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Abstract

Particle-In-Cell codes are widely used for plasma physics simulations. It is

often the case that particles within a computational cell need to be split to

improve the statistics or, in the case of non-uniform meshes, to avoid the

development of fictitious self-forces. Existing particle splitting methods are

largely empirical and their accuracy in preserving the distribution function

has not been evaluated in a quantitative way. Here we present a new method

specifically designed for codes using adaptive mesh refinement. Although we

point out that an exact, distribution function preserving method does exist,

it requires a large number of split particles and its practical use is limited.

We derive instead a method that minimizes the cost function representing

the distance between the assignment function of the original particle and

that of the sum of split particles. Depending on the interpolation degree

and on the dimension of the problem, we provide tabulated results for the
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weight and position of the split particles. This strategy represents no over-

head in computing time and for a large enough number of split-particles it

asymptotically tends to the exact solution.

Keywords: Particle-In-Cell techniques; Adaptive-Mesh-Refinement;

macro-particles;

Nature of problem(approx. 50-250 words):

The macro-particles in an AMR PIC code need to be split when traveling from a

coarse region to a finer one. No mathematically rigorous way of doing so has yet

been proposed. Specifically, splitting can lead to the enhancement at an unaccept-

able level of the fluctuation level of the particles moments (density, current...).

Solution method(approx. 50-250 words):

We propose a deterministic method based on the minimization of the difference

between the assignment function of the particle to be split and the one of the set

of particles resulting from the splitting.

Additional comments including Restrictions and Unusual features (approx. 50-250

words):

1. Introduction

The multi-scale character of laboratory and astrophysical plasmas is ubiq-

uitous. Examples include, but are not limited to, the turbulence in the solar

wind or in fusion experiments[1], the reconnection of magnetic field lines[2],

the formation and propagation of shocks[3]. In all these systems, spatial and

temporal scales can span many orders of magnitude and impose stringent

constraints on grid-based numerical codes. In situations where small scales
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are spatially localized, a solution to circumvent some of the constraints is to

adaptively refine the mesh in the regions of interest. These Adaptive Mesh

Refinement (AMR) technique are widely used in fluid codes (see e.g. [4], [5])

and have also begun to be successfully implemented in Particle-In-Cell (PIC)

codes ([6], [7], [8], [9], [10], [11], [12]).

In PIC codes, a large collection of physical particles is described by a

smaller set of computational particles or ”macro-particles”[13]. Such a model

is acceptable as long as the statistical properties of the set of the macro-

particles is close to that of the physical particles. It means that the moments

resulting from integration in velocity space of the particle distribution and of

the macro-particle distribution are very close, whatever their order. For the

sake of readability, we shall use in the rest of the paper the word ”particle”

instead of ”macro-particle”. We remind that the moment of order n of a

distribution function is the integral over velocity space of this distribution

function multiplied by the velocity at power n. Density, bulk velocity and

pressure are the moments of order 0, 1 and 2 respectively, and are the most

widely used.

A characteristic of the particles used in PIC codes is their finite size,

whose spatial profile is given by a continuous function called the ”assignment

function” or ”shape factor”. This function has bounded support and it is

thus zero outside of it. Importantly the size of the particle (their support)

depends on the local spatial resolution as well as on the order of interpolation

(see Ref. [13] for an extensive review). In the context of AMR codes this

is crucial: when a particle moves from a position where the grid size is ∆

to enter a refined region where the grid size is ∆/r, the size of the particle
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should also decrease by a factor r, where r is the refinement factor. When

entering this region of smaller grid size, the ”parent” particle has to be split

into two or more ”children” particles for at least two reasons: the first is

to avoid spurious self-forces that are associated with the time derivative of

the assignment function[14, 15], the second is to maintain a sufficiently large

number of particles per cell[16, 17, 11], [18] in order to insure stability and

accuracy. In that respect, particle splitting is also useful in codes using a

uniform mesh. Therefore an important question that needs to be addressed

is: how many children particles should the parent particle be split into? And

as a corollary question, once this number is fixed, where should the children

particles be dispatched, with which velocities and with which weights? So

far, only empirical answers to these questions can be found in the literature.

Instead, this paper aims at addressing these questions rigorously by using an

optimization technique that minimizes the difference between the assignment

function of the parent particle and the sum of the assignment functions of

the children particles.

The paper is structured as follows. In section 2, we review the important

features of basis-splines (B-splines), as these are used to represent macro-

particles in the vast majority of PIC codes. In section 3, we discuss the

dichotomy between the exact solution of the splitting problem and the ap-

proximate one we are proposing. In section 4, we present some general con-

siderations on splitting requirements, and the possible splitting patterns de-

pending on the dimension of the problem. In section 5, we discuss the way to

evaluate the accuracy of the method, and provide the optimal parameters of

the split particles. In section 6, we discuss the consequences of the splitting
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on the level of density fluctuation on the refined grid. In section 7, we discuss

possible implications of our conclusions for the inverse problem of merging

process.

2. B-splines for Particle-In-Cell method

The particles’ assignment functions used in PIC codes are generally B-

spline functions [19]. These functions can be of any degree: the higher the

degree, the larger the particle size, i.e. the length of the support of the

assignment function and the smoother the particle shape. Examples of B-

splines of degree one to three are shown in Fig. 1. For clarity, we will treat

in this paper the linear (p = 1), quadratic (p = 2) and cubic (p = 3) cases.

The p = 0 case has been proven to be unstable [13], while values of p > 3 are

very diffusive, both cases are rarely used in actual simulations. A B-spline

of degree p is the union of p + 1 polynomials of degree p on p + 2 knots.

For the B-spline of degree p = 1, the knots are {−1, 0,+1}, for p = 2, they

are {−3/2,−1/2,+
1/2,+

3/2} and for p = 3, they are {−2,−1, 0,+1,+2}. The

knots are shown in Fig. 1 as black bullets on a grid of unitary mesh size.

To handle B-splines in a more general way, we shall use the notation

Sp(x) for a B-spline of degree p, defined on a grid of mesh size ∆ centered at

x = 0 and sp(x − δ) the B-spline of degree p defined on a grid of mesh size

∆/r centered on x = δ. These represent respectively the parent and children

particles. By construction, B-splines have their integral equal to unity. As

an illustration, on the right panel of Fig. 1, the B-spline s3(x) for r = 2 is

depicted in dark gray, with its associated knots as white bullets. When a

particle leaves a position where the grid size is ∆ to reach a new one where
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Fine
⋆
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Figure 1: Left panel depicts the B-spline for p = 1, middle panel is the B-spline for p = 2,

and right panel is the B-spline for p = 3. In each panels, light gray is used to represent

the B-splines with a refinement factor r = 1 (i.e. the parent particle). In addition, an

example of a B-spline with a refinement factor r = 2 (i.e. the child particle), is shown on

right panel in dark gray. Black knots are for r = 1 and white knots are for r = 2.

the grid size is ∆/r, the support of the B-splines has to be divided by r. For

convenience, the coarse and fine grid have been displayed in the right panel

of Fig. 1,

It is clear that when moving in a domain of smaller mesh size, the spatial

profile of the assignment function of a particle can not be preserved if this

particle is substituted by only one with a narrower support (see right panel of

Fig. 1). The obvious consequence is that a parent particle needs to be split

into several child particles. One may hope that the error introduced when

splitting the parent particle somehow becomes unimportant when splitting

many parent particles. However, we shall demonstrate that this is not the

case and that the number and placement of child particles may have dramatic

consequences on the conservation of the associated distribution function. For

convenience we restate here the analytic form of B-splines with ∆ = 1. The

linear B-spline is given by
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S1(x) =

∣

∣

∣

∣

∣

∣

1− |x| |x| ≤ 1

0 |x| ≥ 1
(1)

the quadratic B-spline is defined by

S2(x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

3/4 − x2 |x| ≤ 1/2

1/2(
3/2 − |x|)2 1/2 ≤ |x| ≤ 3/2

0 |x| ≥ 3/2

(2)

and the cubic B-spline is defined by

S3(x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

1/2|x|3 − x2 + 2/3 |x| ≤ 1

4/3(1− 1/2|x|)3 1 ≤ |x| ≤ 2

0 |x| ≥ 2

(3)

Without loss of generality, we shall focus in this paper on the special

case (for the numerical values) where ∆ = 1 for the parent and r = 2 for

the children, but we shall keep ∆ and r in the notations. A particle k is

thus defined by its weight wk, position xk and velocity vk, so the continuous

density function at position x

n(x) =

∫

R3

f(x,v, t) dv (4)

where f(x,v, t) is the distribution function, is approximated by the sum

n(x) ∼
M
∑

k=1

wkS
p(x− xk) (5)

In the 2D and 3D cases, the assignment function is the product of the 1D

assignment function defined for each directions, for example:
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Sp(x− xk) = Sp(x− xk)S
p(y − yk)S

p(z − zk) (6)

3. Exact and approximate solution

In a pioneering study by Lapenta [19], it was emphasized that the rezoning

of particles (splitting or merging) can not be exact for uniform meshes. While

this assertion is true for a uniform grid, it no longer applies if the children

are dispatched to a mesh of different grid size from that of their parent. In

this case the size of the support of the assignment function of the children is

smaller (by a factor r) than that of their parent. Indeed, an exact solution

exists when r is an integer[20]. However when applied to PIC codes, the

solution comes at the cost of a large number of split particles: given the

dimension d of the grid and a refinement factor r = 2, the number of children

N from a single parent is (p + 2)d. In three-dimension d = 3, one gets 64

children from a single parents, which rapidly becomes prohibitive in practical

applications.

For completeness we now discuss the exact splitting for a 1D case and

indicate how to extend it to higher dimensions. Examples of exact splitting

in 1D are illustrated in Fig. 2. On the left panel, the B-spline of the parent

particle, as well as the B-splines of the four children are of the same degree,

namely p = 1. This example illustrates that an exact solution exists with

four children of the same weight 1/4 (the weight of the parent particle being

1). The two children located at the origin are equivalent to a single child of

weight 1/2, so the exact solution needs in principle N = 3 children for p = 1.

This is depicted in the middle panel of Fig. 2. For p = 2, the exact solution
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requires N = 4 children and it is illustrated in the right panel of Fig. 2.

In section 5, we provide the parameters for the exact splitting in one

dimension, for B-splines of degree p = 1, p = 2 and p = 3. More specifically,

we provide the wi and δi satisfying the relation

Sp(x) =
N
∑

i=1

wis
p(x− δi) (7)

The 2D and 3D generalization is straightforward using Eq. (6).

For the approximate splitting, the problem comes down to fix N , the

number of split particles, as well as their weights wi and positions δi, in

order to get an assignment function of the children as close as possible to the

one of the parent at every points of their support.

A solution to this problem is to split the parent into N children, all of

them having the same velocity as the parent. In this case, all the moments

of the distribution function (density, velocity, pressure, heat flux, . . . ) associ-

ated with the collection of children can be made the same as the moments of

the distribution of the parents, provided it is the case for the density profile

(the first moment). Then, for a given value of the refinement factor r, and a

given value of the number of children N , the problem reduces to finding the

position and an associated weight for each child that minimizes the difference

between the moments of the distributions calculated on the coarse and fine

grids.

To our knowledge, in AMR codes using macro-particles (e.g. [7], [8], [10])

the splitting of particles is neither exact nor optimized. In addition, these

methods are all based on split particles having the same velocity as their

parent. While arbitrary, this choice simplifies the problem and it is the one
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1 p = 1

−1 0 1

1 p = 1

−1.5 0.0 1.5

0.75

p = 2

Figure 2: Left panel depicts for p = 1 the parent and the 4 children for the exact solution.

Middle panel is the same as left panel, where the two children at the origin can be viewed

as a single child of weight 1/2. Right panel has the same format as middle panel for p = 2.

Each panel is for d = 1.

we adopt here. We now discuss in more details the splitting methods existing

in the literature.

• In the study of Fujimoto[7], the symmetry in the 2D case is pre-

served with four children. The children are located at a distance

δ⋆ = ∆/
√
NPPC from the parent where ∆ is the grid size associated to

the parent and NPPC is the number of particle in the cell where the

parent is located. With ∆ = 1 and NPPC ∼ 100 (which is a commonly

used value), one obtains δ⋆ ∼ 0.1.

• In the study by Innocenti et al.[10] the symmetry is also preserved but

the number of split particles depends on the dimension d. Eq. (39)

of Ref. [10] shows that, in our notation, these children are uniformly

dispatched along each direction with a spacing 1/2(∆/r) = 1/4 for ∆ = 1

and r = 2. Hence, in the 2D case, δ⋆ = 0.25 for four children (keeping

in mind that a larger, even number of split particles can be used with

this same δ⋆ value).

10



• In the study of Muller et al.[8] the symmetry is not preserved. The

parent is split into two children independently of the dimension of the

problem. Furthermore, the position δ⋆ of the two children is not pre-

cisely given, except that the independent shift of each of them, relative

to the parent, is “small”. We shall consider that δ⋆ is of the order of

0.1.

The star notation for δ⋆ is intended to outline the fact that these values

are defined on the fine grid (see right panel of Fig. 1) and not on the coarse

one.

Making a clear difference with the choices of these studies, we stress that

it is crucial to ensure that the assignment function of the parent and of

the set of children are as close as possible, at every points of their support.

Hence, the optimization process must rely on a procedure considering these

assignment functions as continuous functions, and not solelly considering a

finite number of their moments (density, momentum, energy) as in the studies

cited above.

To make clear the close relation between the position of the children

relative to their parent and the associated changes in the density profile, we

randomly distribute 100 parents in a single, 2D cell of unitary mesh size

(some more particles are also deposited on the adjacent cells to avoid the

drop of density on the border of the cell). We Focused on the 2D case as

this case is nowadays more prevalent than the 1D case. Nonetheless, to ease

the representation, we decided to display a line out along the X direction,

obtained at a given Y position. As an illustration, we take an assignment

function of degree p = 1. The density profile n(x), for a given y, calculated
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δ⋆ = 0.25

0 1

x
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Figure 3: Density profiles n(x) in a 2D cell of width ∆ = 1 for a set of 100 parents (thick

dotted lines), and a set of 400 children deposited at ±δ⋆ from their respective parent in

each direction. From left to right panels, the δ⋆ values are 0.1, 0.25 and 0.955536.

for this set of parents is depicted in Fig. 3 using a thick dotted line. The

fluctuations in the density (i.e. the fact that the density is not equal to 1.0

in the whole cell) are the result of the random distribution of these parents

in each cell. As an illustrative example, we represent the splitting process

needed for a refinement factor r = 2 and dimension d = 2, using N = 4

children. In order to conserve mass, each parent is then split into four children

of equal weight, wi =
1/4. As for the parents, the children assignment function

is of degree p = 1, however because of the refinement, their support is two

times smaller than that of the parents. The position of the children is shifted

with respect to the position of their parent by ±δ⋆ in each direction. The

density profile of this set of children, resulting from the superposition of the

400 children, are depicted in solid black lines in the three panels of Fig. 3,

for δ⋆ = 0.1 (left panel), δ⋆ = 0.25 (middle panel) and δ⋆ = 0.955536 (right

panel).

The first two panels correspond to the two values of δ⋆ used in previous
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studies[7], [8], [10]. The last panel shows the method presented in this paper.

It is clear from Fig. 3 that the choice of δ⋆ is crucial in order for the density

distribution of the children to be as close as possible to that of the parents.

In addition, the density profiles show larger total variation depending on the

choice of δ⋆, which may have consequences on the density level of fluctuations.

This point will be deepened in section 5.

4. Constraints on the splitting strategy

The problem treated in this paper is to determine for a single parent of

weight unity located at the origin, the number of children N , their weight

wi and location δ⋆i for i = {1, 2, . . . N} so that the associated assignment

functions are as close as possible. If the dimension d of the problem is larger

than one, then δ⋆i are vectors. It is reasonable to think that the larger N , the

smaller the associated error. The yet unspecified definition of this error will

be discussed in section 5, but it essentially quantifies how far the assignment

function of the children are from the assignment function of the parent. In

order to control the accuracy we want to reach, we keepN as a free parameter.

We focus on the position of the children because, as already mentioned, their

velocity is the one of their parent.

As already said, δ and δ⋆ are the position of the children, relative to their

parent, defined on the coarse (of grid size ∆) and fine (of grid step ∆/r) grid,

respectively. Hence, δ⋆ = rδ. Yet, we also use δ, defined on the coarse grid,

in some cases, as in Eq. 7. From a technical point of view, refined particles

are dispatched on the refined grid, so their positions have to be defined on

this refined grid. The method for r 6= 2 is also applicable, but needs to
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Figure 4: Left panel depicts for p = 1 the parent and the two children located at δ = ±0.277

(normalized to the coarse grid mesh ∆). Middle panel is the same as left panel where only

the sum of the two children is displayed. Right panel is the difference between the parent

and the sum of the two children (blue when the sum is positive and red when it is negative).

recalculate the wi and δ⋆i as discussed in the next section. Such calculations

can be done using the dedicated optimization code [21].

Among all the sets of wi and δ⋆i , we want to pick the ones for which the

assignment function of the children is the closest to the one of the parent.

This is illustrated in Fig. 4 for the simple 1D case, with p = 1 and N = 2,

where N is the number of split particles on the fine grid for a single particle

on the coarse grid. On the left panel, the two children are depicted by a black

line, while the parent is in gray. One notes that the support of the assignment

function of the children being half the one of the parent, its maximum value

is twice the one of the parent because B-splines are normalized functions.

In the left panel of Fig. 4, the two children are deposited with a weight

1/2 in order to conserve mass. On the middle panel, we display the sum of

the assignment functions of the two children (solid black line), as well as

the one of the parent (also in gray). On the right panel, we display the

difference between the assignment function of the parent and the one of the

children. Red is used when this difference is positive and blue is used when
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it is negative. The best solution is the one for which the total (red plus blue)

surface is as small as possible. We can then define the cost function in order

to determine, for each d, p and N values, the wi and δi for each child i. For

the 1D case, the cost function is:

Qp
N =

∫

R

∣

∣

∣

∣

∣

Sp(x)−
N
∑

i=1

wis
p(x− δi)

∣

∣

∣

∣

∣

2

dx (8)

For the sake of readability, we define the assignment function of the set

of children as the sum of the assignment functions of each of them. The

optimization problem we need to solve is to find the best values of the free

parameters (wi and δi) for a given number of children N , to minimize the

cost function defined as the difference between the assignment functions of

the parent and the one of the children. This is an optimization problem

as assignment functions are continuous functions and the number of free

parameter is finite.

We emphasize that the evenness/oddness of the number of split particles,

N , is constrained by symmetry considerations. B-splines are by construction

even functions. For a parent located at the origin, one can focus on the

positive half of the domain. Let’s consider we know the weights and their

locations (eventually in the half negative domain) for the set of children that

minimizes the cost function. Then, by evenness of B-splines, this same set

will also minimize this difference in the negative half domain, provided the

sign of the δi are changed accordingly. As a consequence, the best solution

will be reached for an even number of children. In fact, adding a single

child at the origin (collocated with the parent) won’t modify the evenness

requirement discussed above.

15



Given the evenness considerations of assignment function just discussed,

we now need to determine the spatial pattern to be followed to dispatch

particles. These patterns do not depend on the degree p of the B-splines,

but importantly, they depend on the dimension d of the problem. For the

1D case, the solution is quite simple: the two children have the same weight

and are located at ±δ around the parent in order to preserve the evenness

of the assignment function. This pattern is depicted in the left panel of Fig.

5, where the parent is represented by a black bullet and the two children by

pink bullets. For a larger (even) number of children, all couples of children

are dispatched in a similar way. We shall call this, pattern of type 1. A single

child can also be dispatched at the origin (black position in Fig. 5); this is

pattern of type 0. The number associated to the type of these pattern will

become clear at the beginning of next section.

d = 1

d = 2 d = 3

Figure 5: The parent is depicted by the large black bullet. Depending on the pattern

type, the children are depicted in pink, purple and lime. Left panel is the d = 1 case, with

two children. Middle panel is the d = 2 case, with four children in two types of patterns.

Right panel is the d = 3 case, with six, eight or twelve children in three types of patterns.

For the 2D case, in order to preserve spatial symmetry (which is a neces-
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sary condition to reach the best solution), there are two ways to split a single

parent in four children of equal weight : (i) the four particles are located at

(x = ±δ, y = ±δ) or (ii) two are located at (x = 0, y = ±δ) and the two

others are located at (x = ±δ, y = 0). This first solution is depicted by

purple bullets in middle panel of Fig. 5 and is called pattern of type 2, while

the second one is depicted by pink bullets and is called pattern of type 1.

One can notice that pink children are located at a distance δ from its parent

while the purple ones are located at δ
√
2. This farther location will have

consequences on the δ value as well as on the accuracy that we will discuss

in next section. If a single child of weight w0 (associated to pattern of type

0 as in the 1D case) is added at the origin, then the weight w1 of the four

other children is such as w0 + 4w1 = 1. The N = 4 case has then one free

parameter (the δ value), while the N = 5 case has two (the δ value and one

of the two weights).

The same symmetry considerations apply to the 3D case. A single parent

can be split in six, eight or twelve children: (i) the six particles are located

at (x = ±δ, y = 0, z = 0) and the two associated circular permutation of

directions, depicted by pink bullets in right panel of Fig. 5 (pattern 1), (ii)

the eight particles are located at (x = ±δ, y = ±δ, z = ±δ), depicted by

lime bullets in Fig. 5 (pattern 3) or (iii) the twelve particles are located at

(x = ±δ, y = ±δ, z = 0) and the two associated circular permutation of

the directions, depicted by purple bullets in Fig. 5 (pattern 2). As depicted

in the right panel of Fig. 5, adding a single child at the origin (pattern 0

as in the 1D and 2D cases) also illustrates the N = 7, N = 9 and N = 13

cases. We should also mention that there are two different cases associated
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to N = 12 (or N = 13) : twelve purple children (one set of pattern 2) or

two sets (of pattern 1) of six pink children (plus a single child at origin for

N = 13).

5. Accuracy of the splitting strategy

For a subset of children, the associated pattern (defining the number and

space distribution of children) is called τj where j is the index of this subset.

Naming Nj the number of children for the j subset of children with pattern

τj, the assignment function of this subset of particles is noted

T p
j (r) =

Nj
∑

i=1

sp(r− δi) (9)

In order to make the notations as explicit as possible, index j of T is the

index of the subset of children (associated to type τj), while index i refers to

a given child of this subset. The meaning of the type τj index can be clearly

explained for the 3D case. A child i belonging to the pattern of type τj is

dispatched at a position

δi = aδjx̂+ bδjŷ + cδj ẑ (10)

where a, b and c belong to {-1, 0, +1} and x̂, ŷ, ẑ are unit vectors. It is

so because the δi differ one from the other because of the different {a, b, c}
values, but rely on the same δj value for the pattern of type τj. The type of

the pattern j is defined as τj = a2+b2+c2 so the associated pattern contains

all possible values of {a, b, c} satisfying this relation. In Fig. 5, pink, purple

and lime pattern are then associated to τj = 1, 2 and 3, respectively. The
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naming of the τj = 0 pattern is then obvious. The full knowledge of a subset

j of children is then given by the triplet (τj, wj, δj). This can be extended

straightforwardly to 2D and 3D cases.

Eq. (8) can hence be written in a more compact way as

Qp
N =

∫

Rd

∣

∣

∣

∣

∣

Sp(r)−
M
∑

j=1

wjT
p
j (r)

∣

∣

∣

∣

∣

2

dr (11)

In Eq. (11), M is the number of subsets (each one being associated to a

pattern type τj) so that the total number of childern in Eq. (8) is given by

N =
∑M

j=1 Nj . It is clear that a pattern type τj for j ∈ [1,M ] can have zero

or multiple occurences, with different wj and δj values (see right panel of

Fig. 2). Because of the piecewise definition of B-splines, the analytical form

of this cost function is not easy to obtain. However, optimal parameters can

be obtained numerically and tabulated so to be used in codes at run time.

0.5 1.0 1.5 2.0
δ⋆
1

0.0

0.1

0.2

Q
p N

0.5 1.0 1.5 2.0
δ⋆
1

0.5 1.0 1.5 2.0
δ⋆
1

d = 1 d = 2 d = 3

Figure 6: Qp

N value given by Eq. (8) depending on the δ1 value. This correspond to a

single pattern j = 1, indicated by pink positions in Fig. 5. Solid red, green and blue

are for p = 1, 2, 3 respectively. Vertical dotted lines at 0.25 is the solution proposed by

Innocenti et al.[10], which is off the chart for d = 3.

We calculate Qp
N defined by Eq. (8) for each combinations of p = 1, 2, 3
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and d = 1, 2, 3. The values obtained for the single free parameter δ⋆1 (re-

minding that the star notation is associated to the fact that this value is

defined on the refined grid) are depicted in Fig. 6. The left panel is for d = 1

and two children (N1 = 2), the middle panel is for d = 2 and four children

(N1 = 4)), and the right panel is for d = 3 and six children (N1 = 6). The

curves correspond to the τ1 = 1 pattern, indicated by the pink positions in

Fig. 5, whatever the value of d. In each panels, the red curve corresponds

to p = 1, green is for p = 2 and blue is for p = 3. One notes that it exists

for each set of p and d values, an absolute minimum and no local minima,

i.e. an optimal δ⋆1 value to dispatch the split particles. In Fig. 6, we also

displayed, using bullets, the positions of the minima for each curves.

The minimum values Qp
N are increasing with d, but decreasing with p.

This last point results from the fact that the larger p, the smaller the total

variation of the function. Moreover, the optimum δ⋆1 value is increasing with

d, whatever the p value. This results from the increasing values of N1 with

d, hence the decrease of the weight of each child: being lighter, they need

to be dispatched further from the parent to fulfill the tail of the assignment

function of the parent. Furthermore, the support of a B-spline is increasing

with p. The support of a child being half the one of its parent, this child has

to be dispatched farther from its parent. As a consequence, δ⋆1 increases with

p.

As already discussed in section 3, the suggested δ⋆1 value in Ref. [7] and

[8] are close to 0.1. This value is off chart, very far from the optimal δ⋆1 value

and it is associated to a very large error. In Ref. [10], the suggested value of

δ⋆1 is 0.25 (independently of the p and d values), which is displayed in left and
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middle panels of Fig. 6 with dotted vertical lines (this value being out of the

scaling for the right panel). It clearly appears that these two values are not

the best one in order to satisfy our accuracy criterion. Moreover, as can be

observed on Fig. 3, these δ⋆1 values also increase the level of fluctuations of

the density (and higher order moments) profile, which generally compromises

the stability of the code. The numerical increase of the level of fluctuation

will be provided and discussed in the next section.

With the power 2 in Eq. (8), one recognizes the use of the L2 norm. We

tried to use a different power, namely 1 and 3. The derivative of Qp
N is smaller

for higher power values in the norm, meaning that the associated minimum

value is approximately at the same position, but in a shallower potential

well. The good stability for the location of the minima then suggests that

the results given here do not depend on the choice of the norm.

We now carry out the same optimization with two degrees of freedom,

w1 and δ⋆1. In this case, N1 children (with a pattern τ1 = 1) of weight w1

are dispatched according to the pink positions in Fig. 5 with the associated

δ⋆1 parameter, and a single child (for the τ2 = 0 pattern) of weight w2 =

1− (N1 − 1)w1 is located at the origin. Results are displayed in Fig. 7. For

clarity, we use the same color code for each panel, ranging from 0 (yellow)

to 0.8 (dark blue), so Qp
N values larger than 0.8 are saturated in dark blue.

It is clear that, as for Fig. 6, the minimum value of Qp
N increases with d,

decreases with p, and is narrower as d increases. Depending on the dimension

d and order p, the potential wells, for each cases, have a different location

and depth. Furthermore, we adapt for each panels the range of the w1 values

to focus on the region preserving the positivity of w2. The most important
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Figure 7: Qp

N value given by Eq. (8) depending on the w1 and δ1 values. This situation

correponds to two pattern j = 0 and j = 1. Rows are for d = 1, 2, 3 from top to bottom,

respectively, and columns are for p = 1, 2, 3 from left to right, respectively. We use a

different scaling for the Y -axis, depending on the dimension d, but the same at a given

d value whatever the p value. The reason is that the relation w0 = 1 − Nw1 has to be

satisfied as well as the positiveness of the wi. As the number of children N increases

with d, the range of possible values for w1 thus decreases. The scaling of the X-axis is

the same for all the nine panels, but the origin of the X-axis depends on the degree p of

the B-splines: the larger p, the larger the origin of the X-axis. As for Fig. 6, this is a

consequence of the increasing support of B-splines with their degree p.

feature from these panels is that with two degrees of freedom, the property

of having a single absolute minimum is preserved, whatever the p and d
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N τ p = 1 p = 2 p = 3

2 1 0.5 0.5 0.5

3 0 0.5 0.468137 0.473943

1 0.25 0.265931 0.263028

4 1 0.375 0.364766

1 0.125 0.135234

5 0 0.375

1 0.250

1 0.0625

Table 1: Values of wi(s) for p = 1, 2 and 3 and d = 1. Bold values are for exact splitting.

values. We can conjecture it is so for larger M value, even if this point is not

mandatory for the numerical resolution of this problem.

We pursue these calculations to find the wj’s and δ⋆j ’s values that minimize

Qp
N for larger values of N using Eq. (11). We report these wj values in Tab.

1, 3 and 5 for d = 1, d = 2 and d = 3, respectively. The associated δ⋆j are

in Tab. 2, 4 and 6 for d = 1, d = 2 and d = 3, respectively. Note that

in Tab. 1 to 6, the first row contains the total number N of children for

this configuration, while the second contains the type τj of the pattern used

for this subset j (one per line) of children that have to be considered in the

summation of Eq. (11). For the interested reader, the associated python

code for this optimization[21] (using the NLopt optimization library[22]) can

be easily used and extended for larger p, different r and/or larger N . It is

also very important (for the implementation on an AMR code) to remind

that the δ⋆j values are given on the refined mesh in units of ∆/r = 1/2.
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N τ p = 1 p = 2 p = 3

2 1 0.551569 0.663959 0.752399

3 0 — — —

1 1.0 1.112033 1.275922

4 1 0.5 0.542949

1 1.5 1.664886

5 0 —

1 1.0

1 2.0

Table 2: Values of δ⋆i (s) for p = 1, 2 and 3 and d = 1, defined on the refined grid. Bold

values are for exact splitting.

The most important for PIC simulations is to decrease as much as possible

the value of Qp
N . In Fig. 8 we show the optimal Qp

N as a function of the

number of children N . For the 1D case (d = 1, left panel), unsurprisingly,

Qp
N decreases monotonically to zero: the exact solution is reached for N = 3

with p = 1, for N = 4 with p = 2 and for N = 5 with p = 3. Unless very

strong constraints are placed on the number of children that can be used in a

simulation, the exact solution can be used for d = 1. For the 2D case (d = 2,

middle panel), things are quite similar: Qp
N decreases monotonically, and the

exact solution is reached with N = 9 for p = 1. While for larger p values the

exact solution is not reached, the Qp
N decrease to values on the order of 10−3.

One can also notice the gain obtained from N = 8 to N = 9, just by adding

a child at the position of the parent. It is worth noticing that patterns of

type 1 and 2 have the same number of children, namely 4. We then operate
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N τ p = 1 p = 2 p = 3

4 1 0.25† 0.25† 0.25†

4 2 0.25 0.25 0.25

5 0 0.270426† 0.239166 0.242666

1 0.182394† 0.190209 0.189333

5 0 0.239863 0.210694† 0.22294†

2 0.190034 0.197327† 0.194265†

8 1 0.179488 0.178624 0.179318

2 0.070512 0.071376 0.070682

9 0 0.25 0.213636 0.218605

1 0.125 0.126689 0.126871

2 0.0625 0.069902 0.068477

Table 3: Values of wi(s) for p = 1, 2 and 3 and d = 2. Bold values are for exact splitting.

The dagger exponent indicate the worst pattern between the two possible cases for N =

4 and N = 5.
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N τ p = 1 p = 2 p = 3

4 1 0.807166† 0.955536† 1.089404†

4 2 0.571783 0.683734 0.776459

5 0 —† — —

1 1.053876† 1.203227 1.376953

5 0 — —† —†

2 0.721835 0.83043† 0.956756†

8 1 0.700909 0.828428 0.942365

2 1.05786 1.236701 1.423324

9 0 — — —

1 1.000 1.105332 1.267689

2 1.000 1.143884 1.315944

Table 4: Values of δ⋆i (s) for p = 1, 2 and 3 and d = 2, defined on the refined grid. Bold

values are for exact splitting. The dagger exponent indicate the worst pattern between

the two possible cases for N = 4 and N = 5.
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N τ p = 1 p = 2 p = 3

6 1 0.166666 0.166666 0.166666

7 0 0.155626 0.13594 0.136213

1 0.140729 0.14401 0.143964

8 3 0.125 0.125 0.125

9 0 0.129097 0.119495 0.128032

3 0.108863 0.110063 0.108996

12 2 0.083333 0.083333 0.083333

13 0 0.1552 0.137335 0.142364

2 0.0704 0.071889 0.07147

14 1 0.101754 0.094953 0.096661

3 0.048684 0.053786 0.052504

15 0 0.137684 0.143053 0.143017

1 0.076854 0.056257 0.062838

3 0.050149 0.064926 0.059994

18 1 0.082439 0.077118 0.078179

2 0.042114 0.044775 0.044244

19 0 0.128816 0.090629 0.093679

1 0.062366 0.061106 0.061855

2 0.041416 0.045228 0.044599

20 2 0.064204 0.065395 0.065154

3 0.028694 0.026908 0.02727

21 0 0.135727 0.110848 0.116674

2 0.061347 0.062333 0.061983

3 0.016014 0.017645 0.017441

26 1 0.082117 0.078837 0.079616

2 0.031737 0.03104 0.031146

3 0.015806 0.019311 0.018569

27 0 0.125 0.099995 0.104047

1 0.0625 0.055301 0.05564

27



N τ p = 1 p = 2 p = 3

6 1 0.966431 1.149658 1.312622

7 0 — — —

1 1.121649 1.310004 1.495565

8 3 0.584015 0.700806 0.79718

9 0 — — —

3 0.664932 0.785409 0.901924

12 2 0.74823 0.888184 1.012756

13 0 — — —

2 0.880049 1.018074 1.167549

14 1 0.857394 0.995331 1.137504

3 0.898419 1.015636 1.173546

15 0 — — —

1 1.074658 1.444377 1.559163

3 0.832484 0.851653 1.01621

18 1 0.778685 0.896073 1.021961

2 1.060496 1.22807 1.412578

19 0 — — —

1 1.002919 1.069563 1.226078

2 1.02404 1.191085 1.368696

20 2 0.67185 0.805325 0.914874

3 1.07768 1.307121 1.502083

21 0 — — —

2 0.832815 0.947791 1.088174

3 1.17426 1.400983 1.619065

26 1 0.781691 0.909825 1.036532

2 1.044972 1.217382 1.397128

3 1.01369 1.137329 1.319162

27 0 — — —

1 1.0 1.111333 1.276815
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the optimization process for each cases ; the best values are depicted with

solid circles in Fig. 8 while the worst ones are indicated with triangles. In

order to identify the patterns of the worst cases (depending on the order p),

the associated wj’s and δj’s in Tab. 3 and 4 are tagged with a dagger. A

similar picture merges for the 3D case (d = 3, right panel). From N = 6

to N = 27, all Qp
N are decreasing with N , whatever the p value, except for

N = 21. As for d = 1 and d = 2, the larger p, the smaller the Qp
N . The

values reached at N = 13 are on the order of 5 10−3 except for p = 1 where

such values of Qp
N are reached for N = 19. The Qp

N would reach zero for the

exact solution which needs far more children : (p + 2)3. We also computed

for N = 12 and N = 13 the Qp
N values for patterns {1,1} and {0,1,1}. As

for d = 2, we obtained larger values, so these solutions are of no interest.
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Figure 8: Qp

N values given by Eq. (8) as a function of N for p = 1 (red), p = 2 (green)

and p = 3 (blue). Left panel is for d = 1, middle panel is for d = 2 and right panel is for

d = 3.

The parameters for exact splitting in two and three dimensions are not

tabulated (except for d = 2 and p = 1) because they involve some more

complex patterns, that would need a different notation. But these values can
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be deduced very straightforwardly from the ones at one dimension from Eq.

(6).

6. Density fluctuation level when splitting many particles

While the values of Qp
N are important to evaluate the accuracy of the

method, it is not that easy to interpret the associated consequences in a PIC

code. The level of density fluctuations is the root mean square of the density

over a large enough number of grid points (for an acceptable statistics) in

an homogeneous system. It has a strong impact on the stability of non-

AMR PIC codes[13, 16] but in the AMR PIC context, a too large increase

of the density fluctuation level can dramatically compromised the stability

of such simulation[17]. We hence evaluate how the density fluctuation level

is modified by splitting a set of parent particles using the optimal splitting

described above.

Whatever the dimension and the order of the B-splines, we dispatched

100 parent particles per cell over a grid of 4000 cells (plus the needed ghost

particles on the border to avoid density drops). The value of 100 particles

per cell is typical of PIC codes, and 4000 is large enough to carry statistical

calculations (we obtained very similar curves using 2000 grid points). We

then measured the 4000 density values at the center of each cells, in order to

calculate σ100 the standard deviation of this sample. This provides the level

of fluctuation of the parents. Then, for all the N values introduced in Tab. 1

to 6, we split each parent particle, and calculate the associated density value

at the same location, i.e. at the center of each cell. As for the parent, we

then calculate over this sample of 4000 points the standard deviation σ⋆
100.
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Finally, Fig. 9 depicts the relative increase (in percentage) of the density

fluctuation level.

As a first remark, the level of fluctuation of the childern is always larger

than the one of the parents. Without clear evidence, one could suspect that

the larger total variation of the assignment function of the children compared

to the one of the parent could play a significant role in this feature. Fur-

thermore, Fig. 9 clearly shows that when increasing the number of children

N , whatever the d and p values, the density level of fluctuations of the chil-

dren gets closer to the one of the associated parents. This gives strength

to this method: while increasing the number of children, the accuracy of

the splitting is better, and the increase of the density level of fluctuations is

lowered.

2 4 6

N

0

20

40

∆
σ
1
0
0
(%

)

d = 1

p = 1
p = 2
p = 3

4 6 8 10

N

d = 2

p = 1
p = 2
p = 3

6 8 10 12 14 16 18 20 22 24 26 28

N

d = 3

p = 1
p = 2
p = 3

Figure 9: Relative increase (in percentage) of the density fluctuation level for 100 particles

per cell randomly and uniformly distributed in 4000 grid points depending on N for p = 1

(red), p = 2 (green) and p = 3 (blue). Left panel is for d = 1, middle panel is for d = 2

and right panel is for d = 3.

In Tab. 7, we computed the standard deviations for the increase of the

density fluctuation level for the Fujimoto (first line) Innocenti (second line)
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Splitting type p = 1 p = 2 p = 3

Fujimoto 122 % 116 % 114 %

Innocenti 106 % 105 % 106 %

This work 21 % 22 % 22 %

Table 7: Mean values and standard deviations for the increase of fluctuation level for

the Fujimoto (first line), Innocenti (second line), and Smets (third line) -type splitting

depending on the p degree of the spline. These values are obtained in the 2D case for a

splitting using the four children of pattern 1.

and this Work (third line) -type splitting, depending on the degree p of

the B-spline. The calulations are conducted exactly as in the same way as

described above to produce Fig. 9. In all cases, the children are dispatched

using pattern 1, with δ⋆1 values equal 0.1, 0.25 and 0.955536 associated to

Fujimoto, Innocenti and this work, respectively. These values are computed

in the the 2D case for the B-spline degree p = 1 (left row), p = 2 (middle row)

and p = 3 (right row). The consequence of the splitting type on the level of

fluctuation is clear and dramatic if using a non-optimized method. As already

discussed, if these values happen to be unacceptable because too large, they

can be decreased by adding some more patterns (and so the number of split

particles) in the code provided.

7. Conclusions

We presented a new method to find the optimum way to dispatch par-

ticles in PIC codes when a splitting strategy is needed in a AMR context.

Splitting techniques have already been investigated and discussed, but not
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necessarily in the framework of AMR. In this specific case, the change of the

grid mesh for the split particles has strong consequences. Contrary to most of

the previous studies, we emphasized the fact that the way to dispatch split

particles must depend on the degree p of the B-spline used as assignment

function for the particles. We also demonstrated that such splitting is opti-

mum for a symmetrical distribution of the split particles, meaning that the

number of split particles is constrained by this requirement. This symmetry

is preserved by adding a particle in the set of split particles at the parent’s

particle locus. We then provide in this paper the loci of the split particles

in Fig. 5, and the associated weights and positions of these split particles in

Tab. 1 to 6, for first, second and third order of interpolation, and for both

1D, 2D and 3D cases. The Python code[21] we use for this optimization

can then be run for refinement factor larger than two, not tabulated in this

paper.

For the 1D cases, the exact solution is affordable as this type of simula-

tions is generally light enough. For the 2D case, one already reaches a very

good solutions for N = 9. It means that the number of split particles is

multiplied by 9, while the number of cells is multiplied by 4 (on a general

point of view, it is multiplied by rd). The number of particles per cells is then

only multiplied by 2.25. For the 3D case, very good solutions are reached for

N = 13 (p = 1 and p = 2) or N = 19 (p = 3), while the number of cells is

multiplied by 8. The number of particles per cell is then multiplied by 1.625

or 2.375. In any cases, the number of particles per cell is not prohibitive.

We emphasized the fact that the assignment function of the set of split

particles has to be as close as possible to the assignment function of the par-
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ticle to be split. This constraints is more important than the one generally

considered[23],[24], only associated to its integrated values: mass/charge,

impulsion, energy. This point has already been pointed out[25] while con-

serving the full distribution function needs a heavier numerical effort. From

a computational point of view, the method we present has the advantage

of having absolutely no overhead associated to the calculations of the coef-

ficients (weight and locus) if these values are calculated and tabulated. In

previous studies, the splitting process can be aborted if at least one of the

split particle is out from the cell (on the fine grid) of the parent locus. Such

a constraint has the drawback to violate the symmetrical constraint on the

number and loci of the children, discussed in this paper. This requirement

seems to us unsuitable, and should be re-evaluated in the light of the method

presented here.

We have also emphasized the importance for a set of split particle to

have an associated assignment function as close as possible as the one of the

particle which is split. In Maxwell’s equations, these particles are playing a

role through their zero order (charge density) and first order (current density)

moment of their distribution function. The definition of these quantities

being linear with the assignment function, the errors on this quantities will

evolve in the same way as the one presented for the assignment function. This

is clearly the case for the charge density, but also for the current density as

all the split particles have the same velocity as the one of the particle that

is split.

Up to now, all the calculations have been conducted with the assumption

that the grid is isotropic, meaning that the mesh size is the same in all
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directions. Actually, it is not a constraint, and the above wi and δi values are

also the optimum ones for anisotropic grid, whatever the degree of anisotropy.

For the two imensional cases, a simple homothety centered on the parent

position with a ratio ∆Y /∆X only in the y direction is the link between the

isotropic case with mesh size ∆X and the anisotropic one with mesh size

(∆X ,∆Y ). As this can be checked with the optimization code[21] (for both

two and 3D cases), this transformation does not modify the optimization

results, meaning that the optimum parameters are not depending on the

degree of anisotropy of the grid.

These conclusions should also be considered in the opposite process of

merging. Up to now, most of the existing methods identify a set of particles

as close as possible in phase space, and merge two particles in a single one [26],

or a larger set of particles in a pair [27]. In the merging strategy, the degree

of the B-spline of the assignment function could also play an important role

as in the splitting strategy, so the way to merge particles might also depend

on this degree. To be more specific, the set of particles to be merged should

be as close as possible in velocity space, but at an optimal finite distance in

position space.

An important conclusion of this work is that when splitting a particle,

the split particles should be dispatched at a given finite distance from the

original particle, this distance depending only on the degree p of the B-spline

and on the dimension d of the problem. We can draw an interesting parallel

with a recent study on the merging problem by Luu et al. [28]. This study

uses a Voronoi diagram to identify particles close enough in phase space to be

merged. This algorithm needs a tolerance parameter, which is somewhat the
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threshold value below which one can consider that the particles to be merged

are close enough. In this study by Luu et al., they show that this value has

to be very small in velocity space, but can be much larger in position space.

While not a proof, it suggests the importance of the finite distance between

particles involved in merging or splitting processes.

We also outlined the existence of an exact splitting at the cost of a large

number of split particles. Considering the existence of efficient rezoning

algorithm[25], one can wonder how the approximate splitting we present in

this paper can compare with the exact one, followed by a rezoning proce-

dure. Both options could be used in order to have the same number of split

particles. The first option will be the cheapest in term of CPU, but their

efficiency to preserve the distribution function and keep the fluctuations at

the same level should be evaluated in a future work.
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