Efficacy of aztreonam with β-lactamase inhibitors against metallo-carbapenemase-producing Enterobacteria

M. Danjean, F. Morel, J. Robert

To cite this version:

HAL Id: hal-03205859
https://hal.sorbonne-universite.fr/hal-03205859
Submitted on 22 Apr 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Title: Brief Report: Efficacy of aztreonam with ß-lactamase inhibitors against metallo-carbapenemase-producing Enterobacteria

Article Type: Brief Report

Author names and affiliations: M. Danjean¹, F. Morel¹,², J. Robert¹,²

¹ Service de Bactériologie et Hygiène, APHP. Sorbonne Université, Site Pitié-Salpêtrière, Paris, France

² Centre d’Immunologie et des Maladies Infectieuses, Inserm, Sorbonne Université (U1135 – E2), Paris, France

Corresponding Author: Pr. Jérôme Robert

Corresponding Author’s Institution:
Service de Bactériologie-Hygiène Hospitalière, APHP. Sorbonne Université, Site Pitié-Salpêtrière
47-83 bd de l’hôpital, 75013 PARIS
+33 1 42 16 20 70
jerome.robert@aphp.fr

Keywords: Carbapenemase-producing Enterobacteriaceae; ceftazidime-avibactam; ceftolozane-tazobactam; aztreonam; synergy.

Declarations

Funding: none.

Conflicts of interests: none.

Availability of data and material: The authors can provide the summary table of the microbiological collection.

Code availability: Not applicable.
Abstract

Purpose: The combination of aztreonam (ATM), poorly hydrolyzed by metallo-ß-lactamase (MBL) and ß-lactamase inhibitors inhibiting extended spectrum ß-lactamases represents a theoretical therapeutic option against carbapenemase-producing Enterobacteriaceae (CPE). We evaluated the *in vitro* activity of aztreonam combined with ceftazidime-avibactam (CZA) or ceftolozane-tazobactam (C/T) against MBL CPE.

Methods: The effects of the combinations were tested against 42 clinical MBL CPE resistant to ATM by using E-test strips.

Results: CZA and ATM were synergistic and restored ATM susceptibility in 26/42 isolates (average MIC gain: 11-fold), while the second combination was poorly active.

Conclusion: CZA+ATM needs further evaluation for treating patients with MBL CPE.
Sir,

Metallo-β-lactamases (MBL) produced by Enterobacteriaceae inhibit the clinical activity of most β-lactams but aztreonam (ATM). However, carbapenemase-producing Enterobacteriaceae (CPE) are frequently carrying additional resistance mechanisms such as extended-spectrum-β-lactamase (ESBL) or over-production of chromosomally-determined cephalosporinase conferring additional resistance to ATM. Hence, such isolates represent a therapeutic challenge. Some hope comes from the combination of ATM with ceftazidime-avibactam (CZA), which has recently demonstrated in vitro and in vivo activities on MBL-producing Enterobacteriaceae [1–4]. Therefore, we assessed the in vitro synergistic activity of two antibiotic combinations with ATM, i.e. CZA and ceftolozane-tazobactam (C/T). Unselected MBL CPE isolates were consecutively collected from clinical samples from 2016 to 2019 in a University hospital in Paris, France. The phenotypic test Resist-4 OKNV (Coris Bioconcept®, Gembloux, Belgium) and the genotypic test Xpert Carba-R (Cepheid®, Sunnyvale USA) were used to characterize carbapenemase enzymes. MICs of ATM, CZA, and C/T were determined by the E-test strip method (BioMérieux®, Durham, USA – Liofilchem®, Waltham, USA). The synergistic activities of the ATM-CZA and ATM-C/T combinations were determined as previously described [1], by first applying on a Mueller-Hinton agar the CZA or C/T strip, that was replaced after 10 minutes, by an ATM strip at the very same place. Plates were incubated at 37°C for 16 – 18 hours under aerobiosis conditions. The MICs of the combinations were interpreted according to the 2018 EUCAST (http://www.eucast.org) breakpoints for ATM (1 and 4 mg/L). In order to quantify the decrease in MICs values of the synergistic combinations as compared to ATM alone, values of MICs ≥ 256 mg/L were converted to 512 mg/L. ESBL-production was assessed by the double-disk diffusion method 4. The median decreases in MIC dilutions were compared by using the Mann Whitney test (R project, version 4.0.0).

A total of 47 MBL-producing Enterobacteriaceae (37 NDM and 10 VIM) were collected. *Escherichia coli* was the most frequent species (43%), followed by *Klebsiella pneumoniae* (26%) and *Enterobacter cloacae complex* (17%). Other species were *Citrobacter freundii* (n=4), *C. koseri* (n=1), *K. oxytoca* (n=1) and *Proteus mirabilis* (n=1). A total of 73% (27/37) of NDM- and half (5/10) of VIM-producing isolates displayed an ESBL phenotype. According to EUCAST breakpoints, all isolates were resistant (R) to CZA and C/T, and five were ATM-susceptible (S). ATM-CZA and ATM-C/T combinations MICs distribution were firstly plotted (see Figure 1) as a global visualization purpose and to seek the impact of the additive ESBL-producing phenotype. As expected, the five ATM-S isolates remained ATM-CZA-S and ATM-C/T-S. Among the 42 ATM non-S isolates,
only four (9%) were ATM-C/T-S, whereas 26 (62%) were ATM-CZA-S and 12 (29%) of intermediate susceptibility to ATM-CZA (as shown in Figure 2). There was no significant difference between ESBL and non-ESBL isolates. Among the four ATM-CZA-R (MICs > 256 and 128 mg/L) isolates, two (one NDM and one VIM producer) were ATM-C/T-S (MICs: 0.38 and 0.19 mg/L), both displaying an ESBL phenotype. The confidence interval of MICs distribution among all MBL-producing Enterobacteriaceae for ATM-CZA and ATM-C/T were respectively [0 ; 34.47] and [48.04 ; 137.08] (p-value < 0.05).

Amongst the two ATM-CZA-R remaining isolates, one was of intermediate susceptibility and one was resistant to ATM-C/T. Among the 30 ATM-C/T-R isolates, 17 (57%) were ATM-CZA-S. The median reduction in MICs dilution for the combinations with ATM were 14 (range: 0 to 24) fold for ATM-CZA compared to 5 (range: 0 to 22) fold for ATM-C/T and the difference was statistically significant (p < 0.05). However, for only three isolates (VIM-positive *E. coli*; NDM-positive *K. pneumoniae*; NDM and ESBL-positive *E. cloacae*), the decrease in MICs was higher with the ATM-C/T than with the ATM-CZA combination.

In summary, by using a set of unselected clinical isolates, we confirmed the interest of the ATM-CZA combination, while the ATM-C/T combination was seldom synergistic. Of interest, ESBL production had no impact on the MIC of the ATM-CZA combination. Of note, even though the ATM-C/T combination appeared of minimal interest, the latter may warrant testing when the ATM-CZA combination is ineffective. Indeed, two of four of the ATM-CZA-R strains appeared to be susceptible to the ATM-C/T combination. In the latter cases, there was no obvious link between the synergistic effect of ATM-C/T and the resistance phenotypic pattern of the isolates. Our report confirms previous studies on the interest of the ATM-AVI (avibactam) combination on MBL [1,2,4–7]. Nevertheless, besides one study [5] we tested a larger number of species and included VIM MBL. Because AVI has no inhibitory activity against MBL, the efficacy of the combination is likely due to the inhibition of class A or class C β-lactamases by AVI, including carbapenemases thus protecting ATM from hydrolysis by these enzymes. We report also herein on the new combination C/T and demonstrated its limited interest in this purpose.

Because new β-lactamase inhibitors combined to carbapenems have little *in vitro* efficacy against MBL CPE, our results advocate for discussing the clinical use of the ATM-CZA combination as salvage therapy when no alternatives are available for the treatment of infections due to MBL-producing isolates.
Figure 1 – Distribution of MIC values

Minimum inhibitory concentration (MIC) distributions of ceftazidime-avibactam (CZA), and ceftolozane-tazobactam (C/T) in combination with aztreonam (ATM) against metallo-β-lactamase producing isolates. White and grey bars represent ATM-CZA and ATM-C/T MICs, respectively. Dotted and solid bars represent extended spectrum β-lactamase- (ESBL) and non-ESBL-producing isolates, respectively. The two vertical solid lines represent the lower (1 mg/L) and higher (4 mg/L) ATM clinical breakpoints.

Figure 2 – Scatter plot of Minimum Inhibitory Concentrations (MIC) of combinations with aztreonam

Minimum inhibitory concentration (MIC) values of aztreonam + ceftazidime-avibactam (ATM-CZA) plotted against aztreonam + ceftolozane-tazobactam (ATM-C/T) on a double-logarithmic scale. The lower and higher clinical breakpoints (www.eucast.org) of ATM are represented by the two solid black lines on each axes (1 and 4 mg/L, respectively).

Grey and black dots represent one and two isolates, respectively.

