N

N

Observability of the heat equation, geometric constants
in control theory, and a conjecture of Luc Miller

Camille Laurent, Matthieu Léautaud

» To cite this version:

Camille Laurent, Matthieu Léautaud. Observability of the heat equation, geometric constants
in control theory, and a conjecture of Luc Miller. Analysis & PDE, 2021, 14 (2), pp.355-423.
10.2140/apde.2021.14.355 . hal-03206393

HAL Id: hal-03206393
https://hal.sorbonne-universite.fr /hal-03206393

Submitted on 23 Apr 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.sorbonne-universite.fr/hal-03206393
https://hal.archives-ouvertes.fr

Observability of the heat equation, geometric constants in
control theory, and a conjecture of Luc Miller

Camille Laurent*and Matthieu Léautaud?

Abstract

This article is concerned in the first place with the short-time observability constant of the heat
equation from a subdomain w of a bounded domain M. The constant is of the form e%, where K
depends only on the geometry of M and w. Luc Miller [Mil04a] conjectured that £ is (universally)
proportional to the square of the maximal distance from w to a point of M. We show in particular
geometries that & may blow up like |log(r)|> when w is a ball of radius r, hence disproving the
conjecture. We then prove in the general case the associated upper bound on this blowup. We also
show that the conjecture is true for positive solutions of the heat equation.

The proofs rely on the study of the maximal vanishing rate of (sums of) eigenfunctions. They
also yield lower and upper bounds for other geometric constants appearing as tunneling constants or
approximate control costs.

As an intermediate step in the proofs, we provide a uniform Carleman estimate for Lipschitz metrics.
The latter also implies uniform spectral inequalities and observability estimates for the heat equation
in a bounded class of Lipschitz metrics, which are of independent interest.
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1 Introduction and main results

We are interested in several constants appearing in the study of eigenfunctions concentration and control
theory, and the links between them. In the whole paper, we are given a connected compact Riemannian
manifold (M, g) with or without boundary M, we denote by A, the (negative) Laplace-Beltrami operator
on M. In case M # (), we denote by Int(M) the interior of M, so that M = M U Int(M) (see
e.g. [Leel3, Chapter 1]). For readability, we first focus in the next section on results concerning the
observability constant for the heat equation.

1.1 The control cost for the heat equation

Here, we study the so-called cost of controllability of the heat equation. It is well known since the seminal
papers of Lebeau-Robbiano [LR95] and Fursikov-Imanuvilov [F196] that for any time T > 0, the heat
equation is controlable to zero. More precisely, by duality, the controlability problem is equivalent to the
observability problem for solutions of the free heat equation (see e.g. [Cor07, Section 2.5.2]): For any
non-empty open set w and T' > 0, there exist Cr, such that we have

T
HeTAguH2L2(M) < C’%’w/ HemguHQLZ(w) dt, forall T >0 and all u € L*(M). (1)
0

Here, (e*®9);~0 denotes the semigroup generated by the Dirichlet Laplace operator on M (otherwise
explicitely stated). The observability constant Cr, is then directly related to the cost of the control to
zero and has been the object of several studies.

It has been proved by Seidman [Sei84] in dimension one (in the closely related case of a boundary
observation) and by Fursikov-Imanuvilov [F196] in general (see also [Mill0] for obtaining this result via
the Lebeau-Robbiano method), that the cost in small time blows up at most exponentially:

w#h = there is C, & > 0 such that Cp,, < CeT forall T > 0. (2)

Guichal [Gii85] in one dimension and Miller [Mil04a] in the general case proved that exponential blowup
indeed occurs:

w#EM e there is ¢ > 0 such that Cr,, > ceT forall T > 0.

This suggest to define

Rhear(w) = inf {ﬁ >0,3C > 0s.t. (1) holds with O, = Oe%} , (3)



which, according to the abovementionned results satisfies Rpeqt(w) < 00 as soon as w # @ and Kpear(w) > 0,
as soon as w # M. This constant depends only on the geometry of the manifold (M, g) and the subset
w. It is expected to contain geometric features of short time heat propagation, and has thus received a lot
of attention in the past fifteen years | , , , , , , , , ,
In this direction, the result of Miller | | is actually more precise and provides a geometric lower
bound: for all (M, g),w, we have
L(M,w)?
ﬁheat (w) 2 %7
where, for £ C M, we write
L(M, E) = sup dist,(z, E). (4)
zeM
The proof relies on heat kernel estimates. In | , ], Luc Miller also proved that in case w
satisfies the Geometric Control Condition in (M, g) (see | ]) we have

ﬁheat (UJ) S (079 LEn

where L, is the maximal length of a “ray of geometric optics” (i.e. geodesic curve in case OM = ()
not intersecting w, and a, < 2 is an absolute constant (independent of the geometry). Based on these
results and the idea that the heat kernel provides the most concentrated solutions of the heat equation,
he formulated the following conjecture | , Section 2.1]-| , Section 3.1].

Conjecture 1.1 (Luc Miller). For all (M, g) and w C M such that @ # M, we have Rpeqr(w) = ﬁ(/\l’wf .

Note that it has been proved in | | that, in the related context of the 1D heat equation with a

boundary observation, the factor i might not be correct (and should be replaced by %, see Section 1.4

below). Our first result disproves Conjecture 1.1 in a stronger sense.
Theorem 1.2 (Counterexamples). Assume (M, g) is one of the following
1. M =S" C R"™ and g is the canonical metric (see Section 3.1);

2. M =8 C R3 is a surface of revolution diffeomorphic to the sphere S, and g is the metric induced
by the Euclidean metric on R3 (with additional non degeneracy conditions, see Section 5.2);

8. M =D={(21,22) € R?| 2 + a3 < 1} CR? is the unit disk, g the Euclidean metric and Dirichlet
conditions are taken on OM (see Section 3.3).

Then, for any C > 0, there exists w C M so that Rpear(w) > CL(M,w)? and Rpeat(w) > C.
More precisely, assume that xq is either

1. any point in S™,
2. one of the two points that intersect the axis of revolution of S C R3,
3. the center of D.

Then, there exists C > 0 and rg > 0 so that we have
Bheat(Bg(x0,7)) = C|log(r)|? (5)
for any 0 < r <.

Here, By(xo,r) denotes the geodesic ball of M centered at zg of radius r. The results we obtain are
slightly more precise. In particular, the constant C is an explicit geometric constant. The lower bounds
are related to an appropriate Agmon distance associated to the problem. We refer to Corollary 1.10 below
for more precise estimates.

Note also that this blowup of Rpeqt(B(20,7)) for small r does not always happen and is due here to a
particular (de)concentration phenomenum. For instance on M = T!, the set w = B(zg,r) always satisfies



the Geometric Control Condition for any time T' > 1 — 2r. Abstract results (see (15) below for more
details) give Rpeat(B(zo,7)) < a < 2 for any 7 > 0 and blowup does not occur.

Our next result shows that the blowup given by (5) is actually optimal as far as the asymptotics of
Rheqt for small balls is concerned. We prove the following observability result from small balls (closely
related to previous results of Jerison-Lebeau [ |, see Section 1.3.2 below).

Theorem 1.3. For all xg € M, there exist C > 0 such that for all r > 0 we have
ﬁheat(B(xov T)) < O| 10g(7’)|2 +C.

Note that Bardos and Phung | , | recently proved independently that Rpeq:(B(xo,7)) <
% + C. for all € > 0 in case M C R" is star-shaped w.r.t. xg.

These results seem to suggest that £(M,w) is not the only appropriate parameter needed for estimating
Rheat(w). There are indeed some solutions of the heat equation concentrating more than the heat kernel for
small times. Our last result concerning the heat equation goes actually in the opposite direction. It provides
with a large class of solutions of the heat equation, namely positive solutions, that do not concentrate more

than the heat kernel, thus proving Conjecture 1.1 when restricted to this class of solutions. Recall that
L(M, E) is defined in (4).

Theorem 1.4. Assume that (M, g) has geodesically convex boundary OM. Then, for any nonempty open
set w C M and zg € M, for any € > 0, there exist C, D > 0 so that for any 0 < T < D, we have

C Groycanwmto? [T
2 Ate) (LM w)+e)? 9
HU(T)HL2 ) S e oT Hu(t, -)HLQ w0 dt, (6)
M) ST ; (@)
C a+oconzotre? [T
2 Lre)lelM,zg)Te)”
() 2y < e / ult, 0)? dt, )

for all ug € L*(M) such that ug > 0 a.e. on M and associated solution u to
(0 — Ayu=0 on R} x Int(M), uli—o =ug in Int(M), d,u=0 on R x IM.

Theorem 1.4 follows from classical Li-Yau estimates | |. Notice that here, Neumann boundary
conditions are taken (v denotes a unit vector field normal to M), and an additional geometric assumption
is made (convexity of 9M). The result still holds without the convexity assumption up to replacing (1+¢)
in the exponent by a geometric constant, see Remark 5.2. We also recall that for nonnegative initial data
ug > 0, the solution of the heat equation remains nonnegative for all times. Of course, the counterexamples
of Theorem 1.2 prevent these estimates to hold in general. Estimate (7) is particularly surprising (even
without considering the value of the constants) and of course only true for positive solutions (otherwise
just taking zo in a nodal set of an eigenfunction of A, invalidates (7)). Finally, let us mention that the
constants C' and D are explicitely estimated by geometric quantities (see Remark 5.4).

Let us now put these results in a broader context, and introduce several related geometric constants
appearing in tunneling estimates and control theory.

1.2 Tunneling constants in control theory, and their links

The lower bounds of Theorem 1.2 are proved using very particular solutions to the heat equation arising
from by eigenfunctions (exhibiting a very strong concentration far from z as well as a strong decon-
centration near xg). It is therefore natural to study related constants measuring such (de)concentration
properties. In this section, we introduce all geometric constants studied in the paper and collect known
links between them.

We first introduce spectral subspaces of the Laplace operator A, (with Dirichlet boundary conditions
if OM # 0), which are at the core of most results presented here. Namely, for A € Sp(—A,), the space

B = span{y) € L*(M), —A, = M}
denotes the eigenspace associated to the eigenvalue A and, for all A > 0,

ES)\ = span{E)\j,/\j S Sp(—Ag),)\j < )\}7



the space of linear combinations of eigenfunctions associated to eigenvalues < .
Let us now introduce the constants studied in the article, else than that involved in (1)-(2). For any
nonempty open subset w C M, we recall the following results:

e Vanishing of eigenfunctions | , |: there exist C, & such that we have

[0l 2 pn) < CetVA 19l 2y forall A € Sp(=Ay) and ) € E. (8)

e Vanishing of sums of eigenfunctions (so-called Lebeau-Robbiano spectral inequality) | , ,
|: there exist C, 8 such that we have

lull 2 pgy < Ce™ Jull oy . for all A> 0 and all u € Ex. (9)
e Infinite time observability of the heat equation | |: there exist C, & such that we have
/ e ||etA-‘7uH%2(M)dt < C’/ ||etA-‘7u||2LQ(w)dt, for all u € L*(M). (10)
R+ R+

e Approximate observability for the wave equation | I,

(07 — Ag)u=0, ulor)xom =0, (u,0u)|i=0 = (uo,u1) : (11)

For all T' > 2L(M,w), there exist C, &, 1o > 0 such that we have
1
(o, w) || L2(my -1 (v < Ce™ull L2 (0,7 xw) + ;H(umul)”Hé(M)xL?(M):
for all > o and all (ug,u;) € Hy (M) x L*(M), and u solution to (11). (12)

Recall the definition of £(M,w) in (4). Remark that this last estimate is equivalent to (see [ | or
Corollary 2.2 below)

~ ||(U0,U1)||H1M L2(M
1o, w13 (aty w2 at) < €€ Mlull 2 0,1y %) DU R

o, w) 2 vy =10y
for all (ug,u;) € Hy (M) x L*(M), and u solution to (11). (13)
Note that in the reference [ |, the observation term in the right hand-side of these inequalities is

lull 22 (0,71 () instead of |[u||z2¢(0,7)xw)- That the stronger inequalities above holds is proved in [ ,
Section 5.3] (see also | D-

In all these inequalities, we are interested in the “best constant R’ such that the estimate holds for
some C. More precisely, we are interested in the way it depends on the geometry of (M, g) and w (and, in
the case of (12), the time T'). Let us first formulate the precise definitions of these constants. These are
the analogues to that of fpeqt(w) given in (3).

Definition 1.5. Given w C M an open set, we define Reiq(w), Bz (w), Roo (W), Rwave (w, T') to be the best
exponents in the above estimates (8)-(12), namely:

Reig(w) = inf {& > 0,3C > 0 s.t. (8) holds}
Ay (w) =inf {K > 0,3C > 0 s.t. (9) holds},
Roo(w) =inf {& > 0,3C > 0 s.t. (10) holds},

Rpave(w,T) =1inf {R > 0,3C > 0, o > 0 s.t. (12) holds}
= inf {& > 0,3C" >0, s.t. (13) holds} . (14)



A proof of the equality in (14) is given in Corollary 2.2 below. Note that we may write Kyape(w,T) =
+oo if T < 2L(M,w) since (12)-(13) are known not to hold (see the discussion in [ ). However,
Ruave(w, T) < +00 as soon as T > 2L(M,w), by virtue of (12)-(13).

Let us now collect some known facts concerning these constants, in addition to the already discussed

bound Rpeqt(w) > %W [ |. A first trivial (but useful) fact is that Re;q(w) < £5(w). The following
properties can also be found in the literature:

1. For all (M, g),w such that @ # M, we have Rx(w) > L(A;’w), see | , Theorem 5.3] (that
£f5(w) > 0 had already been proved in | 1.
2. Roo(w) < Rheat(w), | , Theorem 1].

3. For all (M, g),w, we have R (w) > d1(47“’)2, with dj(w) = sup{r > 0,3z € M, B(z,r) C M\ &},
see | | and | , Section 4.1].

4. Assume w satisfies the Geometric Control Condition in (M, g) and denote by L,, the maximal length
of a ray of geodesic optics not intersecting w. Then, we have

Rheat(w) < a*Lf} (15)

with a, = 2 ()% see | : | (improved to o, = 3/4 in [TT07] and to 0.6966 in [D19]).

5. Assume w satisfies the Geometric Control Condition in (M, g) and denote by L, the maximal
length of a ray of geometric optics not intersecting w. Then, we have R, (w) < %Li, see | ,
Theorem 1.1].

6. Rheat(w) < 485 (w)?, see | , Corollary 1 and Section 2.4| (see also | | for a proof of Rpear(w) <
8fx(w)?).
7. If (w, T) satisfy the geometric control condition | |, then Ryque(w,T) = 0 (more precisely, (12)-

(13) hold with 8 = & = 0). Conversally, if (M, g) is real-analytic and (w,T) does not satisfy the
geometric control condition (for a ray that only intersects OM transversally), then £, 4pe(w,T) > 0,
see | ]

Notice that in all these statements, the constants Rpeqr and Ro (heat equation) are homogeneous to a
square of a distance (as for the heat kernel), whereas the other ones are homogeneous to a distance (as for
the wave kernel).

Remark also that every comparison statement above follows, in the associated reference, from a proper
inequality (the above statements being only a weak form of those).

Also notice that the converse inequality fx(w)? < CRpeqr(w) for a universal constant C' does not seem
to hold in general. For instance, in the related situation of boundary control on an interval (0,1) (see
Section 1.4), Rpeqt({0}) is finite while a dimensional analysis shows that no spectral inequality holds true,
i.e. 8x({0}) is infinite.

We first complete the above list of comparison results by the following proposition.

Proposition 1.6 (Other links between the constants). We have

Reig (W)Q

S Rheat (w) ) 4

ﬁ”gTW < foo(w).

Also for all T > 0, we have Reig(w) < Rupave(w,T').

Note that the last statement is empty if T < 2£(M,w) since (12)-(13) are known not to hold (see the
discussion in | |), but is nonempty if we have Ryque(w,T) < oo, that is if T > 2L(M,w), by virtue
of (12)-(13).



Hence, in order to produce lower bounds for s (w), Bheat(w), Roo (W), Ruwave(w, T), we shall product
lower bounds for £¢;4(w), i.e. construct sequences of eigenfunctions having a maximal vanishing rate on
w. Note also that, summarizing the inequalities so far, we have:

Reig(w)?

Bl ) < Rnear(w) < 485w, (16)
so that the understanding of concentration properties for eigenfunctions and sums of eigenfunctions essen-
tially contains those of the heat equation. Therefore, our main focus in the following is to produce:

e maximally vanishing eigenfunctions in particular geometries to yield a lower bound for feg;

e a uniform Lebeau-Robbiano spectral inequality on small balls to yield an upper bound for Ky.

Note that reducing our attention to £e;4 in the seek of lower bounds is already very restrictive! Indeed,
as soon as the Schrodinger equation on (M, g) is observable from w in finite time (in particular if w satisfies
the geometric control condition, see [ ) ]), then Re;q(w) = 0 (more precisely, (8) holds with
RK=0).

Before starting to state these lower/upper bounds, let us give a link between £,¢q:(w) and Ryape(w, 1),
consequence of a result of Ervedoza-Zuazua | | (weak observability with exponential cost for the wave
equation implies observability of the heat equation).

Proposition 1.7. There exist universal constants ay,as > 0 so that for any S > 0, we have
ﬁheat(w) S 04152 + a2ﬁwave(wa 5)2

The proof of this result in Section 2.3 is a little more precise about this estimate. In particular, several
values of (ay, @) can be deduced from it. The value of «; is thought to be related to the cost of the
boundary control of the 1D heat equation. Note that, as in (16), this yields

ﬁei 2

# < Roo(W) < Bheat(w) < a18% + a2 Ryave (W, 5)2, for all S > 0.
However, this upper bound seems for the moment less useful than that of (16), since the proof of (12)-
(13) in | | is more technically involved than that of (9) in | , , |. The computation of

Ruwave(w, S) seems thus more intricate than that of Rx(w).

1.3 Main results
1.3.1 Constructing maximally vanishing eigenfunctions: lower bound for f.;,

In this Section, we provide lower bounds for R, in three different geometries. This then proves Theo-
rem 1.2 as a direct corollary of Proposition 1.6.

The sphere We first state the results we obtain on two dimensional sphere S?, since they are particularly
simple. The higher dimensional case S" is completely similar. The sphere S? is parametrized by (s,0) €
(0,7) x St. We denote by N (resp. S) the north pole described by s = 0 (resp. the south pole described
by s = 7), and remark that s is the geodesic distance to the point N.

Theorem 1.8. For k € N, the function

k1/4

V(s,0) = ¢ sin(s) ket k= i35/

<1 + 0(;)> as b — +oo

satisfies
—Agh = k(k+ 1D on §?, ¢ € CF(S?),  [[Yrllr2e) =1,

Ui (s,0)| = e sin(s)® < eps®  for s € 0,7,k €N,
cim sin(r)?ht? tan(r)?

2 _
Ikl B(nry) = Pl (1+R), R < 2%k + 2

This result is a much more explicit, more precise (and simpler to prove) version of the general results
we obtain on surfaces of revolution. We turn to the general case and shall explain at the end of the section
the links with Theorem 1.8.

™
cos(r) forr €0, 5),/1‘ eN.



Surfaces of revolutions The precise description of the geometry of the surfaces we consider is given
in Section 3.2 and we only give here the features required to state the result. We consider M = S C R3
a smooth compact surface diffeomorphic to the sphere S?. We assume moreover that it has revolution
invariance around an axis, that intersects S in two points, the north and the south poles, respectively
N,S € §. These points are the only invariant points of the revolution symmetry. The surface is then
endowed with the metric ¢ inherited from the Euclidean metric on R?, which itself enjoys the rotation
invariance. Then, we describe (almost all) the surface by two coordinates, namely s = dist,(-, V), the
geodesic distance to the north pole and 6, the angle of rotation. The variable s is in (0, L) where L =
disty (N, S). The surface is characterized by the function R(s) associating to s the Euclidean distance in
R3 to the symmetry axis, which, by definition, is rotationally invariant, and satisfies R(0) = 0 = R(L).
This function R is the “profile” of the revolution surface S.

We shall now assume that R reaches at sg a global maximum, and introduce the relevant Agmon
distance to the “equator” s = sg, defined by the eikonal equation

@)~ (g~ ) =0 dalso) =0, smn(d(oo) =seas—so) ()

or, more explicitely, for s € (0, L), by

1
802y (18)

A more intrinsic definition of d4 is given in Remark 3.3 below (and requires additional notation).

Theorem 1.9. Assume that s — R(s) admits a non-degenerate strict global mazimum at so € (0,L).
Then, for all k € N, there exists 1, € C°(S), and A\, > 0 such that

k2 |R"(s0)] L
A = ——— ko — 20 k /2 ) -1 _A -\ .
EE R T B TORT) Wl =1, S0k = Mty

Moreover, there exist C,C,,Co, kg > 0 such that, for all k € N, k > kg and all 0 < r < 59, we have the

estimate
19kl L2y < C/\kcoe—dA(r)(R(so)m_c*).

Note that one can choose any C, > %\/ |R"(s0)|R(s0) in this result. This statement has to be completed
by the asymptotic behavior of d4 (proved in Lemma 3.8) when s — 0, namely

da(s) = —log(s) + O(1), ass—07. (19)

That is to say that the equator and the poles are infinitely distant to each other for the Agmon distance d 4
(as opposed to the geodesic distance disty). Note that at first order, d4 does not depend on the geometry
of the surface S close to the north pole N (s = 0). A similar statement holds close to the south pole S
(s=1L).

This, together with Definition 1.5 and Proposition 1.6, yields the following direct corollary.

Corollary 1.10. Under the assumptions of Theorem 1.9, for all 0 < r < so, we have the estimate
Reig(By(N, 7)) = da(r)R(s0).
This yields also
f5:(Bg(N,r)) > da(r)R(so), Rwave(Bg(N,r),T) > da(r)R(so), forany T >0,

ARG g By, ) 2 LADEED)

Note also that Theorem 1.9, combined with the explicit asymptotic expansion (19) of the Agmon
distance d 4 implies the following result.



Corollary 1.11 (Rate of vanishing). With (Mg, ¥r) as in Theorem 1.9, there exist C,Cy, Co, ko > 0 such
that, for all k € N, k > ko and all r > 0, we have

1kl L2 Bvay) < OV pR(50) VAR —C.

and, in any local chart centered at N, we have 0%, (N) = 0 for all || < R(so)vV e — Cix —n/2.

As on the sphere, these eigenfunctions saturate the maximal vanishing rate predicted by the Donnelly-
Fefferman Theorem | ].
Note that in these estimates, R(so)v/Arx ~ k does not depend on the geometry.

The proofs rely on classical semiclassical decay estimates for eigenfunctions | , |. We refer to
the monographs [ , | for the historical background and more references. An additional difficulty
here is linked to the degeneracy of the function R close to the north and south poles.

Note also that, to our knowledge, the idea of constructing such examples on surfaces of revolution is
due to Lebeau | | and Allibert | ].

The disk Recall that D = {(z,y) € R?,22 + 32 < 1}. Our results on the disk are quite similar to the
previous results on revolution surfaces. They are proved in Section 3.3. Note the construction is more
explicit there since it involves Bessel functions. As in the above example, the concentration is related to
an Agmon distance to the maximum of the radius r, which corresponds to the boundary dD here.

Theorem 1.12 (Whispering galleries on the disk). Denote, for r € (0,1],

da(r) = — (tanh(a(r)) — a(r)),  with a(r) = cosh™'(1/r). (20)
Then, for all k € N, there exists 1, € C(D) N H(D), and A\, > 0 such that
Ae = k2 + O(K*?), lVkllz2s) =1, —Agthr = Mgy

Moreover, there exist C, 3, ko > 0 such that for all k > kg and 0 <r <1 — ﬁ)\,;l/g, we have

el om0y < exp (= (VAk = ON/®) datr) + CN/®).

That d4 indeed represents an Agmon distance in the present context is justified in the next paragraph.
Note that da still satisfies da(r) ~,_o+ log(%) here, so that the analogues of Corollaries 1.10 and 1.11
still hold in this setting.

Remarks on the Agmon distance In this paragraph, we compare the three geometries discussed
above. In particular, we stress the fact that the results obtained on the sphere are refinements of those on
general surfaces of revolution, and explain the similarities in the case of the disk.

Remark 1.13 (Agmon distance on the sphere). Note that the coordinates (s, #) introduced on the unit
sphere are the same as those defining general surfaces of revolution, with L =, s € (0,7), R(s) = sin(s)
and the maximum of R is reached at s = Z. In particular, recalling the definition of the Agmon distance
n (18), we obtain, for s € (

cos(y)
/2 sin(y)

R(s0)? dy dy| = [log(sin(s))|.

R(sp) sin(y
This can be rewritten intrinsically as
da(m) = —log (sin(disty(m, N))), meS? (recall disty(m, N) + disty(m, S) = ).

In view of this identity for the sphere, the estimates on the eigenfunctions v, of Theorem 1.8 can be
reformulated as (A = k(k + 1))
[i(s,0)| = cre ") for s € [0, 7],k € N,

2. —(2k+2)da(r) 2
2 T e tan(r)
H,(/}kHLz(B(Nﬂ‘)) - E+1 (1 + R)7 ‘R| = 9k +2

for r € [0, )k‘EN

cos(r)



These two statements (pointwise estimate and fine asymptotics of the L? norm) are much more precise
than those of Theorem 1.9 on general surfaces of revolution.

Note that one can put the disk in a general setting of surfaces of revolution with boundary. In this
context, one can give a proof of (a slightly weaker version of) Theorem 1.12 following that Theorem 1.9
(and only relying on Agmon estimates), see | |. As opposed to the proof of Theorem 1.12, the latter
proof does not make use of the explicit knowledge of eigenfunctions on the disk and properties of Bessel
functions.

Remark 1.14 (Agmon distance in the disk). Recalling the definition of d4 in (20), we have o/(r) =
11
—-3—=—, so0 that

1
7‘2 1

2
(4 ()% = o/ (r)? (M - 1> _ %ﬁ(ﬁ 12— %2 ~1, and  da(1)=0.

As a consequence, d4 is exactly the Agmon distance to the boundary » = 1, and we have

d'y(r) = —\/%2 -1, re(0,1].

Note again that da(r) ~,_o+ log(%) and, in particular, the center of the disk is at infinite Agmon distance
to the boundary: d4(0) = +o0.

1.3.2 Uniform Lebeau-Robbiano spectral inequalities: upper bound for £y

The counterpart of Corollary 1.11 is due to Donnelly-Fefferman | |, and roughly states that eigen-
functions vanish at most like rV*+C on balls of radius r () is the eigenvalue). It has been generalized in
some sense to sums of eigenfunctions by Jerison and Lebeau | |. We prove here a variant of this result
under the form of a uniform Lebeau-Robbiano spectral inequality with observation on small balls.

Theorem 1.15 (Uniform Lebeau-Robbiano spectral inequality with observation on small balls). Let
(M, g) be a compact Riemannian manifold with (or without) boundary OM. For all g € M, there
exist constants C1,Coy > 0 such that for all ™ >0, A > 0 and ¢ € E<y, we have

(C1V/X+C2)(1+l0g(1))

[¥llz2my <e 11l 22 (B0,

Note that a careful inspection of the proofs (of all Carleman estimates used, that are stable by small
perturbations) shows that the constant C, Cy can actually be taken independent of the point zg. Note that
we prove the result in the case of Neumann boundary conditions as well. This uniform Lebeau-Robbiano
spectral inequality directly implies Theorem 1.3 using | , Corollary 1] (recalled in Lemma 2.6 below).

One of the tools we develop for the proof of Theorem 1.3 also yields a uniform Lebeau-Robbiano
inequality in a class of Lipschitz metrics. Even though not completely related to the main results of the
paper, we choose to state is here since we believe it is of independent interest.

On the manifold M, we denote here by g a metric and ()\?) jen the spectrum of the associated Laplace-
Beltrami operator —Ay (with Dirichlet boundary condition if OM # ) and by (wij )jen an associated
Hilbert basis of eigenfunctions, in order to stress the dependence with respect to the metric. We also write

El, = span{wij,)\? < A},
which of course, depends on the metric g. Now, given a reference Lipschitz metric g, we define
. p(M,go) = {g Lipschitz continuous metric on M, ||g|lwr.or) < D, ego <g< Dgo}.

Theorem 1.16 (Uniform Lebeau-Robbiano spectral inequality in a class of metrics). Let M be a compact
Riemannian manifold with (or without) boundary OM, go be a Lipschitz continuous Riemannian metric
on M, and w C M a nonempty open set. Then, for all D > ¢ > 0, there exist constants C,c > 0 such
that for all g € T p(M,g0), A >0 and w € EL,, we have

w2y < Ce™Y wl| 2 (- (21)
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Note that the above estimate is valid whatever the choice of L2-norm (i.e. w.r.t. g or go) since all these
norms are uniformly equivalent for metrics g the class I'. p(M,go). This result could be reformulated by
saying that (21) holds for all w € [ p._ b(Mao) E

This uniform Lebeau-Robbiano spectral mequahty directly implies the following uniform estimate on
the cost of the heat equation, using | , Corollary 1], recalled in Lemma 2.6 below (in which the
constants are explicitely computed in terms of the constants in the spectral inequality).

Corollary 1.17. Let M be a compact Riemannian manifold with (or without) boundary OM, gy be
a Lipschitz continuous Riemannian metric on M, and w C M a nonempty open set. Then, for all
D > ¢ > 0, there exist constants C, & > 0 such that for all g € T p(M, go), we have

T
HeTAguHi?(M) < CeT / HetAﬁuHiQ(w) dt, for allT >0 and all u € L*(M).
0

Note that the proofs of Theorem 1.16 and Corollary 1.17 are completely constructive, and, as such,
provide with explicitely computable constants.

1.3.3 The case of a barrel: upper bound for £,,,,c and Rpeqt

To conclude with the upper bounds on the constant, we present in this section some applications of results
obtained by Allibert in | |. In case of a “barrel-type surface” with boundary (a geometric setting
close to that of the surfaces of revolution described above), Allibert estimates the attainable space for the
controlled wave equation. As corollaries, we deduce from this result estimates of K,qve and, in view of
Proposition 1.7, of Rueat-

We first present the geometric context which (very close to that of surfaces of revolution described
above). In this section, M = S is a surface of revolution of R® with boundary, parametrized by the
equation

S ={(z,y,2) €R® z€[0,L], 2* +y*> =R(2)},

where R is a strictly positive smooth function on [0, L], that admits at the point zp € (0,L) a unique
local (and therefore global) non degenerate maximum (i.e. R”(zp) < 0). Observation takes place at the
boundary, only on the bottom side, that is I' = {(z,y,0) € R?;2? 4+ y*> = R(0)}. We may also describe S
by (z,0), with (z,y) = (R(z) cos 0, R(z) sin 9).

We refer to Remark 3.4 to explain the link between the two parametrizations of revolution surfaces by
s and z (and in particular, that we may write z = z(s) and R(s) = R(z(s))).

As above, we define the Agmon distance to the point zg, which in this z-parametrization writes (note
that it is almost the same as (18) but in different coordinates):

9= | [ VIR0 g - e

We also need the following definition of a critical time 77 (see Allibert | | for more details), which,
roughly speaking, represents the smallest period of the geodesic flow, modulo rotation. More precisely, the
principal symbol of the wave operator on R x § is given by
¢? n? 2
t,z,0 = —

p( 723 37-3C7n) 1+R/2(2) +R2<Z) T 9
where (7,(,n) denote the dual variable to (¢,z,0). For any (generalized) bicaracteristic curve v of p,
bouncing on the boundary according to the reflection law { — —(, we denote T(7) the smallest period of
the function IT,(y) where I, is the projection on the component z.

Then, 77 is defined by

T, = sup{T'(v), v bicharacteristic curve of p},

and we have Ty > 2L(M,T") (this critical time is larger than the time of unique continuation from I').

In this context, we define similarly 8eqt(I") and Kyave (L, T') with exactly the same definition as in (2)
and Definition 1.5 with [[ul[ 2o 7)xe) TePlaced by [|0,ull 2o 71« i (1) and (12). Note that d,u is in
L2([0,T] x T) for initial data in L? (resp. Hg x L?) for the heat (resp. wave) equation thanks to hidden
regularity. We deduce from | | the following result.

11



Theorem 1.18. Under the above geometric assumptions, we have the estimates

Ruwave(T, T) < R(20)da(T),  for alT > Ty, (22)
Rheat(T) < a(Ty(T)? + R(20)%da(T)?), (23)

for some universal constant o > 0.

The first estimate (22) follows simply from | , Théoréme 2| (see Proposition 2.7 below), which is
stated in terms of analytic spaces with respect to the rotation variable 6. Then, (22) implies (23) thanks
to Proposition 1.7. Note that (22) also proves an analogue of Theorem 1.9 in this geometry, so that in
fact:

Reig(T) = R(20)da(T), and  Ruae(T, T) = R(z0)da(T) for all T > T. (24)

He also proves upper and lower estimates for T' € (2£(M,T'),T1) (which do not coincide). The proof of
Theorem 1.18 in Proposition 2.7 yields the according estimates of Kyaue(I', T). Note finally that in the
paper | |, using the methods of Allibert | |, we also prove that R¢;q(Bg(N,7)) = da(r)R(so) in
the context of Theorem 1.9 and Corollary 1.10.

1.4 Previous results

Except for the bounds (24) (and that of Re;, in | ]) following from Allibert’s result and the compu-
tation of R ({0}) on M =[0,L] in | |, we are not aware of other situations in which the constants
described in the previous paragraph are known exactly. We collect in this section previous results on the
constants Kpeqr and Ryave, Which received a lot of attention in the past fifteen years.

Parabolic equations in dimension one The most studied case concerns the constant Kpeq:, With
observation/control at the boundary in the one dimensional case, say M = [—1,1]. Yet, it seems that
the constant Kpeqr({—1,1}) is still unknown. Note that the latter has a particular importance since it
has applications to higher dimensions (with geometric conditions) via the transmutation method of Luc
Miller | |

Here, we list previous results on M = [—1,1] with Neumann trace observation (Dirichlet control) on
both sides of the interval. Note also that each improvement of the constant was also the occasion of finding
new techniques of proofs.

o Rpeat({—1,1}) <2 (%)2 Miller [ |, using the transmutation method;

(

® Rpeat({—1,1}) < 3

o Rpeat({—1,1}) > %, Lissy | |, using complex analysis arguments;
® fpeat({—1,1}) <

Note that in this setting, the analogue of Conjecture 1.1 would be fpeqt({—1,1}) = 7, which | |
disproved in this context (by a factor 2). However, this result does not in general prevent the existence of
a universal constant C' > 0 so that fpeq(w) = CL(M,w)?.

As noticed in | |, the result in | | implies that on the interval (0, L), we have R ({0}) = LTQ

(and | | even prove (10) for the critical & = %2)

3 Tenenbaum-Tucsnak | |, using results of analytic number theory;

0,7, Dardé-Ervedoza | |, combining Carleman estimates and complex analysis.

Parabolic equations in higher dimensions There are many papers concerning the controllability
properties of the heat equation. We only mention those providing with estimates on the constants studied
in this paper.

The first computable estimates were obtained using the transmutation method to give estimates similar
to (15). We can find several references improving the universal constant involved, see | , ,

9 ]

In | |, the authors prove fx(w*) < 3log((4|1i)|N) where M = (0,7)" is a cubic domain and |w

is the volume of the biggest rectangle included in w. The proof of this result uses a number theoretic

|
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argument of Turan concerning families of the complex exponential (€?**),cz (which can be interpretated
as an estimate of fx(I) for I a subinterval of T). Remark that in this particular flat-torus geometry, we
have no idea of what the right constant should be.

In | ], the authors prove Rx(B(0,7)) < % for all € > 0 in convex geometries. This has just been
extended by Phung | ]. Our Theorem 1.3 improves this result. Note also that | | gave results

related to this in a periodic setting, tracking uniformity with respect to several parameters.

In the Euclidian space R™ where A is the usual flat Laplacian, spectral estimates as (9) can be interpre-
tated as a manifestation of the uncertainty principle. Several results relying on this fact have been recently
stated. We refer for instance to the recent articles | | and | | and the references therein.

The wave equation Lebeau | | proved in the analytic setting a result close to the fact that
Ruave(w, T) is finite for any open set w and in optimal time 7" > 2L(M,w). It was only very recently
shown to be finite by the authors | | in a general C*° context. We refer the reader to the introduction
of | | for a detailed discussion of the literature on unique continuation for waves, and estimates like (12)-
(13).

Estimates on analytic spaces of controllable data were computed by Allibert in the above described
examples. We refer to Section 2.4 for more details about why they have implications on the constant fq4e¢
(and therefore £,eq: by Proposition 1.7). In | ], he studies the example of the barrel as we describe it
in Section 1.3.3. In | |, he studies the example of a cylinder (0, 7) x S*. The results he obtain in that
paper should imply Ryave(T',T) < T?Es where I' = {0} x S! and T' > 27. Notice finally that the blowup
of the observability constant for the wave equation, when the time tends to the minimal geometric control
time, has recently been investigated in | .

1.5 Plan of the paper

The paper is divided in four main parts. In Section 2, we give the links between the different constants,
proving in particular Propositions 1.6 and 1.7. We also interpret the description of the reachable set as an
upper bound on the constant Kyque(w,T).

In Section 3, we construct the various counterexamples on rotationally invariant geometries, presented
in Section 1.3.1. This proves in particular Theorem 1.2.

Section 4 is devoted to the proof of the uniform Lebeau-Robbiano inequality on small balls, stated in
Theorem 1.15.

Finally, we prove in Section 5 the observability inequality of Theorem 1.4 concerning positive solutions
of the heat equation.

The paper ends with two appendices, in the first of which, Appendix A, we prove a uniform Carleman
estimate for bounded families of Lipschitz metrics. Such an estimate is used as an intermediate in the
proof of Theorem 1.15. The result also yields Theorem 1.16.

Note finally that in the companion paper | ], we apply similar techniques for the problem of
uniform observability /controllability of transport equations in the vanishing viscosity limit.
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grants SRGI ANR-15-CE40-0018 and IPROBLEMS ANR-13-JS01-0006. The second author is partially
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16-CE40-0013. Part of this research was done when the second author was in CRM, CNRS UMI 3457,
Université de Montréal, in Université Paris Diderot, IMJ-PRG, UMR 7586, and in Ecole polytechnique,
Centre de Mathématiques Laurent Schwartz UMR7640, 91128 Palaiseau cedex France.

2 Preliminaries: links between the different constants

2.1 Different definitions of K, ,,.(w,T)

Let us start by proving equality (14). This is a consequence of the following lemma.
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Lemma 2.1. Let ug > 0, R > 0 and assume that A > 0 and X > 0 satisfy

=)=

1
<e™MX + ;, for all pu > po. (25)

Then, for all o > 0, we have

Ho — @ au et A
1< (Latagpe =€ + Latasuy—A(A +a)e™ | X. (26)

Let F : R™ — R be a nondecreasing function and assume that A > 0 and X > 0 satisfy
A>1 and 1< F(A)X. (27)

Then, we have

1 1
" <F(uX +—, forallp>0. (28)
W

As a direct consequence of this lemma, we obtain the following corollary, clarifying the definition of
ﬁwave(wa T) .

Corollary 2.2. Assume (12) with constants R, C, ug > 0. Then, there is C" > 0 such that

[ (w0, wi)ll 3 () x L2 (M)

Uug, U 1 < C"A2e™M |u| 2 W), A= ,
It w)lgamzian B N TR Pprmme

for all (up,uy) € Hy(M) x L*(M), and u solution to (11),

1
H(UOaul)HL%M)xH*l(M) < C//M2€ﬁ“||u||L2((o,T)xw) + ;”(uoaul)HH[}(M)xLQ(M)v
for all > 0 and all (ug,uy) € Hy(M) x L*(M), and u solution to (11).

Reciprocally, if (13) holds with constants R ,C" > 0, then (12) holds with R = R, C = C’, and pp =0
(and for all > 0).
In particular, we have
Rpave(w,T) =1inf {R > 0,3C > 0, g > 0 s.t. (12) holds}
=inf{® >0,3C" >0, s.t. (13) holds}
=inf {& > 0,3C > 0, s.t. (12) holds with py =0 (and all p>0)}.

Proof of Lemma 2.1. Let a > 0. In case A + o > pg, the assumption (25) with p = A + o > o yields

1 A
2(1- < Rlhta) x
A( A+a>_e ’

and hence
1< leMA(A + a)e™h X, (29)
«

If now A + a < po (and, in particular, a < pp), that is % > uo%a > 0, the assumption (25) implies

1 1 1
< — <X 4=, forall 1> po-
po—a — A 1%
This yields in particular
1 1
X > ( — ) e ® for all pu > o,
Ho—a [
and hence X > max, >, (#0—17& - ﬁ) e R > #O%ae*ﬁ“o > 0. With (29), this proves (26).

Let us now prove (28). If A > p, then < l% and (28) holds. If A < p, then (27) gives £ < 1
F(A)X < F(p)X and (28) also holds in this case, concluding the proof.

I IA
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2.2 The constant &.,(w) as a lower bound for K, (w), R (W), Ryave(w, T): Proof
of Proposition 1.6

We prove a slightly more precise version of Proposition 1.6.

Lemma 2.3. Assume that (1) holds with constants K, C > 0. Then, we have

C
[lla ey < A/ 55 €™ ™ Wl 2y - for all X € Sp(=8g) \ {0} and ¢ € Ej. (30)
In particular,
4 2
w S ﬁheat(w)- (31)

Assume that (10) holds with constants R,C > 0. Then, there exists C"” > 0 such that

C//
1602000y < 5w Il oy Sor all X\ € Sp(—8,)\ {0} and 6 € By, (32)
In particular
ﬁ“ﬁw) < foo(w). (33)

Assume that (13) holds in time T with constants C', R'. Then, we have

T /
[llz2a < /50 Wl for all X € Sp(—Ay) \ {0} and ¢ € Ex. (34)

In particular, for all T > 0, we have Reig(w) < Ryave(w, T).

Proof of Proposition 1.6. From (1), applied to u(t,z) = e~ (x) with A € Sp(—=A,) \ {0} and ¢ € Ej,

we have

—2TA 2 w7 —2tA 2 201 —e 21 2
e [l 2y < CeT ; e [l 72, dt = CeT —x [¥l72(), forallT > 0.
Taking T = %, with D > 0 to be chosen, this implies

28 1 C £
1] 3 200 < CTXeF 913200 = o€ P ]| 7a(,,, -
) 2\ (w) 2\ )

Minimizing the exponent with respect to D leads to choosing D = /&, which implies (30) when taking
the square root. From (30), (31) follows directly when taking the infimum over all K.

Let us now prove the second statement of the proposition. From (10), again applied to u(t,z) =
e~ Ap(x) with X € Sp(—A,) \ {0} and ¢ € E), we have

28

C
T e 2t 2 2t 2 2
/+€ ‘e ||w||12(_/\/1) dt < C/+€ ||w||l/2(w) dt 2\ ||w||L2(w) (35>

The left hand-side may also be computed asymptotically for A — 400 using Laplace method, setting

=N\, as
/ eJTﬁe%;ﬁtdt:/ e*2‘/§”(5+8)@d8
R+ R+ M
- (1+o(1))\/ﬁ/e2\/§“(2“51)2)d8
roJr

oY T o (VR v
= (1+o(1)~ Vavi, ~ O (1>)< 2u3> :
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From (35), we then obtain that, for all eigenfunction v associated to the eigenvalue u?, for u — oo, we
have

R
(1+ (1)) (”M{) V6 Ea an) < 55 10

Coming back to A = z2, this implies that the existence of C, g > 0 such that for all X > o

C
lll3eany < sre™ 91320
and hence the sought result of (32). That of (33) follows as above.

Let us now prove the last statement of the proposition. We want to apply (13) to the function
u(t, z) = cos(tv/A)y with A € Sp(—A,) \ {0} and ¢ € Ey, which is a particular solution to (11). We have

[[(ult=0,0¢ruli= 0)||H1(M)><L2(M) ”w“Hl(M) - .
A= oS B I[P WHLE(M) = V/X and (13) then yields
VAl L2 = 1913 () = luli=0, Brttlimo) [z () x 2y < O™ Ml L2 (0.1 e
where

T
[l 20,7 ) :/0 cos” (VM) [¥]1 2 () dt < T0)17 20 -
This finally implies (34). The last result follows from Corollary 2.2. This concludes the proof of the
proposition. O
2.3 Link between R,..(w) and R,4,c(w,T): Proof of Proposition 1.7

The proof will follow very closely the method of Ervedoza-Zuazua | ], but with a different assump-
tion. Note that this strategy was applied to approximate controllability problems for parabolic equations
in [ |. We first summarize the results of | , | we need in the next proposition for readibility.

Proposition 2.4 (| , D). Let T,S >0 and o > 25%. Let L be a negative self adjoint operator.
Then, there exists a kernel function ky(t,s) such that

e if y is solution of the heat equation Osw — Lw = 0, then w(s) = fOT kr(t,s)y(t)dt is solution of

(36)

1 1
t

Pw—Lw = 0, forse]— SS[
{ (w, yw)]s—0 (o I 0k (£, 0)y( ) (0 e

e for all 6 €]0,1] and all (t,s) €]0,T[x] — S, S[, we have

et < sl (et (5 - 5 )). (37

Note that this last estimate is most useful for § sufficiently close to one so that o > S?(1 + %)

We first prove from this proposition an observability inequality for data in F<y (i.e. at low frequency)
as a consequence of the approximate observability result for waves (13) (coming from | ]), with a precise
dependence on the cutoff frequency A and the control time 7. Combined with an argument of Miller | ,
this allows to prove observability for all data in L?(M) (still keeping track of the constants), and we finally
conclude the proof of Proposition 1.7 at the end of the section.

T y(t)dt)

Lemma 2.5. Assume that (13) holds on the time interval (0,2S) and with constant &'. Then, there are
C,ag > 0 such that we have

U l T
| TA‘?Z/0||L2 My SO0+ et (1“)26%/0 HetAgyOHQL?(w) dt,

for all0 <T <o, A >0 and yo € E<).
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Proof. For a > 252 (to be fixed later on), we use the kernel kr described in Proposition 2.4. Let w(s) be

associated to y by w( fO kr(t, s) ( )dt, where y(t) = e*Asyq with yo € E<y. Then, in (36), Wy is of
the particular form WO = (0 fo (brte) (t)dt), so that a calculation (see | , Equation (3.3)])
yields

1+)\ Zly‘Z -2\, T

The integral can be estimated by Laplace method
T 1 1/2
[ ertrmda=r [ Geas > or (T) e for 221,
0 0

since the non degenerate minimum of % + 1%9 is 4 reached at s = 1/2 and the function is positive. We
have thus obtained

Woll 721 = COL+ N TP e T ||y(T)|[7: - (38)
Moreover, we have Wy € E<y x E<) so that
Woll 1 L
H 0||H0><L2 < (1+)\)§
||W0||L2><H—1

As a consequence, (13) on the time interval (—S,.S) (which, by time translation invariance, is the same as
n (0,25)) with constant & implies

IWoll 21 < Ce® ek [wll 2 -5, 51xw) - (39)

Using Cauchy-Schwarz inequality, we have

T
Hw“iz(]_svs[xﬁu) < (%0 xS k‘T(t,s)th d8> /0 / ‘y(t,x)|2d.’b dt. (40)
s L[ X =5, w

Now, we use (37) with § € (0,1) fixed sufficiently close to one so that o > 52@ (which is possible since
we have assumed o > 252%). This yields

1 S2 «
kr(t,s)2dt ds < 052/ exp < ( — >) dt ds < CS>T.
/]O,T[X]S,S[ (t.5) 10,T[x]—5,S] min{t,7 -t} \ 6 (1+9)
(41)

Combining (38), (39), (40) and (41) then gives the sought result, since the estimates true for any o >
252. 0

The following result, taken from [ |, deduces observability from low frequency observability. The
values of the constants are tracked precisely.

Lemma 2.6 (Miller | D). Let Ty, a,b,C > 0 and assume

T
HeTAgyOHzL?(M) < Oeza)\%Jr%? / HetAgyOHiQ(w) dt, forall0<T < Ty and all yo € E<y.
0

Then, we have

T
||€TAgy0||iz(M) < C'e*T / ||etAyy0HQL2(w) dt, for all0 <T < Ty and all yo € L*(M),
0
2
with ¢, = (a +Vb+ Va2 + 2a\/5) and C' a constant depending only on Ty, a, b, C.
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Proof. The result is not stated exactly that way, but the author proves this as an intermediate result of
[ , Theorem 2.2]. More precisely, the assumptions of our Lemma are exactly estimate (10) in | I,

—4 4
with & = 1/2 and 8 = 1. It gives the result with ¢, = 4b? (\/a T 2vh - \/a) =1 (\/a Fovb+ \/a) _
(a—&-\/g—i— \/a2+2a\/5)2. O

With these two lemmata in hand, we now conclude the proof of Proposition 1.7.

Proof of Proposition 1.7. To simplify notations, we prove the existence of universal constants so that
Rheat () < @35? + a4fpave(w, 259)? for all S > 0.

Let & > Ryave(w, 2S5) so that there exists C' > 0 so that we have the estimate (see Corollary 2.2 for
the equivalence)

[ (w0, wi)ll 2 (M) x L2 (M)

U, U 1 SC’eﬁ,Au 20(_ W), A= ,
”( 0 1)||H°(M)XL2(M) H ”L ((=5:5)x) H(U07UI)||L2(M)><H—1(M)

for all (ug,u;) € H(M) x L*(M), and u solution to (11). (42)

Note that when compared to (12)-(13), we have changed the interval (0,2S) to (—S,.5) which gives the
same result by conservation of energy. The proof is a direct consequence of above Lemmata 2.5 and 2.6. O

2.4 Link between R,.,..(w,T) and analytic spaces

As already mentioned, Theorem 1.18 is a corollary of observability estimates in spaces of ultradistributions
(implying by duality that some spaces of analytic functions are attainable/controllable for the control
problem) obtained by Allibert | |. The following proposition explains (in the general setting of the
paper) the link between such estimates and (12)-(13) (see also | D-

Proposition 2.7. Assume there are Cy, C' > 0 such that for all (ug,u1) € H (M) x L*(M) and associated
u solution of (11), we have

e

i = Sz (resp. < Clovullzqomxr) (43)

Then (12) is satisfied with constant & = Cy and all p > 0. In particular, we have
Rwave(w7T) S COa (’I“ESp. Rwave(raT) S CO)
Again, in this statement, A, denotes the Laplace operator with Dirichlet boundary conditions.

Proof. Given p > 0, we decompose the data (ug,u1) as ug = lmguuo + ﬂmmb“o (and similarly
for wy). Here 1 S Ey<u denotes the orthogonal projector on the spectral space of —A, associated to
eigenfunctions A\; with \/A; < p. Remarking that

1
Hl\/ngNL(“Ovul)”Lz(M)xH*l(M) < ;||1m>#(u0a“1)||H(}(M)><L2(M)
1
=l

IN

(Uo,ul)HHg(M)xLz(M)’
we obtain
1
H(U07U1)||L2(M)XH—1(M) < ||1\/@§u(u0’u1)||L2(M)XH_1(M) M ;H(u()’UI)“Hé(M)XLQ(M)
B — 1
< eV g, ) anyer =1 o + o) g vz
1
< O |ul| 20,y xw) + ;H(UO’“l)HH&(M)XL?(M)’

where we used the assumption (43) in the last inequality. This concludes the proof of (12), and that of
the proposition. O
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We now extract an estimate like (43) on some surfaces of revolution from | |. Indeed, a combination
of several estimates in | | gives the following result on barrel-type surfaces.

Theorem 2.8 (Allibert | ). Under the geometric assumptions of Section 1.3.3, for any T > T) and
Co > R(20)da(T), there exists C' > 0 so that

Hefcf)\/jg(u(»ul)u < Clloyullz2((0,1)xr) (44)

HlxL?
for any (ug,u1) € HY (M) x L2(M) and associated solution u of (11).

The result is not stated exactly this way in the article. It is also more precise since it involves analytic
spaces only in the § variable. More precisely, denoting E¥ the spaces of functions in H} x L? of the form
f(s5)e’*? the following estimate is proved in | , Theoréme 2, Définition 3 and Proposition 1]:

(w0, ui) | gz w2 < CR)Ovull L2((0,1)x1) (45)
for any (ug,u;) € Ef, where C(k) satisfies

1
lim sup nC(k)

n—+oo k

= d(T).

In particular, for any § > 0, there is kg € N such that C(k) < eF(@a(1)+9) Recalling that 1/R has a
unique minimum at z = 2y, together with the action of A, y on functions of the form f(s)e™*? (see (03) i

Remark 3.4, or the formula of P, in | ), we see that (—A, o(f(s)e™*?), f(s)e™?) > k2 H L

20)2 Hf szHiQ(M) (and a similar formula in H}). Denoting Ay, the n-th eigenvalue of the operator
restricted to the space E(’)f, this yields Ay, > ﬁz)z and thus C(k) < elda(M+R(Z0)\/ Aen for all k > ko
and n € N. As a consequence of (45), we obtain for k > kg

oo

L2 (M) =

< HoﬁiyuHLz((O’T)Xp) for all (UO,U1) S Eg

HjxL?

This finally gives (44) for any Cy > R(zp)da, when taking into account the orthogonality of the subspaces
E¥ for the norm of H} x L? and the norm of the observation.

With Theorem 2.8 in hand, Theorem 1.18 is now a straightforward consequence of Propositions 2.7
and 1.7.

2.5 Reformulation of the definition of the constants in terms of localization
functions

This section is aimed at giving an alternative definition for the geometric constants Reiq(w), Rx(w),
Rheat(w) in terms of localization functions.

Definition 2.9. Let w C M be an open set. We set:

191l 2 ()

Loceiq(w, A inf
o) = {nwnm

7'(/J Ex \ {O}} € [07 1]) AE Sp(—Ag),

. ||u||L2(w)
Locy (w,\) = inf § ————— u € E<) \ {0} € [0,1],

||u||L2(M)

||6tAu0||L2((O T)Xw) 2
Locpeqt(w, T) = inf A ’ sug € L*(M)\ {0} ;.
e uOHLZ(M)
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Note that if the Schrédinger equation is observable from w in finite time (in particular if w satisfies the

geometric control condition, see | , |), then, there exists C' > 0 so that Loceis(w, ) > C for
all A € Sp(—A,). Under the sole assumption that w # 0, we have Loce;g(w, A) > Cle=OVA| ) I,
Locy(w, A) > Cle=CVA [ , , | and Locpeqt(w, T) > Cle™ 7 | , |

Lemma 2.10. We have

_ 1 L ei y )\ . _ 1 L , )\
foigw) = limsup o8I D) o) — timsup Z1o8TO0R(@ )
A—+00,AESP(—Ay) VA . N5

Rheat(w) = limsup —T log Locpeqt (w, T,
T—0+

Note that we do not have a similar formulation for the constants .. (w) and Ryave(w,T) since they
do not correspond to an asymptotic régime (like T'— 0 or A — +00).

Proof. We only prove the second statement, the other proofs being similar. Setting

—logLL A
Co(w) = lim sup 28Tz (@: A)

A—+oo \/X ’

we want to prove that €x(w) = s (w). Assume &, C satisfy (9), then we have

—&VX

Locy(w, A) > —e ,

Q-

and hence
—log Locs (w, A) < AV + 1og(0)
VA B VA '
Taking the limsup,_,, ., this implies €x(w) < K. Taking the infimum over all such & and recalling
Definition 1.5, we obtain €x(w) < 8x(w).
We now prove the converse inequality. The definition of €x(w) implies that for all e, there exists Ag(e)
such that for all A > A\g(e),

lmgL\O/CXE(‘“J’)‘) < Cx(w) +e,
that is Locy (w, A) > e~ (€=(@)+)VA_ This, together with the fact that Locs(w, A) > 0 does not vanish on
[0, A\o(€)], implies the existence of a constant C(g) > 1 such that Locg(w, A) > %6_(62(‘“)“‘5)‘5 for all
A > 0. This is precisely estimate (9) with 8 = €x(w) + ¢ and C = C(e). Taking the infimum over all such
£ and recalling Definition 1.5, we obtain fx(w) < €x(w) + ¢ for all € > 0, and hence Ry (w) < €x(w),
which concludes the proof. O

3 Construction of maximally vanishing eigenfunctions

3.1 The sphere

In this section, we consider the simplest case of our results that is, the unit sphere in R3:
S? = {(x1, 29, 23) €ER3 22 + 25 + 22 =1} = {x € R®, |2| = 1}.

Eigenfunctions and eigenvalues of the Laplace-Beltrami operator on S? are well-understood : eigenfunctions
are restrictions to S? of harmonic homogeneous polynomials of R3, associated to the eigenvalue k(k + 1),
where k is the degree of the polynomial. We are particularly interested in so called equatorial spherical
harmonics, given by

up = Ppls2 € CF(S?),  Pu(a1,22,23) = (21 + izo)",

known to concentrate exponentially on the equator given by x3 = 0.
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Since it can be written P, = z* where z = z1 + iz € C, it is easy to check that Py is holomorphic
as a function of z, and hence harmonic as a function of (z1,z2,23) € R3. Moreover, P} is homogeneous
of degree k. Therefore, see e.g. | , Proposition 22.2 p169], the function uy is an eigenfunction of the
Laplace-Beltrami operator on S:

—Agauy, = Apug with Ay = k(k+ 1)
(this fact can also be checked directly with the expression in (46)). Note that we have

@) = @+ ad) = (1 =ad), w=

We denote by N = (0,0,1) and S = (0,0, —1), the north and south poles, and have coordinates :

(0,7) x St — S?\ {N, S}
(s,0) —  (sinscosf,sin ssin 6, cos s)

Remark that s(z) = disty(z, N), for z € S2. In these coordinates, the metric is given by ds? + (sin s)?d6?,
the Riemannian volume element is dw = sin sdsdf, and the sequence uy, is defined by

ug(s,0) = sin(s)*e*?. (46)

Remark 3.1. The construction works equally well in the unit sphere S® ¢ R**!, n > 2. The coordinates
has to be changed by

(0,7) x St xs"=2 — S"\ {N, S}
(s,0,1) — (sinscosf,sinssiné,tcoss)

and we can still consider the eigenfunction uy, = (x1 +ixy)*

sn with ngnuk = )\kuk and )\k = k(k‘i’n*l)
With the above choice of the eigenfunction uy, we have
lu(z)> = (1 — 22)F = (sin 5)?* = |sindist, (z, N)[?* = e 244 g, (z) = —logsindisty(x, N).

Note that d4 is actually the Agmon distance to the equator (s = 7) where S? is seen as a surface of
revolution, see Remark 1.13.
Also, given f € L'(S?), we have

/f(w)|uk(w)\2dw:/ f(s,0)(sin s)***1dsde
s2 (0,7) xS!

= 27r/ F(s)(sin s)?**1ds, F(s) = S f(s,0)de.
(0,7) 2w St

In case f = 1, this yields the asymptotics of the norm of uy, given by the Laplace method (see e.g. | ,

D):

1 1

1 1
ol = 5= [ un@Pdo = [ (1= ad)idey = [ eFetha,
™ —1

-1

Hebdny =\ [0+ 0(),
; k

2 S2

a+o@ [

o~

and hence |Juy||p2(s2) ~ 212734k~ Y4 as k — +oc.
We have the elementary estimate

oy =27 [ (sins) s < ke
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This can be slightly refined, e.g. by writing

)2k+2

T ) r .
Huk”iQ(B(N,r)) - m(smr HukH%P(B(N,r)) - 277/0 cos s(sin )21 ds

= 27r/ (1 — cos s)(sin s)***1ds
0

,,,2

r . 7’2
< 5277/0 (sins)**1ds = 5||Uk||2L2(B(N,r))~

To be a little more precise, let us now prove an equivalent for \|ukH%2( B(N,r)) 8S k — oo, which is
uniform in r.

Lemma 3.2. For all k € N* and all 7 € [0, F), we have

) 7w sin(r)? 2 . tan(r)*
lukllZe (5 vrm) = 53] "eoay L T8, with Rl < oo

cos(r)

This furnishes an optimal lower/upper bound for this quantity which is uniform with respect to r in
any compact set [0, a] with o < 7.

Proof. We write a = —logsinr > 0, change variable y = —logsins, and want to have an asymptotic
expansion of

1 2 " : 2k+1 e —(2k 1
_ - ds = (k+2)y = .
sl = [ GinsHias= [ e — iy

This integral is of the form
+oo
Tak)i= [ e Cs)ay,

where f(y) = ﬁ is smooth on [a, +00). Writing
, e—2a
lf(y) — fla)] < (y —a) :}105) 1< (y— G)W’
since f'(y) = —e~2Y(1 — e~2¥)~3/2 and integrating on (a, +00), we obtain
—(2k+2)a —(2k+2)a —2a
e e e
Z(a, k) — < .
’ (@ k) = HO) 25| S @rrop G ey

Coming back to the original notation, this is precisely

sin(r)2k+4 sin(r)2k+2 )
= (2k + 2)2 cos(r)? - (2k + 2)2 cos(r) tan(r)”,

e luslsion ~ o
o 1 kIIL2(02) (2k + 2) cos(r)

which concludes the proof of the lemma. O

Note that the eigenfunctions we have constructed are complex valued. Yet, since u;, = (sin(s))*e*?,
its real part Re(uy) = (sin(s))* cos(kf) is a real-valued eigenfunction to which the same estimates hold,
except that [, |€"*?|2df = 2m should be replaced by [;, cos(k)?d = .

3.2 General surfaces of revolution

In this section we consider a revolution surface S C R? being diffeomorphic to a sphere S?, generalizing
the results of Section 3.1. We follow | , Chapter4d B p95] for the precise geometric description of such
manifolds.

Assume that (S, g) is an embedded submanifold of R? (endowed with the induced Euclidean structure),
having S! = (R/27Z) ~ SO(2) as an effective isometry group. The action of S* on S, denoted by 0 — Ry
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(such that RyS = S) has exactly two fixed points denoted by N,S € S (the so-called North and South
poles).

We now describe a nice parametrization of (S, g). Let L = dist,(V, S) and vy be a geodesic from N to
S (thus with length L). For any 6 € S!, the isometry Ry transforms the geodesic g into Rg(70), which is
another geodesic joining N to S. Set U = S\ {N, S}. For every m € U, there exists a unique 6 € S! such
that m belongs to Rg(y0). The geodesic Ry (7o) can be parametrized by arclength

p:[0,L] = Ro(10), p(0)=N, p(L)=25, s=disty(p(s),N)= L —disty(p(s),5),
and there exists a unique s € (0, L) such that p(s) = m. We use (s,6) as a parametrization of U C S:

¢: U=8\{N,S} — (0,L)xS!
m —  ((m) =(s,0).

We define two other exponential charts (Un,(y) and (Ug, (s) centered at the fixed points N and S by
L L
Uy = {N}UC! ((0, OF Sl> _ B, (N, 2) cs,
L L
Us={Stu¢! ((2,L) X Sl> =B, (S, 2) cS,

L L
CN:U']\/'_>-BIR2 (0a2)a <N(N):0ﬂ CS:US%BRz <072>7 CS(S):
with the transition maps

(vo¢™t: ¢(UNUN)=(0,%) xSt

CN(UQUN) BR2 ( L\ {0}
(s,0) ©)),

N
— (S COS , S SIH

and
(s og_l : C(UQUS) (*, ) xSt — CS(UﬂUs) = Bpg2 (0, %) \ {0}
(s,0) = ((L — s)cos(f), (L — s)sin(8)).
On the cylinder (0, L) x S, the metric g is given by
(¢ H*g = ds® + R(s)?db?

for some smooth function R : (0,L) — R (see below Remark 3.4 for the geometric interpretation of
R). Since g is a smooth metric on S, | , Proposition 4.6] gives that R extends to a C'*° function
[0, L] — RT satisfying

R(0)=R(L)=0, R(0)=1, R'(L)=-1, R®)(0)=R®)(L)=0 foranypeN.  (47)

In these coordinates, the Riemannian volume form is hence R(s)dsdf, the Riemannian gradient of a
function is

. 1
Vol = 0uf 5+ gstl g with 9(Vf.Vaf) = 0.7 + o0 (48)
and the Laplace-Beltrami operator is given by
Avp = —0.R(5)0s + —— 2 (49)
s,0 — R(S) s 5)0s R(8)2 'R

Another important operator is the infinitesimal generator Xy of the group (Rg)ges:, defined, for f €
C>=(S), by

Xof = gi_rggﬂfl(foRe - /). (50)
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In the chart (U, (), the action of Ry is given by (¢™1)*Rg(u, ') = (u, 8 + ), so that ((71)* Xy = 9. Let
us now check that Xy is a smooth vector field. Indeed, we have

()Xo = ()¢ =d (Cn o) - Do,
and hence
(C;[1>*X9 (s cos(0), ssin(@)) = (—ssin(0)0s, + scos(0)0x,) (s cos(0), ssin(9)),

that is
((C&l)*Xg) (171, 132) = 7172(9_»51 + xlﬁm.
Since ((¢y')*Xs)(0) = 0 (and since the computation is similar in Us), we have obtained that X is
smooth. Note also that Xy(N) = Xy(S) = 0 and that its norm is given by /g(Xp, Xs)(s,0) =
the coordinates of U).

We define by L?(S) := L?(S,dVol,) the space of square integrable functions, which is also invariant
by the action of (Rg)gest -

Now, remark that (Rg)gsest acts as a (periodic) one-parameter unitary group on L?(S) by f + f o Ry.
The Stone Theorem (see e.g. | , Theorem VIII-8 p266]) hence implies that its infinitesimal generator
is iA, where A is a selfadjoint operator on L?*(S) with domain D(A) C L?(S). Since iAf = Xyf for
f € C*°(S) (which is dense in D(A)) according to (50), we have that A is the selfadjoint extension of %
From now on, we slightly abuse the notation and still denote % for its selfadjoint extension A.

Since g is invariant by the action of Ry, we have

(X, Ag] = 0.

Moreover, A, has compact resolvent, so that the operators A, and Xy share a common basis of eigen-
functions: indeed, X,y /i is selfadjoint and preserves each (finite dimensional) eigenspace of Ay, and it can
be diagonalized on these spaces. In U a common eigenfunction can be written as e**? f(s) with k € Z,
f€C>(0,L)NL?((0,L), R(s)ds) solution of

1 k?
———0s (R(s)0s —f =\, 51
iy (R0 + g f =M (51)
for some A > 0, eigenvalue for —A,. To prove this assertion, take u a necessarily smooth common
eigenfunction of A, and Xy. In U (with the coordinates (s, )), we have v = u(s, ) with (see (49) for the
definition of Ay )

—Aggu(s,0) = Au(s,0), and a—?u(s,@) = uu(s,0), (s,0) € (0,L) xS, (52)
i

for some A\, € R. Setting f(s) := u(s,0), the second identity in (52) implies u(s,0) = e’ f(s). The
function u being smooth on (0, L) x S', it is 27-periodic in § so that u = k € Z. Hence, u(s, ) = ™% f(s)
and the first identity in (52) directly yields (51).

We will call these normalized eigenfunctions ¢y, = e’ ;. ,,(s) with eigenvalues My, for —A,, where
n € N. In particular, we can write L*(S) = ®ék,n)€Z><N span(@gn)-

We will denote L? = ker(Xy — ik)) = {¢ € L*(S); o,y = € f(s), f € L*((0, L), R(s)ds)} and H} =
H?(S)N L?. The commutation property implies that A ,H? C L%, so we can define the operator Ay =
A o L2 which is self-adjoint with domain H,? This can be seen for instance directly on the simultaneous

diagonalization which implies an isometry L?(S) ~ ¢*(Z x N) where L? ~ {(k,n)|n € N} as a closed
subspace of £2(Z x N). The fact that A, has compact resolvent implies the same for Ay.
Remark 3.3. Note that the introduction of Xy allows to give a more intrinsic definition of d 4 introduced

in (17): given any point mg on the “strict global non-degenerate equator” of S, the Agmon distance d 4 is
the unique continuous function such that

2 1 1 —
Xoda =0, dalmo) =0, |ngA|g(m) - <Q(X97Xe)(m) - g(Xa,Xe)(mo)) B

All properties of Lemma 3.8 can be formulated intrinsically since s measures the geodesic distance to the
north pole, and hence s(m) = disty(m, N), L — s(m) = disty(m, S), and s(m) — so = disty4(m, equator).
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Remark 3.4. (Another possible parametrization) Some of the surfaces of revolution described above admit
the following “cylindrical” parametrization on the set U: with z_ < z; and the two poles N = (0,0, z)
and S = (0,0, 2_), we have

(2-,24) xSt -  U=8\{N,S} CR?
(2,0) —  (R(z) cos8,R(2)sind, z),

where R : [z_,2z4] = (0,00) is the profile of the surface, that is, a smooth positive function on (z_,z4)
satisfying R(z4+) = 0 and lim,,,, R'(2) = Foo. Note that R(z) represents the distance of S to the
revolution axis {x = y = 0} at height z. Note that (except for the shape/topology of the surface) this
parametrization is the same as that of Allibert | ], see Section 1.3.3. We have

dx1 = R'(2) cos 0dz — R(2) sin 6d6
dxs = R'(2) sin0dz + R(z) cos 6d6
drg = dz,

so that the metric on S induced by the Euclidean structure is given by
g = da? + da3 + dzi = (1 + R'(2)?)d2* + R(2)*d6>.

As a consequence, the Riemannian volume element is V(z)dzdf with V(z) = R(z)y/1+ R'(2)? and the
Laplace-Beltrami operator is given in this coordinates, by

1 V(z) 1
a0 g (i) + et o

with a suitable selfadjoint extension on L*((z_,z1) x S*,V(2)dzdf). The link between s and z is the

following diffeomorphism
s(z) = / V14 R/(¢)2dt,

and we have L = [ /14 R/(t)dt, together with R(s(z)) = R(2)(= v/9(Xp, Xy)). In particular, we see
that R(s) indeed measures the distance to the axis of revolution.

Remark 3.5 (The sphere). Note that, in the z-parametrization, the sphere is given by z3 = +1 and
r(z) = v1 — 2% and hence r'(z) = 7= and V(z) = 1 is smooth (which is not the general case if the
surface is flat near the poles).

Let us first prove existence of the particular eigenfunctions under interest in Theorem 1.9. We then
study their concentration/deconcentration properties.
Lemma 3.6. Assume that s — R(s) admits a non-degenerate local mazimum at sg € (0,L). Then, for
. R/I
all k € N, there exists ¢, € C°(S)N L2, and px € R such that pu, = ﬁ + 1 |R3((j§))| + O(ki%),
[YrllL2(s) = 1, and we have —Agthy, = k> gty

Note that the assumption of the lemma is R/(sg) = 0 and R”(sg) < 0. In the proofs below, we shall
often consider h = k! as a semiclassical parameter.

Proof. We first construct a family of sufficiently accurate quasimodes (i.e. approximate eigenfunctions)
compactly supported in U and of the form (in the coordinates (s, 6) of U) e?*%uy(s). The function wuy(s)
should thus solve (51) approximately. Setting h = k~! and = Ah? in that equation, we are left with the
following semiclassical eigenvalue (or approximate eigenvalue) problem in the limit A — 0T

2

(P — w)f = —Rh(s)as (R()0.1) + (R(l) - u) F=o.

Now, according to the assumption, the potential ﬁ is positive, tends to plus infinity near 0 and L,

and admits ﬁ as a nondegenerate local minimum. Namely, this is R'(so) = 0 and R”(sg) < 0. The
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construction is classical (harmonic approximation) and follows e.g. that of | , Theorem 4.23] in a
simpler setting. The idea is to approximate the operator Pj by its harmonic approximation at sg, namely

= h? 1 1\” (s—50)% 20 1 2R (s0) (s — s0)?
P, = —masR(So)as + W + <R2> (SO)T =—h 85 + R(80)2 - R3(So) 5 (54)

Recall that the spectrum of the operator —h?*d; + coy® on R (¢ > 0) is given by E,(h) = hE, (1)

h(2n +1),/co, associated with the eigenfunctions u!(y) = h~ Tul (y/vV/h) where ul (y) = p,(y)e e (pn

being a Hermite polynomial). Here, this applies with ¢y = %

We consider a cutoff function x € C$°(0, L) such that y =1 in a neighborhood of so. We set

W (s) = x(s)ul(s), with wl(s) = Ch~ e Ve “m (55)

where C' is a normalizing constant, and prove this is an approximate eigenfunction (quasimode). First
notice that we have, with P, defined in (54), that

N - ~ 1
Pl = xPyul + [Pr, XJuf = (W + hﬁ)xug + [—h202, X]ug

In this expression, [~h202, x] is a first order differential operator supported away from zero, where uf and
its derivatives are exponentially small. This yields

D o h 1 h _ —c/h
1P = (e V%)W (0.0 ) = O™

Now we consider, with norms L?((0, L), R(s)ds)

[ G o) ] <1 ) (G o)
= H(R]f )5 —h252) B
H< 1 io)z _00(5—80)2> u . 4 Ce—clh.

According to the Taylor formula and the definition of ¢y, we have ﬁ - w —co(s—350)%2 = O((s—50)?)
on the support of y, so that

|~ e v =)

We now estimate the term
hR'(s)

|(Regorn. sz )| = [

Notice that hdsu” = hx'ull + hxdsuff = Op2(e=/") — V(s — s0)xuly, where we have used the expression
of ul in (55). Moreover, since R/(sg) = 0, the Taylor formula yields

1 s—s0)2
SC’/ |(S_SO)3h7167‘/%( 7 |*dz < Ch3.
R

hdsu”

L2

hdsu" <Ce "4 C ||h(s — so)qugHLZ < Ch2.

s,

R(s)

Now, combining the above estimates finally yields the existence of constants D, hg > 0 such that for
all h < hg, we have, with v}, = ﬁ + hy/co,

[P — v < D2 & DR o

L2 ((O,L)7R(s)ds) £2((0,L),R(s)ds) °
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Now, we define in coordinates in U C S, fx(s,0) = e*%u”(s), h = k=!. This function is smooth and
compactly supported in U thanks to the cutoff x, and can therefore be extended as a function in C*°(S)NL%,
still denoted fj, which satisfies

1(h* Ak = vm) fil| . < DR®? ~ DR | fi] .

Hence, if v, ¢ Sp(—h2Ay), this implies ||(fh2Ak — I/h)*lHLz_)L2 > ﬁ. Finally, the operator h2Ay
k k
being selfadjoint on L?, we have, for z € C\ Sp(—=h2Ay), |[(=h2A, — 2)71|| = m, so that, if

Vp, ¢ Sp(_h2Ak)7 1 1

> .
d(vp, Sp(—h2Ag)) — Dh3/2

In any case, this implies d(vy,,Sp(—h?Ag)) < Dh3/2, and using that the spectrum of h?Ay is purely
pointwise, this proves the sought result. O

The next step is to study the behavior of the eigenfunction ;. constructed in the previous lemma (and
under a stronger assumption on the point sg). This is the goal of the so-called Agmon estimates. We first
need the following integration-by-parts lemma.

Lemma 3.7. For all ¥ € W1°°(8) real valued and all w € H?*(S), we have
/|vg(\11w)|§dvolg—/ VW2 [w]*d Vo, :Re(/ B 2(—Agw)T dVolg).
s s s

Proof. For ¥ € C?(S8), this is a direct consequence of the integration by parts formula (also valid when S
has a boundary S and w|ss = 0)

/ IV g(Yw)|2d Vol, = f/ A, (Vw)Vwd Vol,
S S
= Re (/ (= ¥(Agw) — (AgW)w — 2V, ¥ - V w) \Ifdeolg>
S
~ Re (/ [ (~ ) dVol, ) + A
S
with
A =Re (/ (= (A0)T|w|*> — 2V T - ng\Ilw)dVolg)
S
= Re (/ (VO |w]? + VU - Vo (Jw]*)¥ — 2V, U - vgw\pw)dwlg)
S
=/ |V, ¥|?|w|?d Vol,,
S

where we integrated by parts in the second line. This is the sought estimate in case ¥ € C?(S). The result
of the lemma follows by a classical approximation argument, see e.g. | , Proof of Proposition 6.1]. O

We shall now assume that R reaches at sy a strict global non-degenerate maximum, and introduce the
relevant Agmon distance to the “equator” s = sg. The latter is defined in the coordinates of U by the
eikonal equation (17), or, more explicitely, for s € (0, L), by (18).

Lemma 3.8 (Properties of da). Assume that R reaches at sg a strict global non-degenerate mazimum.
Then, da € C?(0,L), and we have

da(s) = —log(s) + O(1), ass— 0T, da(s)=—log(L—s)+0O(1), ass— L, (56)

da(s) = ;/m(s—so)Q—l—O((s—so)g), as s — So. (57)
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Proof. Remark that according to (47), we have ﬁ — +ooasy — 07 or y — L™, with
R(s) = s+ 0O(s*), when s — 0", and R(s)=L—s+O((L—s)*), when s — L.

As a consequence, with (18), we obtain d4(s) =

211+ 0@y?)dy| = —log(s) + O(1), as s — 0T (and

oy
similarly when s — L), that is (56).
Let us also study the behavior of d4 near sg. Denoting V(s) = ﬁ - ﬁ, we have V(sg) =

V'(so) = 0 and V" (sg) = % > 0. This implies (57) and that d4 is of class C? near sg, by Taylor

expansion of d4 and its derivatives. O

We can now state the following relatively precise result. All results concerning surfaces of revolution
are corollaries of this one.

Theorem 3.9 (Agmon estimate). Assume that R reaches at s a strict global non-degenerate mazimum,
and consider the associated numbers py and functions ¥y given by Lemma 3.6. There exist C,Cy, kg > 0
such that, for all k € N, k > ko, ¢y, € L*(S,e*¥4d Vol,) with the estimate

/ ¢2RdA () [y 12 () d Vol (m) < CR2C.
S

Here, we have denoted da(m) for da(s(m)) with a slight abuse of notation. Note that da(N) =
dA(S) = 4+o00. We first draw corollaries of this result, concluding the proof of Theorem 1.9, and then prove
Theorem 3.9 at the end of the section. Using that d4 is decreasing on (0, s9], we obtain the following
direct Corollary.

Corollary 3.10. Under the assumptions of Theorem 3.9, there exist C, Cy, ko > 0 such that, for all k € N,
k > ko and all s1 < sg, we have

/ [vx|*d Vol, < CO}2C0—2da(s1)k
B(N,s1)

From this result, we may now derive a proof of Theorem 1.9 and Corollary 1.11.

Proof of Theorem 1.9 and Corollary 1.11. The eigenfunctions constructed in Lemma 3.6 satisfy A, =

k2 (R(qlo)2 +1 “;/3/((33))‘ + O(?)) In particular, for any C, > 1/|R"(s0)|R(so), there is ko € N such
© Y © 2

that k > /AsR(sg) — Cy for k > ko. This gives e=2kda(s1) < 2Cxda(s1)g=2da(s1)R(s0)V Xk Then, Theo-
rem 1.9 follows directly from Corollary 3.10 up to changing the constants involved. The second part of
Theorem 1.9 follows directly from Proposition 1.6.

Corollary 1.11 follows from the asymptotics (56) of d4 and the fact than Theorem 1.9 is uniform for r
small. Indeed, for an appropriate constant C, we have d4(s) > —log(s) — C for all 0 < 51 < sg, .

Finally, for fixed A, and using the uniformity for » small, we obtain the order of vanishing using the
general Lemma B.1 of the Appendix. O

We will need a very simple Lemma
Lemma 3.11. Let o € Wh*(S)N Li, then, we have the pointwise estimate on U
k2 2
v 2> 1
| 9(()0)|g = g(X97X0) |50‘
Proof. We have, in the coordinates of U, that ¢ writes ¢(s,8) = e**? f(s), with, according to (48),
1

2 _ 2 ik6 2 _ 2 ik6 2
Vool = 1067+ FrapglOn(@ FI =105 + g5 (0)
K ko g2 k? 2
> v =
> prele 6P = e ol
which is the sought result. U
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Let us now give a proof of Theorem 3.9, following that of | , Proposition 3.3.5].

Proof of Theorem 5.9. As in the above proof, we use the notation A = k!, considered as a semiclassical
parameter. We define, for some constant Cy > 1, hg > 0 and h € (0, ho) the sets

Q_={se€(0,L),da(s) < Coh}, Qy={s€(0,L),da(s) > Coh},
We set

#(s) = da(s) — Cohlog(Cy), forse_,
=da(s) — Cohlog(da(s)/h), forse Q.

For M > 1, set ¢pr = min(¢p, M) and Qs = ¢, ({M}). Moreover, on Q_, we have ¢ = d4 —Cohlog(Cp) <
da < Coh < Cyhyg, so for M > Cohg, we have Q_ N Qyr = 0. Hence, we have a partition Q_ U (Q4 \ Qar) U
(e N Q).

Note that it will be very important in what follows that all the estimates are independent on M while Cj
will be defined later on. The function ¢, is Lipschitz on (0, L), and can be pulled back to a (Ry) invariant
Lipschitz function defined on U, and extended to S by ¢ (N) = dpr(S) = M. We call §4,5_,8m C S,
the (Rp) invariant regions on S associated to 2, Q. , Qyy, respectively, so that

S=38_U(S;\Su)U(S: NSy).

We now apply the formula of Lemma 3.7 with ¥ = e with ¢ given above and M large, and w = ¥y,
(note that 1, € C*°(S) since it is an eigenfunction of Ay, so the Lemma applies).

[ tvol,~ [ 19,9300 Pavol, = ko [ (91 b vl

Applying now Lemma 3.11 since Wiy, € WH°(S) N L} and using [V,¥|2 = k2|¢),(s)[2e2*#/" in U and
so almost everywhere in S, we get

1

I (e = 100 = ) /403 2ol <o

Using the expression of ¢ on Q_ and of pp = ﬁ + O(h), this yields, for some C' > 0 (independent
of h and M),

1

/ (2 — |phs(s)]> = uh) 2"y |2 d Voly < Ch / 244/ My, 2d Vol
sy \L(s) s

< Che?*“° / [1n|2d Vol, < Che*“o,
S

since vy, is normalized.
Note also that on Qp; Ny, we have dy > Coh and so dy > da — Cohlog(Cy) > ¢ > M > 1. Hence,

since d 4 is continuous, there is a constant € > 0 so that s € Qp; N Q4 implies |s — so| > €. In particular,
since sg is a nondegenerate maximum for R, there is n > 0 so that it also implies ﬁ — =1 >n On

R(s0)?
Sy NSy, we thus have

1

g — O (s))* — =

1 1
Ris)? + O(h) >0,

R(s)>  R(so)? -
for h < hg for hy only depending on the geometry, and not on M. Therefore, we have obtained

1

—— — ¢ (s)|* — >e2¢/h¢ *d Vol < Che®®. 58
L. o (e~ @ =) 4/ i, (58)
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Next, on Q4 \ Qpr, we have ¢’ = d/y — C’oh% and hence

L e JEGOL o (@ oo (da)?
w11 = Ty T O 20T — G
)

|R"(50 | ni (d4)*
> — 2) 4
R3(so) O(h?) + Coh da ’

where we used that d4 > Coh. According to (57), ( ) — 2 }%Sﬁ) > 0 and % A can thus be extended
by continuity at s¢. Since d’y(s) =01iff s =59 (R reaches at sqg its unique global rnaxnnum), the extended

function is uniformly bounded from below on any compact of (0, L). Moreover, according to (56), we have

AT 1 @ 1
da &) o0t Fgry M ) e e e

Hence, there is a constant C; > 0 such that (d, A > Cy on (0, L), and we have

1
R(s)?

/"2 (dy)* | (s0)| 1 Co, (dy)?
— ¢/l _MhZh<Co i\ B +0(h ))_ 2h2dA

when taking Cj large w.r.t. C’l_l and h < hg with hg depending on Cy,C;. We can now fix Cy, ho.
From (58), we have thus obtained

(dy)* 2¢/h 2 2C
Ch —£—e*?/ |y, |°d Vol, < Che=*°.
Si\Sum A

2C,
Our next task is to replace ¢ by d4 in this expression. Note that e2¢(5)/h = g2da(s)/h (L)) 0. In

da(s

particular, this yields

(4 ho\E
Ch/ \BA)” 2da(2)/n <> [vn|2d Voly < Ch.
Si\Su %4 da(s)

7 \2
Now, the function d(;*'% is positive on (0, sg) U (so, L), tends to +o00 at sg, and satisfies, as above

() 1

N +
di‘-‘r?Co 52(log(s—1))1+200 — 400, as s > 07",

1
L—s)2(log((L—
(0, L) by a constant, and we obtain

/ 2
and similarly (1+2)Co PRl — +o00, as s — L~. Hence, it is bounded from below on
A

/ €2dA(z)/h‘Ql)h‘2dV019 < th—2CO7
S\Sm
which, combined with the already remarked fact that | S e2da(2)/ e | Vol, < Cte, gives
/ >4/ |y 2d Vol, < Ch™>%,
S\Sur

Since all the constants are independent on M, it gives the sought result by dominated convergence (for
fixed h) making M tends to infinity. O
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3.3 The disk

Denote D = {(z,y) € R?|2? + y> <1} C R? the unit disk. We denote by A the (negative) flat Laplace
operator in R?. In polar coordinates, z = rcosf, y = rsinf, we have

9? 10 1 92
_ 92 2 _ 2 - -
A_6m+ay_8r2+rar+r2892'

Then, it can be seen that
Yk (1,0) = T (20 7)™ (59)
is an orthogonal basis of L?(DD), where

e J, is the Bessel function of order n, namely:

1 /" ,
Jn(z) = %/ ezsimbe=intqg  necZ,2eC\R_, (60)
—T
o 0 <zp1<2p2<2p3<--- is the sequence of the positive zeros of .J,,.
We refer for instance to | , Chapters 14.4 and 15] for an elementary introduction. In particular, the

functions defined in (59) satisfy
—Atn g = Ao in Int(D),  with Ay, =22, and ¢y xlop = 0.

Roughly speaking, the index n encodes the oscillation in the 6 variable while the index k will contain
an oscillation in the radial variable. We refer to | | for a description of concentration/delocalization
properties of general eigenfunctions (or, more generally, quasimodes) on the disk. Here, we want to analyse
some eigenfunctions corresponding to the so-called whispering gallery modes that are concentrated close
to the boundary of . They “rotate” very fast and concentrate towards one of the two trajectories of the
billiard contained in S*0D. This phenomenon corresponds to n — +o0o and k small, typically k = 1. In
the following, we thus focus on:

wn«,l(r’ 9) = Jn(zn,lr)einea

and hence on the function J,(zy,17). This requires information on z, ;.

A huge amount of information is known on the Bessel functions and its zeros. But we will need very
few of them. First, we need to normalize them. For instance, | , Lemma 5.1] taken for k¥ = 1 (which
is that of interest for us) yields

_2

||7/}n,1||L2(]D)) ~n o s.

We also need a rough estimate on the asympotic of the z, 1, see | | Lemma 4.3 for instance, namely,
Zn1 =Mn+ O(nl/g), Zpa > M.

To estimate the norm of ¥, 1 on B(0,¢), € < 1, we first prove the following lemma.

Lemma 3.12. For all a > 0 and n € N, we have

n
e < n(tanh(a)fa).
In <Cosh(a)> ‘ =¢

Note that in | , Section 32 p79|, for fixed «, a full asymptotics in terms of n is proved, with
principal term:

n en(tanh(a)—a)
JIn ( ) e . (61)
cosh(a) 27n tanh ()

Here, we need only the principal term but also a uniform bound in terms of «. Note that the short proof
below is not very informative, and the reader is referred to [ , Section 32] for a complete steepest
descent approach to this asymptotic expansion.
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Proof of Lemma 3.12. We start from formula (60), in which we write v = , and use the holomorphy

n
cosh(a)
of the integrand, together with the fact that e (in2=2cosha) i 5 periodic function of Re(z) to change the
contour. This yields:

s

J, (l/) _ % ei(ﬁl(w)sinQe—inedG — %/ eil/(sin 0—6 cosh a)de
1 T—1i 1

27 eu/(sm z—z cosh a)dz _ eztl(smwcosh a—1i cos z sinh a—x cosh a+ia cosh a)d
™

Z.
™

—T—iq -7

This implies

™
|Jn (I/)| < QL/ eu(coswsinhafacosha)dx < eu(sinhafacosha) _ en(tanhafa)
™

—T

b

and concludes the lemma. O

Lemma 3.13. There exist C, 8, ng > 0 such that for alln > ng and 0 < r < 1 — n=2/3, we have
||,l/)n,1HLOC(B(07r)) < exp (—ndA(r) + Cnl/B) .

Recall the definition of d4 in (20). See also Remark 1.14. Note that for r € (0,1) fixed, the asymptotic
formula (61) implies that such eigenfunctions have indeed the decay given by Lemma 3.13.

Proof. We have =1 = 1+ O(n~2/3) and 2! > 1. Hence recalling that |d/;| is decreasing on (0, 1], we
have, as long as TZT’” <1,

: B - 1 _
dA(TZnyl) —da(r)| < Cn=2Br|dy(r)| = Cn 2/?)T\/; = Cn=2 V12,

Thus we obtain from Lemma 3.12

Zn,1

|Jn(zn,17')| = |Jn(n n

r)l < exp (—”dA(Z21T)> < exp (—ndA(’/‘) + Cn1/3>

foralln e Nand 0 < r < 2 O

- Zn,l.

The combination of the previous estimates give Theorem 1.12.

4 Maximal vanishing rate of sums of eigenfunctions, and observ-
ability from small balls

In this section, we prove Theorem 1.15, i.e. the Lebeau-Robbiano spectral inequality with observation in
balls of (small) radius r and constants uniform in r.

We follow the proof proposed by Jerison and Lebeau in | , middle of p231]. There are three main
steps, that we summarize in three lemmata. We then prove Theorem 1.15 from these lemmata, and prove
the lemmata afterwards.

In the following, for 3 > 0, we set X3 = (—3,8) x M, and denote P = —9? — A,. In the set
Xas = (—25,25) x M, we denote by (s,z) the running point and by B, a geodesic ball (for the metric
Id ®g) of radius r (its center being implicit in the notation). We also use the rescaled H' norm on an open
set U, denoted H}!(U) and defined by

1E oy = 1F 720y + 72 IV F 17207y (62)

This will only be used on small geodesic balls or annuli, namely U = By, or U = By, \ Bar.
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4.1 The three key lemmata

In this section, we state the three key lemmata needed for the proof of Theorem 1.15.
The first lemma is a classical global Lebeau-Robbiano interpolation inequality, | , Section 3, Esti-
mate (1)].

Lemma 4.1 (Global interpolation inequality from unit balls to the whole space). Let S > 0 and let
U C Xog be any nonempty open set, then there is C > 0 and ag € (0,1) such that we have

11 (xs) < C (IPF L2 (xasy + 1F o)™ IF 5% s )-

for all F € H?(X3s) such that Fl|(—2s,25)xom = 0.

The next lemma states a local interpolation inequality. Its specificity is that the observation term is
on a small ball B, and the constants are uniform in r small. For this, the exponent has to depend on r as

|log(r)|~*.

Lemma 4.2 (Local interpolation inequality from small balls to unit balls). Let P = —92 — A, and let B,
denote balls centered at (so,xo) € X1, away from the boundary. Then, there exists r1 > 0 such that for all
0 <o <ry, there is C > 0 such that for all r € (0,5%), and F € H*(B,,), we have

log 2
log (27’0) +log?2

1PNy < € (IPF 2, sm0) IFISs, ) =

A proof of this Lemma is given in Section 4.3, starting from a Carleman estimate (with singular weight)
due to Aronszajn | | (see also | ) D-

The last lemma is an interpolation inequality w1th boundary observation term. All terms are taken on
sets of size r, and the important feature of this estimate is that the constants are uniform in r.

Lemma 4.3 (Uniform local interpolation at the boundary on small balls). Let (0,z9) € {0} x M,
distg(xo, OM) > 0 and consider balls centered at (0,x¢). Then, there exists C >0, ro >0 and oy € (0,1)
such that we have for all 0 < r < rg

IFlm2s,) <C (TQHPFHL?(BQT) +Tg/z||68F‘s:0HLQ(BZTQ{O}XMO 1F 1530,

for all F € H?(X3s) such that Fl|(—2s,25)xom = 0.

This lemma is proved in Section 4.4, consequence of a uniform Carleman estimate proved in Appendix A.

4.2 Concluding the proof of Theorem 1.15 from the three lemmata

From these three lemmata, we may now give a proof of Theorem 1.15. We first formulate a straightforward
corollary of the three lemmata to prepare the proof.

Corollary 4.4. Let P = =02 — Ay and (0,z0) € {0} x Int(M) and consider balls centered at (0, ).
Then, there exist ro > 0, C > 0 and ag € (0,1) such that, for all v € (0,%%) and F € H*(Xag) with
PF =0 and F|(_35,25)xam = 0, we have

1F e (xs) < CIEN (520 I F 1 %)
4
log 2
log (27“0) +log?2’

||F||H1(BLO) < ?j’i(BT)||FH17aT Qp =
4

H'(X32s)?
HF||H1(B ) < C”a F|s 0||L2 (B2,N{0} x M) ”F”Hl(xgs)

Proof of Theorem 1.15. Let us first treat the case where OM = @), or OM # () but the center of the balls,
xo is in Int(M). The case x¢ near OM will be treated afterwards.
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We reformulate (again) these three results as (in a form close to that of | D

1
1E N (xas) (C«|F|H1(Xzs)) "

IE e (B 1y ) 1E | xs)
1
1Elm as) [ o 1E N (xas)
1E e By — ||FHH1(B%0) 7
1
I F| 1 (x,) < (O|F|H1 Xzs)) 0
[10s Fls=ollz2(Baynfoyxmy — \ I F s,
and combine them to obtain
i
'] 1 (Xos) < O ok o (||F||H1(ng)> o (63)
105 F'|s=oll L2(B,.n {0} x M) 1| 1 (x5)
We then follow | , , , |, and, given ¢ € E<) take the function

F(s) = Smh(‘L IL¢ + sIoy,

where A, is the Dirichlet Laplacian, IIy the orthogonal projector on ker(A,) and IT; = Id —IIj, that is F
is the unique solution to

(=02 —A)F =0, Flas2syxom =0, (F,05F)|s=0 = (0,7).

Classical computations (see e.g. | , Proof of Theorem 5.4]) show that there is C' > 1 such that for all
A >0 and ¢ € E<y, we have

1
Flelzzon < IFlls s < [Pl s < CE¥Y A L.
As a consequence, (63) yields for some C,x > 0, for all A >0, ¢ € E<y, and r € (0, 7)

HwHLQ(M) OK+M e('ﬁ'a*lr)ﬁ, (64)
191l 22 (B (20.,2r))

Recalling the definition of «,., this is the sought result of Theorem 1.15 (up to changing 2r into r, and the
names of the constants accordingly) with the restriction r € (0, %2). To conclude for all » > 0, it suffices
to notice that (64) remains true with arg on the r.h.s. uniformly for observation terms [[¢)(|12(5 . (zo,2r))
with r > %0 (the constants are non-increasing functions of the observation set).

To conclude the proof in the general case, we need to consider the situation dM # () in full generality.

We again follow | , |. In this case, we define the double manifold M = M U M, consisting in
gluing two copies of M, endowed with a smooth structure of compact manifold, as in | , Theorem 9.29-
Example 9.32]. Then, the procedure is very well explained in | , Section 3] and we only sketch the

proof. We extend the metric g on M by symmetry/parity with respect to the boundary OM as a metric
g on M. Note that even if g is smooth, the extended metric g is only Lipschitz on M. This is not an
issue since the three lemmata 4.1, 4.2 and 4.3 remain valid for Lipschitz metrics (as a consequence of
Appendix A, | , |, and Appendix A, respectively). In the case of Dirichlet boundary condition

on OM, and given ¢ € E<) we take its anti-symmetric/odd extension on M , yielding a function ) € E~’§ A
Here, ES A is the counterpart of E<) defined for the Laplace-Beltrami operator Az on M. The above

computations are then made for Az on M and the estimate (64) is proved for 1/; The same estimate for
¢ follows. Similarly, in the case of Neumann boundary condition, we take the symmetric/even extension
of functions, yielding the sought result. O
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4.3 A proof of Lemma 4.2 from Aronszajn estimates

In this section, we give a proof of Lemma 4.2 starting from Carleman-Aronszajn estimates as stated

in | , Proposition 2.10] and | , Proposition 2.10] (and slightly modified according to the remarks
in | , Beginning of Section 14.3]), which we now state. An alternative proof of a closely related estimate
is given by Hormander in | , Inequality (17.2.11), Chapter XVII.2].

Proposition 4.5. Let P = —92 — A, and let (p,t) € (0,71) x S™ be geodesic polar coordinates around a
point (so,x0) € Xg away from the boundary. Then, there exists a function p(p) with

p=p+0(p°), asp—07, (65)

and constants 19, C,rg > 0, such that we have
C/ |p~ T Pul*p *dpdt > / (1p77Vul® + |p~"ul?) p~'dpdt,  for all T > 19, u€ CG°(By, \ {0}).
With this Carleman-Aronszajn estimate in hand, we now give a proof of Lemma 4.2.

Proof of Lemma 4.2. We use the estimate of Proposition 4.5 as in | | (see also | , Section 5]) to
deduce an interpolation inequality. We introduce for this (as in | , Beginning of Section 3|) a cutoff
functio)n Xr = Xr(p) such that, with 0 < r < % a small parameter (appearing in the statement of the
lemma

T _ _ To
Supp(xr)C{§<p<ro}7 xr=1on {r<p<5},

|0%xr| < C,r~ 1ol on {g <p<r }7 |0%x| < Cy on {%0 <p<rp }
We apply Proposition 4.5 to u = x,F. The operator [P, .| is a first order differential operator with

supp[P, xr] C {5 <p<r}U{% <p<ro}, being moreover of the form O(r=*)D + O(r~2) on the set
{% < p < r}. Therefore, we obtain using (65), for all 7 > g

/(m_TV(XTF)'2 +1p e FI?) p~ dpdt < C/ 5~ "X PF?p~ " dpdt + C/ |57 TIP, X, F|?p  dpdt
r\ 271 5 N\ —27—2 )
=C (5) IPENz23,,) +C (5) 1 a2 (5 <)

70 —27
+0(3) " Il <oz

where B, denotes the set {p < ro}. Recall that the norm H} is defined in (62). Concerning the left
hand-side, we bound it from below by

/(I/TTV(XTF)\ZJr\ﬁ‘Ter|2)p‘1dpdtZ/ TV OGE)? + 17X FI?) p dpdt
2r<p< R
o —27 9
> () IFlnspem)

Combining the last two estimates together with the fact that () o 1] o,y < (%) - | '] 1,y yields,

for some 79 > 0 and all 7 > 75 and r € (0, {5),

(3) WFloy <€ (5) (IPPle.,) + 1F o) + € (5)  1F s,

Multiplying by rJ and recalling (65) to replace balls in p by real balls, we obtain, up to changing the
names of the parameters r, g, that

o
4

2T’0 4 c
Py <€ (22) (PPl + 1Pls,) + 1Pl

An optimization in 7 > 79 | | (see also | , Lemma 5.2]), then implies the following interpolation
inequality
ar _ log 2
1—ay _
1Pl g < € (1Pl + WFln) ™ PG,y 0= oy
and concludes the proof of the lemma. O
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4.4 A proof of Lemma 4.3 from Proposition A.14

In this section, we give a proof of Lemma 4.3. The latter consists in performing a scaling argument to reduce
the problem to fixed-size balls. However, the scaling argument yields in these fixed balls a family of metrics
(converging to a fixed metric as r — 0), and we need to use uniform interpolation/Carleman estimates for
such families of metrics. These uniform estimates are proved in Appendix A (Proposition A.14).

Proof of Lemma /.3. We first choose o small enough so that Bs,, C Xg and there exist a local coordinate
patch on M : @ : {z € M, dist(x,x9) < 2ro} — U where U is a neighborhood of 0 in R™, with ®(zg) = 0.
Up to a multiplication by an invertible constant matrix, we may assume that ((®7!)*g) (0) = Id. As a
consequence, ds”® ((®71)*g) (ry), defined on the ball of radius 2, converges uniformly in this ball towards
the flat metric on the flat ball of R”*! in the limit » — 0. We will thus only use the flat metric in the
present proof, which behaves well with respect to scaling. The distance (hence the balls, still denoted B,
or By below, all centered at 0) will be defined with respect to the flat metric, as well as the Sobolev norms
(still denoted H}(B,), H'(B) below). The final result we obtain will be formulated in terms of the flat
metric, and associated balls and Sobolev spaces. Coming back to a formulation on the manifold R x M
with the metric ds? ® g only uses the uniform equivalence of norms in 7%(R x M) and in L?(R x M) for
r sufficiently small.

With this in mind, let us now proceed with the scaling argument in the coordinate chart. Denote by
F,(z) = F(rz) and P, the Laplace-Beltrami operator with respect the metric ds?® ((®~*)*g) (ry) defined
on the ball of radius 2, we have

O F |l y).

I F( B,y =7
T2||PF||L2(327~) = T(n+1)/2||PT‘FT‘HL2(Bz)7
32|05 F sl £2(Baynrforxmty = 720 2|05 Frls—oll L2 (Ban{oy x M)
Note that the metric ds?> ® g(r-) defined on By converges uniformly, when 7 tends to zero, to the flat
metric ds? ® g(0) = ds? @ dy? ® - -- ® dy? for the Lipschitz topology on metrics. So, the result follows if
we are able to prove the following estimate: there exist €, ag, C' such that for all Lipschitz metric g with
lg — Id ||y~ < € and all u € H?(By) such that u|s—¢ = 0, we have

lull (s, < C (1(=02 = Ag)ull2(sy) + 19suls=oll L2(Banfoyxin)) ™ IF T,

This is the object of Proposition A.14 proved in the Appendix. Note that the result of Proposition A.14
is stated with half-balls B,j but is also true with real balls By instead by a symmetry argument. O

5 The observability constant for positive solutions

The aim of this Section is to prove the result of Theorem 1.4 concerning observability of positive solutions
to the heat equation. The main tool will be the following Li-Yau estimates.

Theorem 5.1 (Theorem 2.3 of Li-Yau | D). Let M be a compact manifold. Let

—K = min(0, min Rice(x)) <0,
reEM

where Rice(x) is the Ricci curvature at x. We assume that the boundary of M is convex, i.e. II > 0. Let
u(t, ) be a positive solution on (0,400) of the heat equation with Neumann boundary condition. Then for
any a> 1, x,y € M, and 0 < t; < to, we have

noK(tg—t)) ol(m,’y)2

no/2
u(ty,z) < (tz) e Vae-D Mttt y(ty, y).
1

Here, we have denoted by I1(x) the second fundamental form of dM with respect to outward pointing
normal at the point z.
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Remark 5.2. The convexity assumption is not necessary to obtain a Li-Yau type estimate (if the boundary
is smooth), up to a loss in the exponent. Indeed, setting —H = min(0, mingegr I[1(2z)) < 0, Wang proves
in | , Theorem 3.1] the estimate

c
t R d(r,y)?
u(ty, z) < <ti) eca(tz*tl)e%(tz—ymu(tg,y), for all o > (1 + H)?.

The proof of Theorem 1.4 below shows that the result still holds without the convexity argument, but
yields

C 2ewre? [T
2 AEM,W)TE) 2
) agany < Gre S [ ute )
C 402 [T
[u(T) 72 pgy < ?56(1+H+e)2<c<M‘z%>+) / u(t, 20)? dt,
0

instead of (6)-(7) (hence with a loss (1 + H)? in the exponent). We do not know whether this is optimal.
Finally, we did not find any analogue estimate in the case of Dirichlet boundary conditions.

Proof of Theorem 1.4. Along the proof, we will need the following asymptotic constants, all depending
on the chosen € > 0. Namely, we shall use 1y > 0 arbitrarily small, » > 1 arbitrarily large, A € (0, 1)
arbitrarily close to 1, and a > 1 arbitrary close to 1. Given € > 0, they will all be fixed at the end so that

ra

o EMw) + 310)% < (1+€)(L(M,w) +¢)2.

For any z¢p € M and for any ny > 0, there exist n = n(xg,n0) € (0,70) and yo € w such that
d(zo,yo) < LM, w) +n, and  B(yo,n) C w.

In particular, we have M C Uzg e B(xo,7n) so that, the compactness of M yields the following statement:

given 19 > 0, there exist a finite set J and families (z;);e; € M7, (yj)jes € w’ and (n;)jes € (0,m0)”
such that

M C U B(zj,n;), d(zj,y;) < LM,w)+n;, and  B(y;,n;) Cw, forallje.
jes
Now, fix j € J, and take € B(x;,n;) and y € B(y;,7n;) C w, and we have
d(z,y) <nj + LM,w) +n; +n; < LM, w) + 30 =: dp,.
For ¢t € [0, T/r], Theorem 5.1 with ¢; =t and t3 = rt; = rt then yields

2naKt(r—1)  ad?
u(t,)? < % Ve eI-iy(rt,y)2.

Denoting
_ 2naK(r—1)
V2(a —1)
this may be rewritten as
ad?,
u(t,z)?e -8 < rety(rt, y)2 (66)

We may now integrate this estimate for z € B(z;,n;) and y € B(y;,n;) C w,

i |B(z,m;)] |B(x5,m;)|

__@adm 2 na 2
e T w2 (o)) < By, n,)| " Nulr) 2z (B n,)) < 1B(y;,n,)]
VERIN] VRREY)

2
e lu(rt) |7 -
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Summing all these estimates for j € J yields, for a constant C(ng) depending only on the geometry of
(M, g), of w, and the constant 7y, the inequality
_Lgn 2 no vt 2
e 20T lu(@) L2 agy < Clo)r™ e lu(rt) |12, -
Given X € (0,1), integrating this on the interval ¢ € [A\T'/r, T/r] yields
T/r adz ) T/r )
[ e ) de < Comie [ utr) [ de
AT /r AT/r
na 'yT Tir 2 na 'yT ’ 2
< Clno)r™e’r lu(rt) >y dt = Clno)r™*e™™ [ Jlu(s)llL2( ds,
AT /r AT

after the change of variables s = rt. Concerning the left hand-side, we use the decay of the L? norm of
solutions to the heat equation to write

H“(t)Hm(M) 2 HU(T/T)HM(M) 2 ||U(T)||L2(M)» (67)

2

adi,
for all ¢t € [AT'/r, T/r] since r > 1. Noting also that ¢ — e~ 20=17 is increasing in ¢ > 0, we have

T/r ad?, T(]_ _ )\) _ rad?,
e 20r—1)t 1)f dt > e 20r—DAT
AT /7 r

Combining the above three estimates yields

T(1—)\) __reda, I 2

H A D) By < COmrF [ Julo)] ey,
AT

that is, for all 7 > 0, r > 1, A € (0,1), and o > 1,

9 C(?])T”a+1 2na K (r—1) z ra(L(M,w)+n)? T 9
||U(T)||L2(M) < m@ V2(a=1) T e 2(r—1AT . ||7_1,(5)||L2(w) ds.

~, a close to 17, and 7

2 2
to 07, so that m(zc(saj\_/ll";’));n) < ﬁ(Mé;) *€ . We have thus proved the first statement.

To be a little more precise, we can choose «, r such that % + é = 1. This yields

na+1
cn (32) ! r
2 a—1 2n K T o (C(M w)+n) 2
(D) agan) < g 3y T /AT ()12 s,

or, with a =14 € and A =1 — ¢, we obtain for all € € (0,1)

€ (1+5)”+1 T
C(n) (1+ ) 2nKT <1+e>2 (LM, w)+n) 9
)| < € Ve e d
||’LL( )||L2(M) > Te € /(1_5)T Hu(s)llL2(w) S
C(n) emkp <1+>2<L<Mw>+z>2/T )
< Tamrze T e e T 0oy s
Te2n+2 (1—oT L2(w)

So we have proved the first estimate of the theorem. The second can be obtained similarly by integrat-
ing (66) in the x variable only, and not in the y variable. O

Remark 5.3. In fact, remark that from (67) on, we could also put Hu(T/r)HiQ(M) on the left hand-side

of all estimates of the proof, which amounts to Hu(T 1;) L)’ and, in particular, we have the stronger
statement
T
9 C(n)rmatt BT (102 (L) tn)? 9
[lu((1— e)T)||L2(M) < — ¢ Vae - Hu(s)HLz(w) ds.
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Remark 5.4. All constants can be made explicit. We denote by K := min {0, — mingeq Ricci(x)}. For
instance, we have for all n > 0, all

Clprmot! i _p o2coton? (T
9 2
l(Dze vy < Fp g e e T /A ()22 s,

Choosing the constants, we have, for all € € (0,1), for all n > 0,

€
1+e

u(T

)

) T
C 2k (LMw)+)?
< %e K Te(l-‘rC)S? / ||u(8)||iz(w) ds.
L2(M) Te (1-e)T

Remark that for non-negatively (Ricci) curved manifolds (this is the case of a convex domain in R"),

E w 2
then K = 0 and the constant is %6(1“)3 LIS and hence decays like 1/7 for T large.

A Uniform Lipschitz Carleman estimates

In this appendix, we produce Carleman estimates for a Laplace-Beltrami operator on a Riemannian man-
ifold M with boundary OM. Our proof presents several advantages with respect to the existing proofs of
similar results:

e it is relatively short;
e it is completely geometric and, we hope, is relatively readable;

e as we already said, it requires the minimum of regularity for the metric (in dimension > 3), namely
only Lipschitz regularity. Indeed, it is known that in dimension > 3, local uniqueness does not hold
for general elliptic operators (even in divergence form) with C%® coefficients for all a < 1, see | ]

and | ]

The proof, using formulae from Riemannian geometry, is inspired by Carleman estimates for the Schrédinger
equation proved by the first author | |.

There have been several works about such Carleman estimates for Lipschitz metrics (but without
boundary). The oldest result seems to be | | for elliptic operators. Another one, which actually
falls short from the Lipschitz regularity is the very general result of Hérmander | , Section 8.3] which
requires C' regularity, but applies to much more operators than elliptic ones. A proof for general elliptic
operators with order 2m and Lipschitz coefficients is written by Hérmander in | , Proposition 17.2.3].
For Lipschitz regularity of the coefficients, we can also mention for instance the recent preprint | 1,
with explicit dependence. One cas also mention doubling estimates directly for the parabolic equation, see
[ , | for instance.

A.1 Toolbox of Riemannian geometry

The definitions given in this section have a deep geometric meaning (see [ ). We will however only
use the associated calculus rules, which we recall below. Note that they are usually written for smooth
metrics, but they still make sense for Lipschitz metric, as we shall see below. We follow the notations of
[GHL90).

Here and in all estimates below, M is a (not necessarily compact) smooth d-dimensional manifold with
boundary OM, so that M = OM U Int(M).

Given an open set U C M such that U is compact in M (note that this definition holds not only for
open sets of Int(M)), we denote by LP(U), H*(U), W (U) the usual Sobolev spaces. These are defined
intrinsically once U is fixed, even if the associated norms may depend on the metric or the charts chosen.
The notation LfOC(M)LH{ZC(M), WIIZ’COO (M) will be used for functions belonging to LP(U), etc... for any
open set U such that U is compact in M (and not Int(M)).

We denote by g a locally Lipschitz metric on M, (that is, © — g¢,(-,) is a locally Lipschitz section
of the bundle of symmetric bilinear forms on T'M that is uniformly bounded from below by a positive
constant on any compact set).
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Given a local regularity space B as above, and U C M such that U is compact in M, we define
Ta(U) =T(T°T*M)|v

to be the space of sections of 2—tensors on T*M having regularity B on a neighborhood of U. In local
charts, such a tensor ¢ € T3 (M) writes t = (t;;) with ¢;; having the regularity of B. Typically, a locally
Lipschitz metric g satisfies g € T 1,0 (M).

We denote by (-, ) =g() the inner product in 7M. Remark that this notation omits to mention
the point x € M at Which the inner products takes place: this allows to write (X,Y) as a function on M
(the dependence on z is omitted here as well) when X and Y are two vector fields on M. We also denote
for a vector field X, |X|§ = (X, X),.

We recall that the Riemannian gradient V, of a function f is defined by

(Vof, X), =df(X), for any vector field X,

For a function f on M, we denote by [ f = [,, f(x)d Voly(x) its integral on M, where d Voly(z) is the
Riemannian density. We denote by div, the ass0c1ated dlvergence, defined on a vector field X by

/udngX =— / (Vgu,X),, forall ue C(Int(M)).

We denote by A, = div, V, the associated (nonpositive) Laplace-Beltrami operator. We also denote by
D the Levi-Civita connection associated to the metric g (see | , Chapter II Section B]).
Let us now recall how these objects write in local coordinates.

Formula 1. In coordinates, for f a smooth function and X = ), X*

Y =3, Y52 smooth vector
fields on M, we have

6£’

Y), = iginin,
Vof = Z g" 8 f
t,j=1
/f:/deolg:/f(x)\/detg(x)dx,
divy(X Z m 0 (Vdetgx:)
Agf :l‘;l ﬁ@'( detggijajf>7

R S DI S

=1 \j=1 7,k=1

where (g71);; = ¢ and the Chritoffel symbols are defined by

Zg i 9kt + Okgij — Ogii)

(see for instance | , p71)). B
Note in particular that the Lipschitz regularity of g writes, on any local chart U with U compact,
gij € Wheo(U), and implies g%/ € W1>°(U). This entails, if f, X, Y are smooth, that (X, Y) € VVI});O( ),

V,f is a locally Lipschitz vector field, Ay f € L (M) and DxY is an L;S. vector field on M, since the
definitions of A, and Dx involve one derlvatlve of the coefficients of g.

In view of the properties of Dy, it is natural to set Dx f = X f = df(X) for a function f on M. Let
us now collect some properties of these objects, that we shall use below.
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Formula 2. For f, h smooth functions and X = 3", X? -2 e Y =2, yi 2 7, smooth vector fields on M, we

have
Vo(fh) = (Vgf)h+ f(Vgh),
leg( X) <v f7 > +fd1Vg( )a
Dx(fY)=(Xf)Y + fDxY, where X[ :=df(X),
)=

Dx({Y,2),

That Dx acts on functions as well as on vector fields suggests to extend the definition of Dx to more
general vector bundles (see [ , Proposition 2.58]). In particular, for a one-form w, Dxw is defined
(by duality) to be the one-form acting as

DxY,Z),+ (Y,DxZ), .

(Dxw)(Y) =X (w(Y)) —w(DxY), for all vector fields Y.
This allows to define the Hessian of a function (see | , Exercice 2.65])
Hess(f)(X,Y) = (Dxdf)(Y), for vector fields X,Y,

(which only involves the values of X, Y and not their derivatives). In local charts, note that we have

Hess(f)(X,Y) = ZXin (02 f —TE0kf] .

which again is in L (M) for a locally Lipschitz metric g and L{Y. vector fields X,Y. Note also that the

loc

Hessian of f is symmetric, that is Hess(f)(X,Y) = Hess(f)(Y, X).

Lemma A.1. For any function f and any vector field X and Y, we have
Hess(f)(X,Y) =(DxVyf,Y),.
Proof. According to the above calculus rules, we compute in two different ways the following quantity:

Dx((Vyf,Y),) = Dx (df (Y)) = (Dxdf)(Y) + df (DxY) = Hess(f)(X,Y) + df (DxY).
We also have
K(V,£.Y),) = (DxVof.Y), + (Vof, DxY), = (DxV,f,Y), + df (DxY),
which, combined with the previous computation yields the result. O
Finally, we recall an integration by parts formula in the present context.

Formula 3 (Riemannian Stokes formula). Assume dM is piecewise C! and graph-Lipschitz. Then, for
all f € H2.(M) and h € H] (M) one of which being compactly supported, we have

J@pi= [ (@ n= [T 9m,.

Here, the boundary dM is endowed with the Riemannian metric induced by g, and [, is the integral
with respect to the associated surface measure (defined as in Formula 1). The vector field v is the unit
normal vector to OM which is outgoing. It is defined almost everywhere if OM is piecewise C!. In a
local coordinate chart (ml,- -, xy) centered at 0, and in which OM C {z,, = 0} and M C {z,, < 0}, we

have v = Z?Zl fﬁ oy . With the prescribed regularity of the boundary, the space LS (OM) is defined
intrinsically. We denote by O, f = (Vgf,v >g the normal derivative at the boundary, which is only L2 (OM)

Jjn

loc
since OM is piecewise C1.

Note that in the above coordinate system, we have 9, f = > =1 \/W Og, f. In particular, if f satisfies
Dirichlet boundary conditions, this is 0, f = \/¢""0,,, f.
Note finally the vector field X — (X, v) gV is tangential to M, so that we may decompose a vector field

as its normal and tangential parts. In particular, we shall decompose the gradient V,f = 0, fv + Vrf,
where Vp flopm € TOM.
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A.2 The Carleman estimate

We stress the fact that functions u € C°° (M) are smooth up to the boundary of M (as opposed to functions
u € C*(Int(M))). We will first estimate the Carleman conjugate operator in Theorem A.2 and then give
the desired estimate under appropriate assumptions in Theorem A.5.

Theorem A.2. Assume g is a Lipschitz metric on M and OM is piecewise C' and graph-Lipschitz. Let
U be an open subset of M such that U is compact (in the topology of M D OM ) and denote ¥ = M NU.
Then, for any f € Wh(U), ¢ € W2>(U), u € HZ,, (U) and T > 0, we have

comp
T —T 2
Jlereng(e )l + Bu) = 7° [ [2Hess()(Tyo Vo) + (806) [V6l2 — F Vo0l ul
47 [ 2Hess(@)(u. V) = (8y0) [Vl + 119,

+ BT(u),

with boundary terms

BT(u) = —27'/E (Vgu,v), (Vge,Vgu) , + T/E (Vgi,v), |Vgu|§
— 73 /E (Vgp,v), |u|? |Vg<p\§ + 7'/E (Vou,v), fu, (68)
and remainder R(u) satisfying
< A o2 1 202, L 2
[ < (I = Bgellie )y + 5 Vo Fll Loy ) 77 lele + 5 IV fll oo ) IV gl 2 - (69)

Note that the last term in (68) is actually of lower order. We keep it here since it vanishes in case of
Dirichlet Boundary conditions.

Remark A.3. It is very important for our purpose to notice that all terms in this identity only involve
derivatives of order 0 or 1 of the metric. This will be important when we will consider stability issues with
respect to Lipschitz perturbations of the metric.

This identity suggests to introduce and study the following two important quantities, given X a smooth
vector field on M:

By.p.r (X) = 2Hess(0)(X, X) — (Age) [X[2 + fIX[2,
Eqro. = 2Hess(9) (Voo Vo) + (8g0) [Vol2 = £Vl -

Note that for a Lipschitz metric g, we have €, , 5 € LiS. (M) and By, ¢(X) € LS, (M) for any locally
bounded vector field X.

Remark A.4. At this level, it would be very tempting to set F' = —Agp+ f and work with the associated
simplified expressions of B, , (X) and €4, . From a conceptual point of view, this is completely fine,
see Remark A.8 below. However, since we consider the limiting Lipschitz regularity of the metric, this
change of additional function is not admissible. Indeed, the remainder term R(u) in Theorem A.2 requires
the regularity V,f € L™ and f = F + Ay is already in L*° and consumes one derivative of the metric
g. Having V,F € L™ would then require g to be W?2°°.

We define ||w||3> = [ |w|? (see Formula 1 for the notation [) for a function w and || X3, = [ |X\§ for
a vector field X.
We can now state the Carleman estimate.

Theorem A.5. Let U be an open subset of M such that U is compact (in the topology of M D OM ) and
denote X = OM NU. Assume that the functions (¢, f) satisfy: f € WH(U), ¢ € W3>2(U), \Vg<p|z >0

on U, and there exists Cy > 0 such that for any vector field X, we have almost everywhere on U :
2
By, (X) 2 2C0 | X], (70)

2
g.0.f 2 2C0 |V990‘g :
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—1
Then, denoting c¢(¢) = max {1, (minﬁ |Vg<p|£27) }, we have the following statements.
1. Forall T > %ﬁ) <||f - AQSOHiOQ(U) +1 ||ngHLOO(U)> and all v € C°(U) we have the estimate
Co ( 3 10 2 o 2
3 7 lle Uvg%@”p(u) +7lle VQU”LZ(U)
T 2 T 2 T 2
<Al 2ag, + 7 (||e PV g0) 32y + 7 lle wvvgwnm(z)) Kpy, (72)

with Kp =3 (%2 1l sy + 31900l y)-

0

2. For all T > Cé?) (Hf - Ag<p||ioo(U) + 3 HngHLm(U)) and all v € C°(U) such that v =0 on 3, we
have
Co

T 2 T 2 T 2 T
2 (e 0V gl T + T Vool Ga ) ) < € AgulGa) + 7 / ET0,000,0.  (73)

3. If |y, is constant and —m(p) := maxs d,p < 0, then setting M () := maxs(—0,¢) > 0, we have

c VI L 00
for all 7 > max {(Cﬁ) (||f - Aggo||2Lm(U) +1 ”ngHLoow)) ,m(fp)(m} and all v e C*(U),

T 2 T 2 CO T 2 T 2
€™ Agu[7. + M(@)T/Ee2 v |vTv|g 2 3 (7—3 e SGUVQSQHL"‘(U) +7lle ng””H‘(U))

T L(Sé)& / 2T 2 37 L(¢)3 / 2
+ = e“"Plo vl + TP ———— v|°. 74

Remark A.6. In the last two statements of this result, we assume boundary conditions (either for v or
for ) on the whole boundary ¥. Since the integrals involved are local, we could also assume different
conditions on parts of the boundary, obtaining the associated terms in the estimates.

For simplicity, in the proof, we shall denote by
2 2 2
[l = 72 1uVgellze + 1 Vgullz.
the semiclassical norm (recall that \Vg<p|§ 