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1. Introduction
NASA's InSight landing on Mars took place on November 26, 2018. After a few weeks of surface opera-
tions, InSight deployed the seismometer package SEIS (Seismic Experience for Interior Structure, Lognon-
né et al., 2019) on the martian surface and provided first results (Banerdt et al., 2020; Giardini et al., 2020; 
Lognonné et al., 2020). Many of the SEIS scientific investigations were made by the three axis capability of 
the SEIS instrument, enabling the measurement, in the North, East, vertical local reference, of the ground 
acceleration. This paper is therefore focused on the methods used to determine this reference frame. While 
SEIS has its vertical axis, thanks to its leveling system, aligned with the local gravity to within less than 0.1°, 
the determination of its azimuth with respect to true North, i.e. direction toward the geographic North pole, 
was more difficult.

The top of the instrument is equipped with a handle used during deployment that also doubles as a gno-
mon. A gnomon is the main tool of a sundial: a vertical stick projecting a shadow on a target. It enables, by 
its shadow, the determination of the position of the Sun in the sky, and thus by extension in our case the 
seismometer position and orientation on the Martian surface.

As an example, most of the instruments installed on the Moon by Apollo missions as part of the Apollo 
Lunar Surface Experiments Package (ALSEP, see Sullivan, 1994), be it passive seismometers, laser reflectors 
(still used for Lunar laser ranging), the analyzer of ejecta and meteorites, etc., were all oriented with the 
help of a gnomon whose shadow was projected on a target (Figure 1). In this case however, it is better to 
speak of “solar compass”. Orientation on the Moon by the azimuth of the Sun was indeed extremely easy 
due to the very slow variation of this angle, which remains almost constant for several hours.

For InSight too, the technique did not require any active sensor, as it used in an opportunistic way the In-
Sight camera (Maki et al., 2018) and the deployment handle. This was simpler than the north sensor of the 
Small Surface Stations of Mars 96 (Linkin et al., 1998, unfortunately lost after launch in 11/1996), which 
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had also to determine the North for the magnetic components of the OP-
TIMISM experiment (Kuhnke et al., 1998; Lognonné et al., 1998). Their 
North sensor, mounted on the deployed magnetometer, was monitored 
the light intensity through a small hole with a known direction with re-
spect to the three axis of the magnetometer.

For InSight, the gnomon was only visible for a few days after the deploy-
ment of SEIS. The seismometer was subsequently covered by the Wind 
and Thermal Shield (WTS) before starting its operation phase. The pro-
cess to determine the true North direction by using a gnomon on Mars 
was described by Savoie et al. (2019), from which this paper presents the 
results.

In this paper, we describe the procedures and results obtained during the 
few days after the SEIS seismometer was deployed on the martian sur-
face, in order to determine the true North using the gnomon. We first 
describe the method used to analyze the InSight camera images. Deter-
mination of the true North requires identification of the whole shadow 
on low quality images deformed by the perspective. Then, we describe 
the results obtained for the true North direction on the different images 
selected.

We then compare the gnomon North determination with an independent 
measure of the lander azimuth, as obtained from the Inertial Measure-
ment Unit. From that azimuth and the exact knowledge of the Instru-
ment Deployment Arm imager, it was therefore possible to determine 

also the direction of North with respect to SEIS. A second comparison is then done through the analysis of 
remote sensing data and their comparison with the lander panorama images.

We conclude the paper by comparing the orientation errors with the determination of the back azimuth of 
seismic signals, which is the azimuth of the seismic rays when they reach the station. This measurement 
provides the direction of the source from InSight's location. We then confirm that the North orientation is 
meeting all the seismological needs. The SEIS orientation presented in this paper has therefore been used as 
reference, and is included in the SEIS metadata (InSight Mars SEIS Data Service, 2019).

2. Images Taken by the Instrument Deployment Camera (IDC)
After landing, images of the SEIS sundial were acquired by the Instrument Deployment Camera located on 
the robotic arm as described by Maki et al. (2018). The IDC has an angular resolution of approximately 0.82 
milli-radians/pixel at the center of the image and a field of view of 45° (horizontal) × 45° (vertical). After 
the deployment of SEIS on the surface on 19 December 2018, IDC images of the sundial were acquired from 
approximately 1 meter above the sundial.

2.1. Image Sources

The images are published on the InSight mission website (https://mars.nasa.gov/insight/multimedia/
raw-images) and labeled with date and local mean solar time (LMST). The first images with a clearly visible 
shadow were taken on January 1st, 2019. To determine the true North direction, we selected eight images 
acquired on January 1st, 2019, and labeled from 12 h 49 m 37 s to 15 h 42 m 05 s LMST (see for example 
Figure 2).

Due to a very tight schedule for the InSight ground operations, these images were taken within a few min-
ute range, thus having very similar shadow positions and lengths. As explained by Savoie et al. (2019), this 
configuration is not ideal to reach the accuracy of 1° in true North direction but it allows us to reach the 
expected accuracy of 5° nonetheless.
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Figure 1. Gnomon used on the Moon with the passive seismic experiment 
(PSE) during the Apollo 14 mission.

https://mars.nasa.gov/insight/multimedia/raw-images
https://mars.nasa.gov/insight/multimedia/raw-images
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Furthermore, the image taken near local noon can be used as a confirmation of the true North direction 
estimation, the Sun being close to the meridian. On this particular image however, the Sun is passing high 
in the sky and the gnomon shadow is too short to reach the target on the sundial. Its direction can still be 
used to confirm the results obtained with images taken in the afternoon.

In this study, we neglected the nonhorizontality of the sundial which was measured as below 0.1° after the 
deployment phase of SEIS.

2.2. Determination of the Time

The images file names contain the spacecraft clock time given in seconds elapsed since J2000 (see Figure 3). 
This timing is given by the free-running onboard clock, and is thus not synchronized with UTC since the 
spacecraft launch. Since May 2018, the onboard clock has regularly drifted, and continued to do so after 
landing as seen on Figure 4. This drift is caused by an expected error in the crystal oscillator frequency of 
the onboard clock. The conversion from spacecraft time to UTC can be made by using the WebGeocalc algo-
rithm (https://wgc.jpl.nasa.gov:8443/webgeocalc/#TimeConversion). For example, the first image taken on 
January 1st, 2019 (Sol 35) contain a timestamp of 599,635,689 s after J2000. This timestamp corresponds to 
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Figure 2. Images of the sundial taken on January 1st, 2019. The gnomon shadow is visible on the target that is used to 
measure the azimuth of the Sun.

Figure 3. Description of the information contained in the image file name.

https://wgc.jpl.nasa.gov:8443/webgeocalc/#TimeConversion
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January 1st, 2019 at 17 h 28 m 38 s UTC. By using our algorithm (Savoie 
et al., 2019), this time is converted to 12 h 49 m 37 s LMST at the InSight 
landing site.

It is important to notice that this local mean solar time value is different 
from the one published on the JPL website. For this particular image, the 
description reads 12 h 51 m 02 s LMST, thus a time difference of 85 s with 
our calculation.

As detailed by Savoie et al. (2019), a Sun azimuth offset of ± 0°6′, is equiv-
alent to an error of 10 s in timing. A difference of 85 s induces an azimuth 
error of maximum 54′ for the date of January 1st 2019. This difference 
induced in the shadow position is below our reading accuracy on the sun-
dial images. This time shift of 85 s can be imputed to the local time con-
version algorithm used by JPL which uses prelanding lander coordinates.

The local mean solar time conversion algorithm used by the on the web-
site, implemented in NAIF/SPICE kernels (https://naif.jpl.nasa.gov/pub/
naif/INSIGHT/kernels/sclk/insight_lmst_ops181206_v1.tsc) is based on 
the InSight target landing site coordinates 4.46°N and 135.97°E. How-
ever, those coordinates correspond to the prelanding lander coordinates, 
and are different from the real lander planetocentric coordinates which 
are 4.50247°N, 135.6,180,843°E (Parker et  al.,  2019) (Golombek, Wil-
liams, et al., 2020).

The main difference between these two sets of coordinates is in the lon-
gitude. InSight landed about 0.35° (i.e. 20  km) west-northwest of the 
planned landing site. Due to Mars rotation, a difference of 0.35° of longi-
tude for the landing site induces a time shift of about 84 s in local mean 
time.

The coordinates of InSight after landing were updated in the NAIF/SPICE 
Kernel in April 2019 (https://naif.jpl.nasa.gov/pub/naif/INSIGHT/ker-

nels/fk/insight_tp_ops181206_iau2000_v1.tf), leading to a better agreement with our calculation after this 
date. This difference does not have an impact on the other scientific activities of the InSight mission, how-
ever the sundial is sensitive to any error in position and/or timing.

The reader should also be aware that images taken before December 29th, 2019 are labeled on the JPL web-
site with a wrong local mean solar time value. The value given is actually the local true solar time, which 
differs from the LMST by almost 50 min.

3. True North Direction on Images
On the sundial, the shadow marks the opposite direction of the Sun. Thus, measuring the shadow position 
on the sundial at a precise UTC time value provides the Sun azimuth on the pictures. Computing the azi-
muth of the Sun on Mars allows to determine, on each picture, the location of the North-South axis from 
which it is measured.

3.1. Possible Errors Committed in the true north determination

Savoie et al. (2019) presents in details the possible errors that can undermine the true North direction deter-
mination. These errors can be summarized as:

•  Errors due to an incorrect estimation of the shadow position on the images
•  Errors due to an incorrect latitude of the lander
•  Errors due to an incorrect longitude or UTC value for the lander
•  Errors due to gnomon nonverticality
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Figure 4. Drift in the Local Mean Solar Time due to the free-running 
onboard clock on InSight spacecraft. Here, the LMST time difference 
corresponds to the difference between the onboard time converted using 
WebGeocalc algorithm and Savoie et al. (2019) algorithm, expressed as 
integers. The data are plotted for 6 months from Sol 0 (November 26th, 
2018). The dark line is fitted to the data, and corresponds to a linear 
increase of the drift of 0.139 s per sol.

https://naif.jpl.nasa.gov/pub/naif/INSIGHT/kernels/sclk/insight_lmst_ops181206_v1.tsc
https://naif.jpl.nasa.gov/pub/naif/INSIGHT/kernels/sclk/insight_lmst_ops181206_v1.tsc
https://naif.jpl.nasa.gov/pub/naif/INSIGHT/kernels/fk/insight_tp_ops181206_iau2000_v1.tf
https://naif.jpl.nasa.gov/pub/naif/INSIGHT/kernels/fk/insight_tp_ops181206_iau2000_v1.tf
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The main error source is the first. Determination of the exact shadow 
direction on the images is made difficult by the round-shaped gnomon 
on top of SEIS and the images quality. The method used to determine 
shadows directions is detailed in Section 2.2.

After deployment of SEIS, the instrument is leveled with accuracy of 0.1°. 
Savoie et al.  (2019) shows that at this value of horizontality, the maxi-
mum error expected on the Sun azimuth is less than 15′ at noon. Since 
most of the analyzed images are around 15:00 LMST, the error on the 
hour angle is even less than 5′.

The error due to an incorrect position, either in latitude or longitude is 
here negligible. A 10 km error on longitude induces a maximum error 
of 6′ on azimuth. Due to the very precise knowledge of InSight location 
(discussed in Section 3), the error on azimuth determination due to an 
incorrect position of the lander is negligible.

Finally, the error in UTC value for images timing detailed in the previous 
subsection is still negligible on the sundial image.

3.2. Methodology

To determine the true North direction on SEIS images, the following pro-
cess is applied:

•  Find the center of the target at the intersection of diagonals (black lines of Figure 5)
•  Graphically estimate the shadow borders on the target (red lines edging the shadow on Figure 5)
•  Graphically estimate the center of the shadow line as the bisector of the edges (diagonal red line on Fig-

ure 5), and estimate the shadow top tangent
•  Compute the Sun azimuth expected for time and location of the image
•  Determine the true North direction based on the shadow position as a reference for the Sun azimuth

The quality of images, the distance of the camera and the very large shadow thus induce the biggest error 
sources of a visual true North determination. Each step of this process is contributes to the global uncertain-
ty. Parts of this process are discussed below.

3.3. Shadow Direction

A precise determination of the shadow top and direction is difficult due to the odd shape and geometry of 
the gnomon (see Savoie et al., 2019 for a precise description). Due to the gnomon elevation compared to the 
target level, the center of the whole target has to be determined on each picture.

The target is divided in three concentric rings, each one of them divided into 72 segments of 5° each. The 
borders of opposite segments can be prolongated through the whole target plane in order to determine the 
target center.

The defined center can be used to trace rays fitting the round shadow borders. Then, the bisector provides 
the shadow direction (Figure 5).

3.4. Local Sun Azimuth

The determination of the shadow direction provides the sun direction on the pictures. This direction can 
be computed by determining azimuth measured in the clockwise direction from the true South. For each 
picture, we computed the solar coordinates for a Martian observer as described by Savoie et al. (2019). The 
azimuth and elevation values obtained for the images of January 1st, 2019 are provided in Table 1.

As expected for this local time, the elevation of the Sun is decreasing in the afternoon sky at the InSight 
landing site. Also, its azimuth is increasing as the Sun is moving toward West (A = 90°).
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Figure 5. Estimation of the shadow direction on the image taken on 
01/01/19 at 15 h 33 m 33 s LMST. Dark rays define the shadow center and 
red rays define the shadow border, shadow top tangent and shadow top 
direction.
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3.5. True North Direction Results

On each image, we used the method described earlier to determine the 
top of the shadow, and thus the Sun, direction. The azimuth of the Sun 
associated then leads to the North-South axis. The results are given here 
for two of the eight different images taken on January 1st, 2019 (Fig-
ures 6 and 7). We note that seven images were taken in the afternoon 
within a 30 min range, which makes them unsatisfying to measure sig-
nificant dispersion on true North direction. The two images selected here 
are corresponding to the maximum deviation.

Each image is compared with a simulation and labeled with time in UTC, 
Local Mean Solar Time (LMST), Local True Solar Time (LTST), angles 
H (hour angle), α (right ascension), δ (declination), A (azimuth) and h 
(elevation) expressed in degrees and the simulated shadow length in 
millimeters.

3.6. Discussion

On the two images presented here, the True North direction is deter-
mined using the computed Sun azimuth (Figures 6 and 7). By using the 

gnomon shadow top, determined as precisely as possible given the shape of the instrument and images res-
olution, the North-South axis is graphically determined. The axis is drawn as a black line on both pictures. 
A difference of almost half a segment on the target is visible between the two pictures. Since a segment has 
a thickness of 5°, the deviation between the two images correspond to almost 2.5°.

One can notice that the first image is taken almost at noon. The true North direction determination is thus 
expected to be easier on that specific image. However, as discussed by Savoie et al. (2019), the error made 
on true North determination at noon is larger due to the rapid motion of the Sun, the equatorial position 
of the lander and the short shadow length. The image is thus suspected to be less accurate than the others.

These two images correspond to the maximum deviation we obtain on the eight images of January 1st. 
Based on those images, the True North direction on InSight landing site can be determined within a 2.5° 
range. Unfortunately, this result is over the expected 1° accuracy for an optimal Martian sundial use. This 
lack of accuracy can be explained by the very similar shadow positions induced by images taken on a very 
short time range. The accuracy of this measurement could have been increased by images taken through the 
whole day, morning and afternoon, as suggested by Savoie et al. (2019).

However, an accuracy of 2.5° on the True North direction is below the required accuracy of 5° of the SEIS 
instrument. The sundial experiment thus was able to meet its requirements.

4. Location of SEIS and Knowledge of North
The location of the InSight spacecraft on the surface of Mars has been determined in both inertial space by 
X-band radio tracking by the Rotation and Interior Structure Experiment (RISE) (Folkner et al., 2018) and 
by a high-resolution image acquired from orbit that clearly resolves the lander and the large circular solar 
panels that has been georeferenced to the cartographic grid (Golombek, Warner, et al., 2020). A 30 cm/pixel 
High-Resolution Imaging Science Experiment (HiRISE) image acquired on December 6, 2018 after landing 
has been carefully georeferenced to image and topographic basemap composed of 12.5 m/pixel High-Res-
olution Stereo Camera (HRSC) images, 6 m/pixel MRO Context Camera (CTX) images in the Internation-
al Astronomical Union/International Association of Geodesy, IAU/IAG 2000 positive East planetocentric 
coordinate system with 463 m/pixel Mars Orbiter Laser Altimeter (MOLA) elevation postings as its base. 
In this system, the center of the lander is located at 4.50,238,417°N, 135.62,344,690°E, at an elevation of − 
2,613.426 m (Golombek, Warner, et al., 2020).

After placing SEIS in the workspace to the south of the lander, several methods were used to determine its 
location (Golombek, Williams, et al., 2020). Stereo IDC images of the instruments and their fiducial points 
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File name Time Azimuth Elevation

(sec since 
J2000) UTC LMST LTST A (°) h (°)

599,635,689 17:28:38 12:49:37 12:00:24 0.2589 68.4926

599,644,246 19:51:15 15:08:25 14:19:11 57.1352 49.4614

599,644,365 19:53:14 15:10:21 14:21:08 57.4756 49.0567

599,645,280 20:08:29 15:25:12 14:35:57 59.8710 45.8976

599,645,795 20:17:04 15:33:33 14:44:18 61.0645 44.0868

599,645,918 20:19:07 15:35:32 14:46:18 61.3348 43.6513

599,646,041 20:21:10 15:37:32 14:48:18 61.5996 43.2146

599,646,321 20:25:50 15:42:05 14:52:50 62.1830 42.2166

Table 1 
Computed Sun Local Coordinates for InSight Images on 01/01/2019
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were used as was the physical location of the arm by moving the grapple (used to pick up the instruments) 
directly above SEIS. These determinations were made in spacecraft centered coordinate systems. IDC stereo 
mosaics were also tied to the HiRISE image by transforming the spacecraft coordinate systems into the car-
tographic frame (Golombek, Williams, et al., 2020). These different methods locate the grapple/hook point 
of SEIS at 4.50,234,460°N, 135.62,343,703°E with its feet at an elevation of − 2,613.4 m with respect to the 
MOLA geoid.

The transformation of lander coordinates to Mars (the site frame) includes knowledge of the spacecraft 
yaw, pitch and roll recorded by the spacecraft Inertial Measurement Unit (IMU, Golombek, Williams, 
et al., 2020). To test if there are any errors in our knowledge of the orientation of the spacecraft, the azi-
muths of features that are in view in both the surface panoramas and the HiRISE image were compared. 
The azimuths of around 35 features matches to within 1°. The best matched features greater than 50 m 
away, where discrepancies would be greatest, agree to an average of 0.5°. This suggests that the orientation 
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Figure 6. True North direction for image taken on Sol 35 (1-1-2019), 17h28m38s UTC.
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(including the azimuth and tilt) recorded by the IMU and used to determine the site frame are accurate.  
This also means that analyses using lander images that depend on the location, azimuth and tilt of the 
spacecraft are accurate.

5. Comparison of the Gnomonic True North Direction with the Inertial 
Measurement Unit Value in SEIS Reference Frame
Independently from the gnomon experiment, orientation of the SEIS instrument has been measured by 
using the Inertial Measurement Unit (IMU). Golombek, Williams, et al. (2020) gives SEIS ground location 
expressed in the site frame. The site frame was determined by IMU measurement during descent, with Z 
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Figure 7. True North direction for image taken on Sol 35 (1-1-2019), 20h25m50s UTC.
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axis along the gravity vector, X north and Y east. Knowing SEIS center 
location, we define SEIS reference direction as the middle of one of its 
hexagonal borders (see Figure 8). Angles of the hexagon can be comput-
ed as reference points expressed in the site frame. Using these reference 
points leads to the reference direction azimuth expressed from true North 
direction.

The azimuth of SEIS reference direction expressed using the site frame 
coordinates is 191.8° (±1°) (Table 2).

This azimuth is in good agreement with the north direction obtained us-
ing the mean value of true North direction from the eight images of the 
gnomon as seen in Figure 8, with an error of about 2.5°.

6. Seismic Requirements and Seismic Errors in 
seismic Azimuth Determination
The Marsquake Service (Clinton et al., 2018, 2020) maintains a catalog of 
marsquakes (InSight Marsquake Service, 2020) that includes phase iden-
tification and location information, when possible. By March 2020, only 
three events have been detected that include clearly identifiable polarized 

motions for first P and S arriving phases (Giardini et al., 2020; Clinton et al., 2020). At longer periods, no 
Rayleigh surface waves have been detected in these three events nor in any other and could therefore not be 
used for location as originally proposed by Panning et al. (2015). Figure 9 shows vertical component seismo-
grams and horizontal particle motions from the VBB sensor for these three events. The North and East di-
rections in the horizontal particle motions have been computed by transforming the three axis VBBs into Z 
(Vertical downward), North and East components, by using for each of the VBB sensors their azimuth with 
respect to North, as a composition of the azimuth between North and the SEIS reference direction, as de-
termined by the gnomon, and the azimuth of each axis with with that SEIS reference direction, determined 
prelaunch. The resulting azimuths are included in the SEIS dataless of all SEIS axis (InSight Mars SEIS Data 
Service, 2019).The P-picks are taken from InSight Marsquake Service (2020). The time windows selected for 
polarization analysis and the horizontal particle motion are indicated in the time series. The red line on the 
particle motion plots indicates the azimuth chosen visually, the shaded gray area indicates the estimated un-
certainty. The 180° ambiguity can be resolved by considering the vertical component polarity as described 
by Böse et al. (2017). The raw seismograms were only multiplied by gain and filtered in the range indicated 
in Table 3. Azimuths are those proposed by Clinton et al. (2020) with errors determined by the 25% of the 
peak values. These errors estimated from MQS for these seismic events are larger than the differences in 
the mean azimuth found by different techniques. Lognonné et al. (2020) for example used, for the event 
S0173a, the polarization analysis of Schimmel et al. (2011) and found for the P an azimuth of 93° (larger by 
3° as MQS estimate), while the azimuth of the S ranges from 163.1° to 181° in the 0.3–0.4 Hz and 0.4–0.7 Hz 
bandwidth respectively. While the high frequency S azimuth is found to be, as expected, almost orthogonal 
to the P one, the lower frequency illustrates the sensitivity of the techniques to both noise and, for the S 
wave, to the P seismic coda. In addition, lateral variation are expected to generate off-path perturbation of 
body waves as illustrated by several Earth studies (e.g. Otsuka, 1966), as well as off-great circle deviation of 
surface waves (Laske, 1995). From a seismological perspective, the ±2.5° error in the True North direction is 
therefore comparable to the differences found between different azimuth determination techniques and is 

also likely less than the expected effects of lateral variation on both body 
and surface waves ray azimuth.

7. Conclusion
By using eight images taken during Sol 35 of the InSight surface activity, 
we were able to estimate the Sun direction and compute its local coor-
dinates over the landing site. The results presented in this paper show 
that we were able to graphically determine the True North direction of 
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Figure 8. Comparison between sundial north determination and IMU 
north direction.

Instrument SEIS reference direction azimuth

IMU 191.8° ± 1°

Gnomon 195° ± 2.5°

Table 2 
Values of Azimuth of the SEIS Reference Direction Expressed With IMU 
and the Gnomon
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Figure 9. Vertical component VBB seismograms and horizontal particle motion for the three events with clearest polarization (S0173a, S0235b, S0183a). 
The red line on the particle motion plots indicates the azimuth chosen visually, the shaded gray area indicates the estimated uncertainty. Details on error 
determination methods are in Clinton et al. (2020).
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the deployed seismometer at the landing site within a 2.5° range. This 
accuracy is below the requirement of 5° for the SEIS experiment, and 
well below the level of uncertainty that can be estimated for marsquakes 
observed to date. Comparison of the north direction obtained with the 
gnomon measurements is compatible with IMU north direction of the 
lander within 2.5°, suggesting the use of such a simple device as a sundial 
can continue to be used for orientation of instruments on space missions.

In conclusion, the sundial did fulfill its expectations. It is a success for 
the first sundial on another planet. Even though Curiosity and the MER 
rovers included a sundial device called MarsDial, it is important to notice 
that these are artistic devices used as calibration targets for cameras and 

pedagogic resources for scholars on Earth. They were not intended to provide any rigorous astronomical 
measurements. The SEIS sundial (which is rather a solar compass) is the first martian sundial successfully 
used for an astronomical purpose. This martian sundial experiment shows once again the possibilities of 
this ancient and passive tool for actual space missions.

Data Availability Statement
All imaging data used in this paper are freely available at the Planetary Data system (PDS) at https://pds-im-
aging.jpl.nasa.gov/data/nsyt/insight_cameras/, including timing. SEIS data. We acknowledge NASA, 
CNES, their partner agencies and Institutions (UKSA, SSO, DLR, JPL, IPGP-CNRS, ETHZ, IC, MPS-MPG) 
and the flight operations team at JPL, SISMOC, MSDS, IRIS-DMC and PDS for providing SEED SEIS data 
used in section 5 and freely available at IPGP MSDS, IRIS-DMC and PDS (https://doi.org/10.18715/SEIS.
INSIGHT.XB_2016). The Marsquake Catalog, version 3 (https://doi.org/10.12686/a7) used in section 5 is 
available from IPGP and PDS.

The authors would like to thank Boris Semenov (JPL/NAIF Team) for its help on the time determina-
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