArH and the homocoupling one Ar-Ar, which were detected by \(^{19}\text{F}[\text{H}]\) NMR (Figure 2D).

When PhB(OH)\(_2\) was added to the in-situ generated [Pd(3Ar)(OH)(dppf)] 3, a new reduction peak \(R_4\) was detected at \(-2.09\ V\ vs\ SCE\) (Figure 2A). The latter was attributed to the formation of the mixed complex [Pd-O-B] 4, in analogy with the data reported by the Denmark group as the ligand (Figures S12 to S19).50 The \(^{31}\text{P}[\text{H}]\) NMR titration of a solution containing complex 2 and 10 equiv of PhB(OH)\(_2\) with TBAOH demonstrated that the optimal \([\text{OH}^-]/[\text{PhB(OH)}_2]\) ratio is about 0.5-0.6 so as to maximize the formation of the productive intermediate 4 (Figure 2B). Worthy of note, this optimal ratio can also vary depending on the quantity of boroxine present as an impurity in the boronic acid (Figures S20 and S21).

The TM process was monitored by \(^{19}\text{F}[\text{H}]\) NMR using a ratio \([\text{OH}^-]/[\text{PhB(OH)}_2]=0.5\). Immediately after the addition of TBAOH, both 3 and 4 could be observed (Figure 2C, red curve) while some of the starting complex 2 remained (Figure 2C, blue curve). After an induction period of about 25 min, the cross-coupling product rapidly formed (Figure 2C, black curve). Interestingly, an additional intermediate Pd(II) complex 5 could be detected as a triplet at -124.4 ppm (Figure 2C, orange curve). Complex 5 accumulated during the reaction monitoring in parallel of a dramatic increase of the TM reaction rate (orange curve, Figure 2C). This behaviour seems to point out complex 5 as the active form of aryl-Pd toward transmetalation.
3. Role of Diphosphine Monoxide dppfO

To assess a potential catalytic role of dppfO or dppfO-ligated Pd species and shed light on the structure of complex 5, the TM in the presence of 0.15 equiv of dppfO was studied (Figure 3B, purple curve). An induction period similar to that observed in the absence of additives was found (Figure 3B, blue curve). Importantly, the effect of extra dppfO is less pronounced than that of dppf (Figure 3B, green curve). This suggests that the addition of dppfO alone does not lead to an active species. When introducing 0.1 equiv of Pd(dba)2 (with or without 0.1 equiv of dppfO, Figure 3B black and brown curves), no induction period could be detected and both reactions were complete within less than 20 min. In both cases, the protodemetalation product Ar-H and the homocoupling product Ar-Ar were observed, suggesting the concomitant decomposition of 3.

We hypothesized that the presence of Pd(0) promotes the dppf/dppfO ligand exchange to form the less coordinated dppfO-ligated ary Pd(II) complex. When adding in situ generated [Pd(dppfO)]2 (prepared by mixing Pd(dba)2 and dppfO, vide infra) to a DMF solution of complex 2, the 31P{1H} spectrum was quite complex, most probably due to a rapid exchange of ligands on the NMR timescale, but the signal corresponding to complex 5 was clearly observed by 19F{1H} NMR (Figure S31) and no induction period was apparent in this case (Figure 3B). This suggested that complex 5 is the active complex for TM and that it is formed in the presence of dppfO-ligated Pd0.
A CV analysis of a mixture Pd(dba)$_2$ with 2 equiv of dpffO showed that a stoichiometric amount of dpffO was able to displace all the dba from the coordination sphere of Pd(0) (Figures S25 to S27), thus suggesting a strong affinity of dpffO for Pd(0). This contrasts with what was observed with dpff, since addition of 2 equiv of dpff on Pd(dba)$_2$ resulted in the formation of the mixed complex [Pd(dba)(dpff)] (Figure S28). The resulting [Pd(dpffO)$_2$] was characterized for the first time by 31P{$_1$H} NMR (Figure S29), and by CV (oxidation peak O_2 at +0.5 V vs SCE). This peak disappeared after addition of an excess of 4-F-C$_6$H$_4$Br, confirming that this Pd(0) species is able to perform the initial OA step (Figure S30). $[\text{Pd}(\text{Ar})\text{Br}(\text{dpffO})_2]$ could be prepared and characterized by 1H, 13C, 19F{$_1$H} and 31P{$_1$H} NMR and by ESI-MS (Figures 3A and S3). Spectral data of this complex were identical to those of the previously observed complex 5 (vide supra, part 2), which kinetics data indicated as a crucial intermediate. When isolated complex 5 was treated with PhB(OH)$_2$ and TBAOH no induction period was observed and the TM was completed within 10 min (Figures 3C and S32).

DFT calculations further confirmed that TM is favored with dpffO compared to TM with dpff (Figures 3D versus 1D). In agreement with the experimental results, the ligand exchange reaction between [Pd(dpffO)] and the dpff-ligated [Pd-O-B] to form dpffO-ligated complex A’ is only slightly endergonic (+4.1 kcal mol$^{-1}$) and the formation of complex B’ is favored (+9.7 kcal mol$^{-1}$). Coordination of the aromatic moiety to form complexes cis- or trans-C’ is even more favorable and, as expected, the transition states for the TM step are very low lying (+7.2 and +11.2 kcal mol$^{-1}$ for the cis and trans isomers respectively) accounting for the high activity of hemilabile-ligated Pd species for TM. Additionally, the RE step was also predicted to be faster with monocoordinated dpffO-ligated Pd species when compared to the dpff analogue (Figure S35).

Figure 3. A. Oxidative addition with Pd0(dpffO)$_2$. B. 19F{$_1$H} NMR monitoring of the formation of 4-fluoro-1,1'-biphenyl from 2 (20 mM in DMF) with 10 equiv of PhB(OH)$_2$ and 6 equiv of TBAOH at 20 °C. C. 19F{$_1$H} NMR monitoring of the formation of 4-fluoro-1,1'-biphenyl from 2 (blue, 10 mM in DMF) and 5 (orange, 10 mM in DMF), both with 10 equiv of PhB(OH)$_2$ and 6 equiv of TBAOH at 20 °C. D. Pathway for the TM process with dpffO as ligand studied by DFT calculations. Computed relative Gibbs free energies are reported in kcal mol$^{-1}$ at 298 K. Enthalpies (kcal mol$^{-1}$) and entropies (cal K$^{-1}$ mol$^{-1}$) are reported in parentheses.
Conclusions
This work addressed three key points regarding the use of diphosphine ligands in the Suzuki-Miyaura reaction concerning: i) their effect on TM rate, ii) the need for decoordination prior TM, and iii) the possible inhibitory effects of diphosphine ligands. In the course of our study, we observed that TM involving [PdArBr(dppf)] and PhB(OH)₂ in the presence of OH⁻ proceeds with an induction period, suggesting that this complex needs to be converted to a more reactive species, which could be the actual intermediate of the catalytic cycle in S-M reactions. We have proved that dppf actually inhibits the TM and DFT calculations pointed out the need of partial decoordination of dppf for the TM to occur. Moreover, we showed that the dppfO generated from the in situ oxidation of dppf has a high affinity for Pd(0) species. Pd(dppfO)₂ is able to perform oxidative addition to ArBr to give a dppfO-ligated aryl Pd(II), which in turn is very reactive in the TM with PhB(OH)₂, as confirmed both experimentally and theoretically.

Finally, this study accounts for the widespread use of [Pd(dppf)Cl₂] as a pre-catalyst for Suzuki-Miyaura cross-couplings, which is a direct precursor of dppfO-ligated Pd(0). The diphosphine ligand is required for the reduction of most commercially available Pd(II) pre-catalysts, but diphosphine monoxides could constitute efficient ligands to stabilize Pd(0) species and promote the oxidative addition and the transmetalation steps.

Experimental Section
Synthesis of [Pd(dppfO)(4-F-C₆H₄Br)] (5). The reaction was carried out under argon. To a stirred mixture of [Pd(dbta)₂] (50 mg, 0.087 mmol) in degassed CH₂Cl₂ (5 mL) was added 1-bromo-4-fluorobenzene (95 µL, 0.7 mmol) and 2.1 equiv of dppfO [11] (104 mg, 0.18 mmol). After vigorous stirring at ambient temperature (red-brown color), the flask was fitted with a reflux condenser and heated in an oil bath at 50 °C overnight. The reaction mixture was allowed to warm to room temperature, then the solution was evaporated to a volume of approx. 1 mL and treated with degassed petroleum ether (5 mL). The dark red precipitate was filtered under inert atmosphere, washed with petroleum ether and dried in vacuo to produce complex 5 (100 mg, 80%). ³¹P[¹H] NMR (121 MHz, DMF): δ = 25.3 (br s), 16.1 (d, J= 3.0 Hz) ppm. ¹³F[¹H] NMR (282 MHz, DMF): δ = -124.4 (t, J= 3.0 Hz) ppm. MS (ESI+, MeCN) m/z: 1341.1 (100) [%] (M-Br)⁺).

Computational Details
All DFT calculations were performed using the Gaussian 09 program (Rev. A02). The structure of all minima and transition states were optimized using the M06 functional and the following basis set: 6-31G for C, H, F, and O; and P; LANL2DZ for Pd and Fe with the associated effective core potential LANL2. Bulk solvent effects were taken into account using the PCMV method as implemented in Gaussian. The default cavity parameters, static and optical dielectric constants for DMF were used. The nature of all stationary points was checked by analytical frequency calculations. Computed harmonic frequencies were employed to calculate free energies at 298 K and 1 atm pressure with the usual approximations.

ASSOCIATED CONTENT
Supporting Information
Tables of experimental ³¹P NMR chemical shifts and calculated shielding constants, additional data on the effect of computational parameters on structures and shielding constants. (PDF) Cartesian geometries and absolute energies. (xyz file) The Supporting Information is available free of charge on the ACS Publications website.

AUTHOR INFORMATION
Corresponding Authors
* pierre-adrien.payard@univ-lyon1.fr; laurence.giraud@ens.psl.eu; swagsha@its.jnj.com; ilaria.ciofini@chimie-paris.psl.eu

Present Addresses
*Pierre-Adrien Payard – Univ Lyon, Université Claude Bernard Lyon I, CNRS, INSA, CPE, UMR 5246, ICBMW, 1 rue Victor Grignard, F-69622 Villeurbanne cedex, France.

The authors declare no competing financial interests.

ACKNOWLEDGMENT
P. A. Payard is grateful to ENS Paris Saclay and Solvay for a PhD grant. We acknowledge Dr D. Lesage for the mass spectrometry analyses. We thank Prof A. Boutin, P. J. Yao and Dr Q. Chen for useful discussions. We thank Janssen Pharmaceutica and Bristol-Myers Squibb for the funding the project.

REFERENCES

In situ oxidation of 1,1’-bis(diphenylphosphino)ferrocene (dpff) to the diphosphine monoxide (dpffO) accelerates the transmetalation step of the Suzuki-Miyaura coupling catalyzed by dpff-ligated Pd complexes.