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Phase I dose-finding studies aim at identifying the maximum tolerated
dose (MTD). Often, several dose-finding studies are conducted with some
variation in the administration mode or dose panel. For instance, sorafenib
(BAY 43-900) was used as monotherapy in 36 phase I trials, according to
a recent clinicaltrials.gov search. Since the toxicity may not be directly re-
lated to the specific indication, synthesizing the information from several
studies might be worthwhile. However, this is rarely done in practice and
only a fixed-effect meta-analysis framework was proposed to date. We devel-
oped a Bayesian random-effects meta-analysis methodology to pool several
phase I trials and suggest the MTD. A curve free hierarchical model on the
logistic scale with random effects, accounting for between-trial heterogene-
ity, is used to model the probability of toxicity across the investigated doses.
An Ornstein–Uhlenbeck Gaussian process is adopted for the random effects
structure. Prior distributions for the curve-free model are based on a latent
Gamma process. An extensive simulation study showed good performance of
the proposed method also under model deviations. Sharing information be-
tween phase I studies can improve the precision of MTD selection, at least
when the number of trials is reasonably large.

1. Introduction. Phase I dose-finding studies are conducted during early stages of the
clinical development and aim at estimating the maximum tolerated dose (MTD) of a drug or a
combination of molecules. The MTD is defined with reference to the occurrence of treatment-
related adverse events, so-called dose-limiting toxicities (DLTs). The MTD is reached once
the rate of DLTs exceeds an acceptable level. Phase I studies usually involve small numbers
of healthy volunteers, except in oncology, where, due to the potentially high toxicity of drugs,
phase I trials are commonly performed on patients (Chevret (2006)).

In oncology, identifying the correct or reasonable dose or set of doses is a crucial objective
in the drug development process: selecting too high a dose means exposing patients to an
unacceptable toxicity profile, while selecting a dose of too low toxicity increases the likeli-
hood that the treatment provides insufficient efficacy (Bretz, Pinheiro and Branson (2005)).
The dose escalation paradigm in phase I (or I/II) trials thus generally aims to avoid recom-
mending too toxic doses of an agent while maintaining an acceptable toxicity. Due to limited
sample sizes, conventional statistical methods are often inaccurate so that adaptive sequen-
tial analyses have been proposed, as these can potentially find the MTD sooner and limit
the number of exposed subjects (Le Tourneau, Lee and Siu (2009), Neuenschwander et al.
(2015)).
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Quoting Pretorius (2016), “Approximately 70% of Phase II trials are unsuccessful. [. . .]
What is unexpected, however, is the percentage of “confirmatory” Phase III trials that fail—
about 50%”. The two main reasons for failure are toxicity and lack of efficacy (Harrison
(2016)). An improper dose selection in the first stages of the clinical development plays an
important role in the failure rate. Studies have shown that the wealth of data accumulated
during clinical development is still poorly used, and several authors have pointed out the
need to better use the existing data to improve the results (Arrowsmith (2011), Friede et al.
(2018)).

When combining data across trials, two sources of potential heterogeneity need to be con-
sidered. First, there are differences in the outcomes of the control groups. In the context of
dose-escalation studies, there might be differences in the (true) toxicity probabilities due to
variations, for example, in the study populations or in the definition and assessment of toxici-
ties. Second, the (true) treatment effects, even if defined on a relative scale, might vary across
trials. In standard meta-analysis models, the former is addressed via stratification by study. In
so-called random-effects meta-analyses, the latter is addressed by inclusion of random study-
by-treatment interactions. In fixed-effect or common-effect meta-analysis, a homogeneous
treatment effect across trials is assumed. For a recent discussion of the various statistical
models, we refer here to Jackson et al. (2018). As evidenced by large-scale empirical inves-
tigations, some level of between-study heterogeneity is not unlikely to occur (Turner et al.
(2012)). However, estimation of the corresponding variance component and accounting ap-
propriately for the uncertainty in estimation in inference of relevant model parameters can
be challenging, if the number of studies included in the meta-analysis is small (Friede et al.
(2017)). In the context of meta-analyses of dose-escalation trials, we still lack an understand-
ing as well as empirical evidence how best to account for the various forms of between-trial
heterogeneity.

Zohar, Katsahian and O’Quigley (2011) proposed a meta-analysis approach for phase I
clinical trials in oncology. Phase I data were pooled while accounting for the sequential na-
ture of such trials to better estimate the overall MTD. However, this method did not deal with
several important characteristics associated with phase I features. First, data were pooled
under several administration schedules which may imply different toxicity profiles. Second,
between-trial heterogeneity was not taken into account which may lead to inaccurate infer-
ence.

Thomas, Sweeney and Somayaji (2014) reported the results of a meta-analysis based on
dose-response studies conducted by a large pharmaceutical company between 1998 and 2009.
Data collection targeted efficacy endpoints, but safety data were not extracted. The goal of
this meta-analysis was to identify consistent quantitative patterns in dose response across
different compounds and diseases. The meta-analysis excluded oncology trials, as these have
different dosing objectives and methods.

Kim et al. (2017) proposed a random-effects meta-analysis of phase I oncology clinical
trials, where the exchangeability assumption is relaxed and rare events and missing data are
investigated. However, efficacy rate was the primary criterion; drugs were grouped by type
(cytotoxic or targeted agents), and each trial was confined to a single dose only.

In this manuscript we develop a novel meta-analysis approach for phase I clinical trials
in oncology which takes into account the different features described above to better suit the
requirements in estimating MTDs. We generalized the binomial-normal hierarchical model
(BNHM) that is most commonly used in the literature for meta-analysis of studies involving a
single dose. In the following section two motivating examples are described. In Section 3 the
methodology is presented, along with prior distributions and variations of MTD definitions.
In Section 4 we describe model variations and simulation settings that we used to test the
developed method and its sensitivity to varying circumstances. Finally, in Section 5 the new
methodology is applied to the two motivating examples; some limitations are discussed in
Section 6.
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TABLE 1
The results of 14 studies on sorafenib monotherapy. For each dose considered in each trial, the numbers of

patients experiencing DLT events and the total numbers of exposed patients are given

Dose (mg)

Study 100 200 300 400 600 800 1000

Clark et al. (2005) 0/3 0/3 1/4 1/6 3/3
Awada et al. (2005) 0/4 0/3 1/5 1/10 7/12 1/3
Moore et al. (2005) 0/3 1/6 0/8 3/7
Strumberg et al. (2005) 1/5 1/6 0/15 4/14 2/7
Minami et al. (2008) 0/3 1/12 0/6 1/6
Miller et al. (2009) 8/34 6/20
Nabors et al. (2011) 0/3 1/6 0/3 1/5 3/3
Chen et al. (2007) 0/3 1/16
Jia et al. (2013) 3/4
Borthakur et al. (2011)-1 0/3 0/15 2/8
Borthakur et al. (2011)-2 0/3 1/7 2/6
Crump et al. (2010)-1 0/4 1/6 0/6 1/6
Crump et al. (2010)-2 0/3 1/6 0/3 2/6
Furuse et al. (2008) 0/12 1/14

2. Two motivating examples. Meta-analyses have largely focused on late-stage trials.
As phase I studies usually have small sample sizes and are mostly algorithm-based and only
lately started using model-based designs, methodologists have given less attention to pooling
them.

The first illustration concerns sorafenib (BAY 43-9006) which is a kinase inhibitor ap-
proved for the treatment of advanced renal cell carcinoma, hepatocellular carcinoma and
radioactive iodine resistant advanced thyroid carcinoma. A search of the clinicaltrials.gov
registry of clinical trials at the end of June 2019 revealed 833 studies using sorafenib (at any
recruitment stage and type of study) of which 248 studies were labeled as “phase I” or “phase
I/II”, and 99 studies were labeled as “phase III” or “phase II/III”. Of the 248 phase I or phase
I/II studies using sorafenib, 36 used it in phase I as monotherapy (median sample size 22,
range two to 158).

Motivated by the large number of trials found on clinicaltrials.gov, a search on PubMed
found 12 manuscripts that reported on 14 trials. Their results are summarized in Table 1.
These 14 trials tested a total of seven doses (100, 200, 300, 400, 600, 800 and 1000 mg), with
most of these studies targeting solid tumors or leukemia. DLT definitions were comparable,
and most of sorafenib schedules followed a 28-day cycle or similar. Not all of these trials
originated from the clinicaltrials.gov search. Details are given in the Supplementary Material
(Ursino et al. (2021a)). Today, the dose recommended by the European Medicines Agency
(EMA) is 400 milligrams (mg) twice a day.

Applying the common-effect approach proposed by Zohar, Katsahian and O’Quigley
(2011) (in the following referred to as the ZKO approach) to the sorafenib data (Table 1)
and using (0.05, 0.1, 0.2, 0.3, 0.45, 0.6, 0.65) as initial guesses of the toxicity probabilities
for the doses, also called “skeleton” (with an appropriate shape as in O’Quigley and Zohar
(2010) and Zohar, Katsahian and O’Quigley (2011)), we obtained the following estimated
toxicity probabilities: (0.012, 0.033, 0.093, 0.169, 0.308, 0.471, 0.530). Assuming a toxicity
threshold of 0.33 and defining the MTD as the dose in the panel with an estimated probabil-
ity of toxicity closest to the threshold, a dose of 600 mg is estimated as MTD, while for a
threshold of 0.2, the MTD is at 400 mg.

http://clinicaltrials.gov
http://clinicaltrials.gov
http://clinicaltrials.gov
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TABLE 2
The results of 10 studies on combination therapy of irinotecan and S-1 (tegafur/gimeracil/oteracil). For each

dose considered in each trial, the numbers of patients experiencing DLT events and the total numbers of exposed
patients are given

Dose (mg/m2)

Study 40 50 60 70 80 90 100 120 125 150

Ogata et al. (2009) 0/3 0/3 3/4
Inokuchi et al. (2006) 0/3 10/42 0/3 2/3
Goya et al. (2012) 0/3 0/3 3/5
Takiuchi et al. (2005) 1/6 0/3 0/4 3/6
Ishimoto et al. (2009) 0/3 0/3 0/3 2/4
Kusaba et al. (2010) 0/6 2/3
Nakafusa et al. (2008) 7/39 2/3
Shiozawa et al. (2009) 1/6 2/6 2/6 2/3
Yoda et al. (2011) 0/3 3/6
Komatsu et al. (2010) 1/9 1/9 0/3

The second example concerns a combination therapy of irinotecan and S-1 (S-1 refers to
a combination of three pharmacological compounds, namely, tegafur, gimeracil and oteracil
potassium). Irinotecan is a topoisomerase 1 inhibitor. It has proven effective in combination
with 5-fluorouracil (5-FU) but was associated with many adverse events. Thus, the com-
bination of irinotecan and S-1 was used to treat advanced colorectal and gastric cancer in a
Japanese population. Ten trials (Table 2) evaluated a total of 10 doses, from 40 to 150 mg/m2.

Applying the ZKO method on the irinotecan and S-1 data and using (0.005, 0.05, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.65, 0.70) as skeleton, we obtained the following estimated toxicity prob-
abilities: (0.002, 0.026, 0.061, 0.141, 0.231, 0.328, 0.430, 0.537, 0.592, 0.648). Assuming
a toxicity threshold of 0.33, 90 mg/m2 is estimated as MTD, while for a threshold of 0.2,
the MTD is at 80 mg/m2. To our knowledge, the combination of irinotecan and S-1 has not
received market authorization.

In these two examples, the doses, dose ranges and sample sizes varied among trials. For
estimating the overall MTD, the ZKO method of pooling adaptive sequential phase I data
sets amounts to a fixed-effect meta-analysis method. The next section details our proposal
that takes into account these specificities as well as inter- and intra-trial heterogeneity by
developing a nonparametric random-effects approach.

3. Methods.

3.1. The dose-response model. For studies concerned with only a single dose, the
binomial-normal hierarchical model (BNHM) or an approximation is most commonly used
(Günhan, Röver and Friede (2020), Jackson et al. (2018)). When moving to several doses in
the same study, we propose an extension of the BNHM that is adapted to the dose-finding
context and that is able to also account for the ordering and spacing among doses.

Let k ∈ {1, . . . ,K} be the study index and i ∈ {1, . . . , I } = I be the dose level index,
where all doses di used in any of the K trials are indexed in increasing order. The model
must account for differences between the separation of adjacent di and the separation of
consecutive doses in the individual trials (as occurs in Table 2). We define δi,j as the metric
specifying the proximity or distance between doses. This may simply be defined as the linear
difference (δi,j = di − dj ). However, in many cases it may make sense to rather consider
relative differences between dose levels on the logarithmic scale (δi,j = log(di) − log(dj ) =
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log( di

dj
)). Another option may be to assume unit increments for neighbouring doses (δi,j =

i − j ).
The number of patients in study k allocated to dose i is given by nik , and Xik is the number

of patients experiencing a DLT. We propose the following model:

Xik ∼ Binomial(nik,pik),(3.1)

logit(pik) = ∑
j≤i

μj + bik,(3.2)

where pik is the probability of toxicity of dose i in the kth study. The probabilities pik are
modelled on the logit scale. We assume that if the dose i is not used in the kth study, then
nik = Xik = 0. Therefore, as per convention 00 = 1, it will not contribute to the likelihood.

The fixed effects μ1 ∈ R and μi ∈ R
+ (for i > 1) are common across all studies; the sum-

mation in (3.2) ensures strictly increasing overall mean probabilities of toxicity with increas-
ing dose. The random effects accounting for between-study heterogeneity are represented by
the (study-specific) vectors bk ∼ N(0,�), where 0 represents the zero vector of dimension I

and � = {σ 2
i,j }i,j=1,...,I the variance-covariance matrix. To meaningfully generalize from the

BNHM for a single dose to a joint model for multiple doses, we specify the fixed and random
effects accounting for the corresponding dose levels (di) and their ordering and proximity.

3.2. Gaussian process for the random effects. For the random effects we specify a model
that accounts for the position of dose di on the dose continuum. We do not impose monotonic-
ity on the elements of bk , and we rely on a relatively simple class of Gaussian processes. The
model encompasses two interesting special cases, namely, independent and identical resid-
uals at all doses. Between these extremes we use a stationary Ornstein–Uhlenbeck process
(OUP) with covariance

(3.3) σ 2
i,j = σ 2

m exp
(
−|δi,j |

�

)
,

where σ 2
m is the marginal variance and � > 0 is a smoothness parameter determining how

quickly the autocorrelation decays and residuals become less dependent, depending on the
distance δi,j between doses (Neal (1999), Uhlenbeck and Ornstein (1930)). On small scales
(relative to �), the OUP behaves like a Wiener process (or Brownian motion); this nicely cor-
responds with the notion that if we know the residual at a certain dose, we know less about
the neighbouring residual the further we move away from that dose, where increments behave
(approximately) additively, as for the fixed effects model introduced below. For the limiting
cases of � → 0 and � → ∞, it yields independent or identical residuals across doses, re-
spectively (Doob (1942), Uhlenbeck and Ornstein (1930)). Prior distributions for the random
effect’s marginal variance σ 2

m and the OUP’s distance scale � need to be specified.

3.3. Gamma process for fixed-effects prior distributions. The definition of the common
effect via a sum of unknown increments in (3.2) places the model in the class of stochastic
processes that are commonly used as nonparametric models for unkown functions (Gelman
et al. (2014), Chapter 21). Therefore, the prior distributions on the unknown increments may
be inspired by a stochastic process. A natural and convenient class of models is defined via
infinitely divisible probability distributions (Steutel (1979)); that means that we stay within
the same distribution class for the increments (i.e., if we sum two increments, the sum’s
distribution again is in the same distribution class) which results in an overall consistent
model. In the present case we consider strictly positive increments for increasing doses, so
the Gamma process is an obvious choice (Lawless and Crowder (2004)).
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The Gamma distribution is defined through two parameters, namely, the shape s > 0 and
the scale θ > 0 with mean sθ and variance sθ2. Choosing the first dose (d1) as the reference
dose, we can specify the prior distributions as a Gamma process with

μ1 ∼ Normal
(
μ∗, σ ∗)

,(3.4)

μi ∼ Gamma
(
s = δ∗

i,i−1κ, θ
)

for i > 1,(3.5)

where δ∗
i,i−1 is the dose increment from dose di−1 to di . δ∗ can be equal to δ (used in the

specification of the random effects) or it can use another underlying metric. The parameter
μ1 serves as an “intercept” term, and hyperparameters μ∗ and σ ∗ (standard deviation) then
need to be specified with reference to the expected toxicity at the reference dose. The Gamma
process hyperparameters κ and θ also need to be prespecified. For a sensible choice, it is
convenient to consider their effect on the conditional distribution for a unit increment,

E
[
μi |δ∗

i,i−1 = 1
] = κθ,(3.6)

Var
(
μi |δ∗

i,i−1 = 1
) = κθ2(3.7)

that suggests a reparametrisation in terms of

slope a = κθ and(3.8)

coefficient of variation c = 1√
κ

.(3.9)

From this, we can see that, for small c, the (logit-) toxicity behaves approximately linearly,
while larger c values allow for departures from linearity. In the limiting case of linearity,
the model simplifies to a logistic model, which, in the special case of dose increments de-
fined on the logarithmic scale as suggested above, again is a special case of the Emax model
(Schwinghammer and Kroboth (1988)).

3.4. Prior effective sample sizes for fixed effects. To assess how informative certain
choices of priors and hyperprior parameters for the fixed effect are, the notion of the ef-
fective sample size (ESS) can be used for the final calibration of the prior distributions and/or
hyperprior parameters (Morita, Thall and Müller (2008)). In the present case we suggest to
compute the approximate ESS as follows: (i) set the desired hyperparameters, (ii) simulate
from the resulting set of prior distributions, (iii) for each simulated vector value, compute
each pi using (3.2) without random effects, (iv) approximate each pi ’s distribution by a
Beta(ai, bi), via a maximum likelihood approach or nonlinear least-squares method and (v)
compute the approximate ESS as 1

I

∑
i (ai + bi), that is, the average of the ESS at each dose

level.

3.5. MTD estimation. A range of rules have been proposed for estimating MTDs; several
examples are given in the following. The most popular way uses the posterior mean estimates
of the parameters in (3.2) and selects the MTD as the dose whose estimated DLT probability
is closest to the pre-specified target τ ∈ [0,1] (Cheung (2011)). In the meta-analysis context
we may focus on the overall fixed effect; inverting from (3.2), we hence define

(3.10) πi = logit−1

(
i∑

j=1

μj

)
,

where the inverse logit is given by logit−1(x) = (1 + exp(−x))−1. From this, we may then
derive

(3.11) MTD = dj , where j = arg min
i

∣∣E[πi |y] − τ
∣∣
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TABLE 3
Settings and parameters in the nine simulation scenarios. � was chosen equal to 1 for all scenarios

Scenario Fixed effect true p
 Random effect Study designs

1 (a) OUP, σm = 0.3 CRM and 3 + 3
2 (b) OUP, σm = 0.3 CRM and 3 + 3
3 (c) OUP, σm = 0.3 CRM and 3 + 3
4 (d) OUP, σm = 0.3 CRM and 3 + 3
5 (b) OUP, σm = 0.6 CRM and 3 + 3

6 (b) � = [exp(−|δi,j |
�

)σiσj ]
CRM and 3 + 3

and σ = (0.1,0.1,0.2,0.3,0.4,0.5,0.6)

7 (c) � = [exp(− δ2
i,j

2�2 )σ 2
m], σm = 0.3 CRM and 3 + 3

8 (c) OUP, σm = 0.3 only 3 + 3 design
9 (c) OUP, σm = 0.3 only CRM design

OUP: Ornstein–Uhlenbeck process; CRM: continual reassessment method; 3 + 3: 3 + 3 algorithm design.

and where E[πi |y] denotes the posterior expectation of πi . Hence, the MTD is defined as
the dose with estimated overall mean response closest to the targeted one. Alternatively, the
posterior median may also be used instead of the mean in (3.11) (Ursino et al. (2019)).

In situations where investigators are particularly interested in overdose control, the classi-
cal escalation with overdose control (EWOC) principle may also be applied so that the MTD
di is chosen as the largest dose satisfying

(3.12) P(πi ≥ τ |y) < τo,

that is, the dose whose posterior probability of exceeding the toxicity threshold τ is less than
a prespecified threshold τo (Babb, Rogatko and Zacks (1998), Neuenschwander et al. (2015)).
More complex rules involving loss functions, such as the one applied for the Bayesian Logis-
tic Regression Model, can be also used (Neuenschwander, Branson and Gsponer (2008)).

4. Simulations. We performed an extensive simulation study to evaluate the operating
characteristics of the proposed method. The aim was to compare the percentages of correct
MTD selection to the ones of the ZKO method in several scenarios. A total of nine scenarios
are proposed, detailed in Table 3, with variations in the position of the MTD, the hetero-
geneity structure and/or the design of the simulated trial. Details are given in Section 4.1.
Then, we performed a sensitivity analysis aiming at checking the impact of prior distribu-
tion/hyperparameter choices and of random-effects model misspecification; details are shown
in Sections 4.2 and 4.3.

All simulations have been done using the R software software, and R scripts are available
as Supplementary Material (Ursino et al. (2021b)) and at the corresponding author’s GitHub
repository (Ursino (2020)).

4.1. Data generation scenarios. For each scenario, we simulated 1000 sets of completed
trials that were subsequently meta-analyzed. Motivated by the sorafenib example (see Ta-
ble 1), overall seven doses between d1 = 100 mg and d7 = 1000 mg were used. We first
set the true probabilities of toxicity of the scenario for each of the I = 7 doses involved,
p
 = (p


1, . . . , p


I ). Four sets of p
 were considered in total; these are illustrated in Figure 1.

Then, the between-trial heterogeneity was added on the probability-transformed scale to set
the probabilities of toxicity used to generate each single trial. The probit function was cho-
sen for this data generation. Therefore, for the kth trial of the j th meta-analysis run, we first
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FIG. 1. Four sets of probabilities p
 used to set the fixed effects in the data generation scenarios. a: p
 = (0.15,
0.20, 0.33, 0,45, 0.55, 0.60, 0.65); b: p
 = (0.05, 0.10, 0.15, 0.33, 0.60, 0.70, 0.75); c: p
 = (0.05, 0.07, 0.11,
0.20, 0.33, 0.45, 0.50); d: p
 = (0.04, 0.05, 0.07, 0.12, 0.20, 0.33, 0.45).

generated ptr
kj = N ((�−1(p


1), . . . ,�
−1(p


I )),�), where �(·) represents the cumulative dis-
tribution function of the standard normal distribution. Then, we computed the probabilities
as pkj = (�(ptr

1,kj ), . . . ,�(ptr
I,kj )). We used the same autocovariance structure as in the esti-

mation model (3.3) for all scenarios, allowing for a different σm value, except for scenario 6,

where � = [exp(−|δi,j |
�

)σiσj ], and scenario 7, where � = [exp(− δ2
i,j

2�2 )σ 2
m]. For all scenarios,

we set � = 1 and δi,j = di−dj

I−1 ∑I
n=1 dn

, while δ∗
i,j = di−dj

100mg . This means that we used two related

scales for δ and δ∗ and that we use 100 mg as the measure unit for the fixed effect.
The number of doses used for each trial-panel is a random integer between 3 and 7 (sam-

pled according to a uniform discrete distribution). Then, the true MTD (the dose in I whose
probability of toxicity equals the target of τ = 0.33 in the scenario) was assigned to the trial
panel, and the other doses were selected randomly from the set {I − MTD}. Patients’ re-
sponses are drawn from a Binomial distribution (3.1), according to the probability of toxicity
associated to the dose where they were allocated to.

Depending on the scenarios and on the total number of trials used in the meta-analysis,
some of the trials followed a continual reassessment method (CRM) design while others used
the traditional algorithm 3 + 3 design (O’Quigley, Pepe and Fisher (1990), Le Tourneau, Lee
and Siu (2009)).

The CRM is a model-based design that assumes a smooth parametric form for the dose-
toxicity curve. Parameter estimation is updated after each patient, and the next patients are
allocated to the dose whose posterior probability of toxicity is closest to the target. We used
the dfcrm package, with the “empiric” model option and cohort size of one Cheung (2013).
The 3 + 3 is an algorithm design which assumes cohorts of three patients and escalates, de-
escalates or stops the trial according to the number of toxicities seen at the previous cohort.
We used the function sim3p3 of the UBCRM package to perform 3 + 3 simulation.

When 10 trials are included in each meta-analysis run and both designs are planned, five
CRM and five 3 + 3 designs are used in the simulation. When only five trials are used in the
meta-analysis, three CRM and two 3 + 3 are simulated. For the CRM trials the maximum
sample size per study was sampled as an integer between 18 and 24 patients, and the number
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of patients at each cohort between two and three (then, the maximum number of patients is
automatically adjusted).

The (estimated) MTD is defined as the dose whose probability of toxicity is closest to the
target of τ = 0.33, and we adopted the posterior median variant of (3.11) as the estimation
rule. The skeleton, that is, the prior guesses, was chosen to be (0.01, 0.05, 0.1, 0.15, 0.25,
0.38, 0.45), where only the probabilities linked to the doses in the trial panel are used and
we selected the empirical working model. Finally, the CRM trials adopted the “no skipping”
rule, that is, a higher dose is proposed to the next cohort only if all previous dose levels have
already been given, while no stopping criteria were set.

In Scenarios 1–4 the true MTD is shifted from dose level 3 to dose level 6 while keeping
the same σm = 0.3. This allows us to test the impact of the number of doses and MTD position
in the meta-analysis run. Scenarios 5 and 6 have the same p
 of Scenario 2, but we double the
heterogeneity parameter in Scenario 5; we allow for dose-specific heterogeneity in Scenario
6. Then, Scenario 7 was added to check the impact of generating data under another Gaussian
process. We evaluated the performance of the proposed model in case of 10 trials (made by
five CRM and five 3 + 3) and five trials (three CRM and two 3 + 3) at each meta-analysis run.
In the last two scenarios, that is, Scenarios 8 and 9, we evaluate the results given if all studies
used an algorithm design (i.e., 3 + 3) or model based design (i.e., the CRM), respectively.
The simulation scenarios are summarised in Table 3.

4.2. Prior settings. To complete the method setting, prior distributions need to be set for
random-effects parameters σm and �, while fixed-effects hyperparameter values μ∗, σ ∗, a

and c need to be chosen. Regarding the first part, a half-Normal distribution was chosen as
prior distribution for σm and an inverse Gamma distribution with shape and scale equal to 1
for �.

Fixed effects hyperparameters play a crucial role in denoting the prior MTD, defined as
the MTD estimated via prior distribution. In general, we suggest to select parameter values
to set the prior MTD at the beginning of the second half part of the dose panel I . μ∗ and
σ ∗ account for the probability of toxicity of the first dose which will impact the subsequent
Gamma process. Once chosen the prior probability of toxicity desired for the first dose and
having set the corresponding hyperparameters, a and c can be selected to have the prior MTD
at a prespecified distance from the first dose. We suggest to first assign a value to c. Values
not higher than 0.5 are are usually appropriate, since in our simulation experience (results not
shown here) it gave more stable inferences. Last, find a to match the desired MTD position.
It can be done via an optimization function that involves Monte Carlo steps (e.g., see the
corresponding author’s GitHub repository (Ursino (2020))).

When running a single meta-analysis, the user knows in advance the number of doses
in the analysis and can select prior distributions and parameters, as described above. How-
ever, during simulations, depending on the scenarios, the number of doses in the panel, the
dose-spacing and the related number of increments between doses can vary considerably.
Therefore, we proposed an adaptive method to select the prior parameters of the Gamma
prior process, considering the number of dose increments in each meta-analysis run.

We used an empirical Bayes approach here; specifically, we compute the empirical proba-
bility of toxicity of each dose by summing all DLTs reported on all studies at the same dose
level and dividing it by the total number of patients treated at this dose level (in all studies).
A pool adjacent violators algorithm (PAVA) was then used to perform a linear order isotonic
regression to assure the nondecreasing behaviour of the dose-toxicity curve (Barlow et al.
(1972)). Finally the empirical MTD was selected as the dose whose empirical probability of
toxicity is closest to the target, set as 0.33 in this simulation study.
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FIG. 2. Induced prior probability of toxicities shown for the first dose of the panel and possible doses distant
two and five units of increment from the first, respectively, when μ∗ = −2, σ∗ = 5, a = 0.667 and c = 0.5. The
histogram of the sampled distribution is plotted along with the fitted Beta distribution, whose parameters give the
approximated effective sample size (ESS).

Finally, we decided which set of prior parameters, among two prespecified ones, to select
for the actual meta-analysis run. More specifically, the set of parameters was chosen con-
sidering the distance difference between the selected MTD and the first dose in the panel: if
the difference is less or equal to two increment units, we select μ∗ = −2, σ ∗ = 5, a = 0.667
and c = 0.5 (set-1) that gives the induced prior probability of toxicities shown in Figure 2;
otherwise, we select μ∗ = −4, σ ∗ = 3.5, a = 0.642 and c = 0.5 (set-2) that gives the induced
prior probability of toxicities shown in Figure 3.

FIG. 3. Induced prior probability of toxicities shown for the first dose of the panel and possible doses distant
five and nine units of increment from the first, respectively, when μ∗ = −4, σ∗ = 3.5, a = 0.642 and c = 0.5. The
histogram of the sampled distribution is plotted along with the fitted Beta distribution, whose parameters give the
approximated effective sample size (ESS).
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These values were chosen to have a good trade-off between ESS (lower numbers are de-
sirable to have weakly informative prior) and the prior MTD placed at second and fifth dose
increment from the first dose, respectively. Henceforth we refer to the resulting model as
MADF (Meta-Analysis Dose-Finding).

4.3. Sensitivity analyses. We performed sensitivity analyses to check the impact of prior
distributions and/or random-effects model misspecification. We considered four model modi-
fications, changing the prior distribution for the fixed effect or changing the correlation struc-
ture for the random effects (or both).

Let MADF1 denote the model MADF where (3.5) is replaced by

μi ∼ Gamma(s = κ, θ), i > 1,

that is, the process assumes identical dose increments and all μi>1 have the same prior distri-

bution. In particular, we chose κ = 3 and θ = 2 (that implies a = 6 and c = √
3
−1

) that led to
very “pessimistic” prior probabilities of toxicities, that is, the prior probabilities of toxicities
tends to be close to 1 for all doses larger than the first one.

In the second model we evaluate a more common � matrix structure and simpler prior for
fixed effects. In detail, MADF2 denotes the model MADF with � as the variance-covariance
of a heterogeneous first order autoregressive process, that is,

� =

⎡
⎢⎢⎢⎢⎢⎣

σ 2
1 ρσ1σ2 ρ2σ1σ3 . . . ρI−1σ1σI

ρσ1σ2 σ 2
2 ρσ2σ3 . . . ρI−2σ2σI

ρ2σ1σ3 ρσ2σ3 σ 2
3 . . . ρI−3σ3σI

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρI−1σ1σI . . . . . . . . . σ 2
I

⎤
⎥⎥⎥⎥⎥⎦ ,

along with a half-normal distribution with scale 1 as prior distribution for each σi and a
uniform distribution across the interval [0,1] for ρ. Moreover, a Normal distribution and
truncated Normal distributions were assigned as prior distribution to μ1 and μi, i > 1, re-
spectively.

In the last two methods we evaluated uncorrelated random-effects and/or wider prior dis-
tributions. In MADF3 we have the same setting of MADF, but � = σ 2

mI, where I represents
the identity matrix of I × I dimensions. In this case, random effects are uncorrelated. Again,
a half-normal prior with scale 1 is assumed for σm.

Finally, MADF4 shares the same settings of MADF3, except for the Gamma prior distri-
bution which is μ∗ = −2, σ ∗ = 7, a = 3 and c = 0.5 if the increment is less or equal to two
units; otherwise, μ∗ = −4, σ ∗ = 10, a = 3 and c = 2. In this way we evaluated two sets of
prior distributions with higher variance. All methods are summarized in Table 4.

4.4. Results. Table 5 shows the results in terms of proportion of final MTD selection,
with the proportion of correct selection (PCS) in bold, of the proposed method, MADF, vs.
the ZKO, when 10 studies are included in each meta-analysis run. MADF has higher PCS
(interpreted also as percentage from now on), ranging from 61% to 92%, while ZKO PCS are
in the range from 50% to 72%. The lower PCS performances of ZKO could be expected, since
ZKO does not take into account heterogeneity between trials. ZKO tends to select overdoses
more often than MADF, for example, in Scenario 1 where the MTD is at dose level 3; MADF
suggests 34% over toxic doses vs. 41% for ZKO. PCS percentages decrease as σ increases,
as in Scenario 5, and are stable also for random-effects misspecification, as in Scenarios 6
and 7.

These percentages decrease when only five studies are incorporated in the meta-analysis.
The results are shown in Table 6, where MADF has still higher PCS, ranging from 50% to
82%, while ZKO has performance ranging from 38% to 61%.
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TABLE 4
Summary of methods’ parameters, priors and hyperpriors settings

Method Fixed effects priors Fixed effects hyperpriors Random effects structure Random effects hyperprior

MADF μ1 ∼ Normal(μ∗, σ∗);
μi ∼ Gamma(s = δ∗

i,i−1κ, θ) i > 1
μ∗ = −2, σ∗ = 5; a = 0.667, c = 0.5;
or μ∗ = −4, σ∗ = 3.5;
a = 0.642, c = 0.5

bk ∼ N(0,�); σ 2
i,j = σ 2

m exp(−|δi,j |
�

) σm ∼ Halfnormal(1);
� ∼ Inv-Gamma(1,1)

MADF1 μ1 ∼ Normal(μ∗, σ∗);
μi ∼ Gamma(s = κ, θ)i > 1

μ∗ = −2, σ∗ = 5; a = 6, c = √
3
−1

bk ∼ N(0,�); σ 2
i,j = σ 2

m exp(−|δi,j |
�

) σm ∼ Halfnormal(1);
� ∼ Inv-Gamma(1,1)

MADF2 μ1 ∼ Normal(μ∗, σ∗);
μi ∼ T Normal(μ∗∗, σ∗∗) i > 1

μ∗ = −2, σ∗ = 5; μ∗∗ = 3, σ∗∗ = 5 bk ∼ N(0,�); σ 2
i,j = ρ|i−j−1|σiσj σi ∼ Halfnormal(1);

ρ ∼ Uniform(−1,1)

MADF3 μ1 ∼ Normal(μ∗, σ∗);
μi ∼ Gamma(s = δ∗

i,i−1κ, θ) i > 1
μ∗ = −2, σ∗ = 5; a = 0.667, c = 0.5;
or μ∗ = −4, σ∗ = 3.5;
a = 0.642, c = 0.5

bk ∼ N(0,�); � = σ 2
mI σm ∼ Halfnormal(1)

MADF4 μ1 ∼ Normal(μ∗, σ∗);
μi ∼ Gamma(s = δ∗

i,i−1κ, θ) i > 1
μ∗ = −2, σ∗ = 7; a = 3, c = 0.5;
or μ∗ = −4, σ∗ = 10; a = 3, c = 2

bk ∼ N(0,�); � = σ 2
mI σm ∼ Halfnormal(1)
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TABLE 5
Proportion of dose selection using 10 studies in each meta-analysis. The proportion of correct MTD selection

(PCS) in each scenario is written in bold

Dose levels

1 2 3 4 5 6 7

Scenario 1
MADF 0.000 0.082 0.612 0.305 0.001 0.000 0.000
ZKO 0.022 0.190 0.496 0.253 0.034 0.002 0.003
#patients 31 (23, 41) 31 (23, 41) 54 (43, 65) 15 (9, 23) 6 (3, 12) 2 (0, 6) 0 (0, 3)

Scenario 2
MADF 0.000 0.000 0.032 0.920 0.048 0.000 0.000
ZKO 0.000 0.002 0.052 0.695 0.233 0.013 0.005
#patients 22 (18, 26) 26 (20, 32) 29 (23, 37) 59 (50, 68) 14 (9, 20) 5 (0, 9) 0 (0, 3)

Scenario 3
MADF 0.000 0.000 0.000 0.084 0.834 0.082 0.000
ZKO 0.000 0.000 0.002 0.075 0.676 0.216 0.031
#patients 22 (17, 26) 23 (19, 29) 26 (20, 33) 29 (22, 38) 45 (36, 54) 11.5 (6, 18) 6 (2, 12)

Scenario 4
MADF 0.000 0.000 0.000 0.000 0.228 0.758 0.014
ZKO 0.000 0.000 0.000 0.001 0.131 0.680 0.188
#patients 43 (37, 51) 43 (37, 51) 24 (19, 31) 26 (20, 34) 26 (20, 33) 40 (32, 48) 11 (6, 18)

Scenario 5
MADF 0.000 0.000 0.085 0.781 0.134 0.000 0.000
ZKO 0.004 0.037 0.162 0.561 0.215 0.017 0.004
#patients 24 (19, 31) 27 (20, 35) 28 (21, 37) 51 (41, 59) 13 (8, 20) 6 (2, 12) 0 (0, 6)

Scenario 6
MADF 0.000 0.000 0.019 0.882 0.099 0.000 0.000
ZKO 0.000 0.000 0.022 0.665 0.287 0.015 0.011
#patients 21 (17, 26) 25 (20, 30) 30 (23, 37) 61 (53, 69) 14 (8, 20) 5 (0, 9) 0 (0, 4)

Scenario 7
MADF 0.000 0.000 0.000 0.069 0.830 0.101 0.000
ZKO 0.000 0.000 0.002 0.075 0.653 0.245 0.025
#patients 22 (18, 26) 22.5 (18, 28) 27 (20, 33.25) 30 (23, 38) 45 (36, 54) 12 (6, 18) 6 (3, 12)

Scenario 8
MADF 0.000 0.000 0.000 0.150 0.773 0.077 0.000
ZKO 0.000 0.000 0.002 0.078 0.591 0.295 0.034
#patients 24 (18, 27) 24 (18, 27) 24 (18, 27) 24 (18, 27) 30 (24, 36) 9 (3, 12) 3 (0, 6)

Scenario 9
MADF 0.000 0.000 0.000 0.064 0.837 0.099 0.000
ZKO 0.000 0.000 0.001 0.076 0.715 0.194 0.014
#patients 20 (16, 25) 24 (18, 31) 30 (23, 39) 37 (27, 47) 60 (49, 71) 15 (9, 23) 10 (4, 16)

MADF: Proposed method; ZKO: Zohar, Katsahian and O’Quigley (2011) method; #patients: median (first
quartile—third quartile) number of patients allocated to each dose.

Figure 4 summarizes the results of the sensitivity analysis in terms of percentage of correct
selection when 10 studies are included in each analysis. MADF1 has the best performance in
Scenarios 1 and 6, while MADF3 is the best method in Scenario 4. MADF4 has the lowest
PCS in all scenarios. Full results are given in Table 1 in the Supplementary Material (Ursino
et al. (2021a)). We can see the same trend for five studies, except in Scenario 4 where MADF1
gets the lowest PCS (full results given in Table 2 in the Supplementary Material (Ursino et al.
(2021a))).
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TABLE 6
Proportion of dose selection using five studies in each meta-analysis. The proportion of correct MTD selection

(PCS) in each scenario is written in bold

Dose levels

1 2 3 4 5 6 7

Scenario 1
MADF 0.007 0.153 0.498 0.324 0.018 0.000 0.000
ZKO 0.032 0.177 0.377 0.292 0.089 0.026 0.007
#patients 15 (10, 23) 16 (10, 23) 29 (21, 37) 8 (3, 14) 3 (0, 6) 0 (0, 3) 0 (0, 0)

Scenario 2
MADF 0.000 0.002 0.068 0.826 0.103 0.001 0.000
ZKO 0.005 0.007 0.060 0.490 0.367 0.055 0.016
#patients 11 (8, 14) 12 (9, 17) 15 (9, 21) 32 (26, 38) 6 (3, 12) 0 (0, 6) 0 (0, 0)

Scenario 3
MADF 0.000 0.000 0.003 0.169 0.683 0.144 0.001
ZKO 0.000 0.000 0.013 0.133 0.544 0.261 0.049
#patients 11 (8, 14) 11 (8, 15) 13 (9, 18) 15 (9, 21) 24 (18, 30) 6 (2, 10) 2 (0, 6)

Scenario 4
MADF 0.000 0.000 0.000 0.003 0.320 0.622 0.055
ZKO 0.000 0.000 0.001 0.013 0.179 0.610 0.197
#patients 21 (17, 26) 21 (17, 26) 12 (8, 16) 12 (8, 18) 12.5 (9, 18) 20 (14, 27) 6 (0, 11)

Scenario 5
MADF 0.000 0.017 0.153 0.622 0.200 0.008 0.000
ZKO 0.015 0.045 0.117 0.436 0.299 0.076 0.012
#patients 11 (8, 16) 13 (9, 19) 14 (9, 20) 27 (20, 34) 6 (3, 12) 3 (0, 6) 0 (0, 3)

Scenario 6
MADF 0.000 0.000 0.059 0.802 0.137 0.002 0.000
ZKO 0.000 0.002 0.04 0.449 0.412 0.065 0.032
#patients 11 (8, 14) 12 (9, 16) 15 (10, 21) 33 (27, 39) 6 (3, 12) 2 (0, 6) 0 (0, 2)

Scenario 7
MADF 0.000 0.000 0.001 0.152 0.692 0.155 0.000
ZKO 0.001 0.000 0.007 0.106 0.546 0.271 0.069
#patients 11 (8, 14) 11 (8, 15) 13 (9, 18) 15 (9, 21) 24 (17, 30) 6 (2, 11) 3 (0, 6)

Scenario 8
MADF 0.000 0.001 0.009 0.203 0.668 0.116 0.003
ZKO 0.000 0.001 0.017 0.134 0.489 0.282 0.077
#patients 12 (9, 15) 12 (9, 15) 12 (9, 15) 12 (9, 15) 15 (12, 18) 3 (0, 6) 0 (0, 3)

Scenario 9
MADF 0.000 0.000 0.002 0.143 0.713 0.141 0.001
ZKO 0.000 0.000 0.005 0.125 0.557 0.269 0.044
#patients 10 (7, 13) 11 (8, 16) 14 (9, 21) 18 (11.75, 25) 30 (22, 38) 7 (2, 13) 3 (0, 10)

MADF: Proposed method; ZKO: Zohar, Katsahian and O’Quigley (2011) method; #patients: median (first
quartile—third quartile) number of patients allocated to each dose.

5. Application to the two examples. We applied the MADF method with the same set-
ting and prior distributions, as described in the previous section, to the two examples intro-
duced in Section 2.

5.1. The sorafenib example. Figure 5 shows the posterior distribution obtained for the
probability of toxicity associated to each dose panel level. Using the posterior median variant
of (3.11), we obtain the following estimates (0.032, 0.058, 0.085, 0.123, 0.307, 0.556, 0.834).
This leads to selecting dose 600 mg as MTD if the target is τ = 0.33 or τ = 0.25, while
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FIG. 4. Results in terms of proportion of correct selection when 10 studies are included in each analysis. In
each scenario the name of the method with the highest proportion of correct selection is shown. Standard errors,
computed as

√
p(1 − p)/1000, where p represents the proportion of correct selections, are in the range of 0.009

to 0.016.

400 mg is chosen when τ = 0.20. Adopting the EWOC rules as in (3.12), that is, computing
P(πi ≥ τ |y), we obtain (0, 0, 0, 0, 0.369, 0.991, 1), (0, 0, 0, 0.002, 0.832, 1, 1) and (0, 0, 0.001,
0.016, 0.964, 1, 1) for τ = 0.33, τ = 0.25 and τ = 0.20, respectively. Setting τo = 0.25, we
select dose 400 mg in all cases.

In the light of these results, the EMA-recommended dose of 400 mg (twice a day) is safer
whatever the model and criterion used. However, according to some models and criteria, the
higher dose of 600 mg can also be considered safe.

5.2. The irinotecan + S-1 example. Results of the irinotecan + S-1 example are shown
in Figure 6. Here, δ∗

i,j = di−dj

10mgm−2 , while δ has the same specification, as described in Sec-
tion 4.1. Again, using the posterior median variant of (3.11), we obtain the following esti-
mates (0.022, 0.039, 0.070, 0.114, 0.194, 0.292, 0.413, 0.625, 0.678, 0.884). This leads to

FIG. 5. Posterior distribution for probability of toxicity for each dose level in the sorafenib example.
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FIG. 6. Posterior distribution for probability of toxicity for each dose level in the irinotecan + S-1 example.

selecting dose 90 mg/m2 as MTD for a target of τ = 0.33 or τ = 0.25, while 80 mg/m2 is
chosen when τ = 0.20. Adopting the EWOC rules, as in (3.12), we obtain (0, 0, 0, 0.004,
0.061, 0.349, 0.773, 0.990, 0.996, 1), (0, 0, 0.002, 0.027, 0.238, 0.677, 0.944, 0.998, 1, 1)
and (0, 0.001, 0.008, 0.082, 0.466, 0.866, 0.984, 1, 1, 1) for τ = 0.33, τ = 0.25 and τ = 0.20,
respectively. Setting τo = 0.25, we select dose 80 mg/m2 in the first two cases and 70 mg/m2

in the last one.

6. Discussion. We proposed a new methodology for random-effects meta-analysis of
phase I dose-finding trials, based on a Gaussian process for the random effect structure and
on a Gamma process as a prior distribution for the fixed effects. The Gaussian process permits
to share more information when doses are closer and less information when they are distant.
In this way, for example, regarding a dose panel, dose levels 3 and 4 are more correlated
than dose levels 1 and 4. The amount of correlation depends on the distance which seems
more logical than assuming a constant value for the correlation. The Gamma prior process
preserves the monotonicity assumption of toxicity. We do not suggest to add the full process
to be estimated, since, in our experience, even if in meta-analysis more data are available than
a single dose-finding trial, data are still not sufficient for a good estimation of the process
parameters (results not shown in the paper). We focused on modelling toxicities exactly at
the doses di that had also been investigated in the analysed trials. In general, in case of rich
data and when the estimation of the underlying Gamma process is feasible, the full model
actually also allows to interpolate or extrapolate across the continuum of doses. In this case,
guidance on how to set the prior distributions can be found in Gelman et al. (2008).

The choice of the metrics δ∗ and δ is mostly related to the computation stability and/or to
the ease of performing experts’ elicitation, enabling a more flexible model. However, when
the two metrics are linked to each other via linear transformation, as in our case, one can also
consider to use the same metric and scale the prior distributions accordingly.

With the above model specifications we have generalized the BNHM, as an obvious ap-
proach for the single-dose case, to the case of several adjacent doses. Note that, for the special
case of a single dose, we actually again recover the BNHM with the parameters μ1 and σm
corresponding to the overall mean and heterogeneity parameters.

We chose the OUP process because it is the only nontrivial Gaussian process that includes
independent and identical residuals as special cases and that allows linear transformations of
the variables. Alternatively, one might also use processes from the more general class param-
eterized in terms of gamma-exponential autocovariance functions (Rasmussen and Williams
(2006)).
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In our results, ZKO had lower PCS performance. This is expected, since this method does
not take into account the heterogeneity between trials. Also as expected, PCSs decrease
when heterogeneity increases and when only 3 + 3 dose-finding trials are incorporated in
meta-analysis (scenarios 5 and 8, respectively). MADF showed to be stable to model mis-
specification, as we can see in the results of scenarios 6 and 7 compared to scenarios 2 and
3, respectively. On the other hand, prior specification and simpler models, as MADF3 and
MADF4, can give different operating characteristics. A conservative Gamma process prior,
as MADF1, has better PCS when the MTD is located at the beginning of the dose panel. This
behaviour is shared also by MADF2, as shown in three additional scenarios in the Supple-
mentary Material (Ursino et al. (2021a)). Actually, this situation is not very realistic, since
it would imply that subsequent trials have not adapted the dose range accordingly to previ-
ous results. However, if clinicians face a meta-analysis involving only few doses, a simpler
method, as MADF2, can be a good solution.

In our examples, dose regimens were considered to be the same. It seems to have been a
good approximation of the reality, as it is shown in the Supplementary Material (Ursino et al.
(2021a)). However, our proposed methods can be used when doses were tested with different
regimens (e.g., 800 mg once a day in one study and 400 mg twice a day in another study). It
is possible to differentiate regimens with the same total dose passing to the exposition level,
using pharmacokinetic (PK) principles. For example, to integrate varying dosing regimens,
a latent pseudo-PK variable can be used to obtain an ordered set of regimens (Günhan et al.
(2020)). Then, our methods can be applied.

A limitation of this work is that we rely on published data. Along with the well-known
publication bias, the issue of poor reporting in phase I cancer trials was already raised by
Zohar et al. (2008) and Comets and Zohar (2009). In articles describing early phase clinical
trials, reporting is sometimes not complete in terms of DLTs and doses. Adverse events and
DLTs are often mixed up together in tables or DLTs are reported by type and not by patient.
Following the checklist proposed by Zohar et al. (2008) would improve the reporting of
the results and would allow the use of meta-analytic methods, as the one proposed in this
manuscript.
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