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1Sorbonne Université, CNRS, Physicochimie des électrolytes et Nanosystèmes Interfaciaux,
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Many key industrial processes, from electricity production, conversion and storage to electrocatal-
ysis or electrochemistry in general, rely on physical mechanisms occurring at the interface between
a metallic electrode and an electrolyte solution, summarized by the concept of electric double layer,
with the accumulation/depletion of electrons on the metal side and of ions on the liquid side. While
electrostatic interactions play an essential role on the structure, thermodynamics, dynamics and
reactivity of electrode-electrolyte interfaces, these properties also crucially depend on the nature of
the ions and solvent, as well as that of the metal itself. Such interfaces pose many challenges for
modeling, because they are a place where Quantum Chemistry meets Statistical Physics. In the
present review, we explore the recent advances on the description and understanding of electrode-
electrolyte interfaces with classical molecular simulations, with a focus on planar interfaces and
solvent-based liquids, from pure solvent to water-in-salt-electrolytes.
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I. INTRODUCTION

Many key industrial processes, from electricity production, conversion and storage [1], to electrocatalysis or electro-
chemistry in general [2], rely on physical mechanisms occurring at the interface between a metallic solid (electrode),
allowing the transport of electrons, and an electrolyte solution, in which electric currents may arise from the trans-
port of ionic species or the orientation of polar molecules. The most interesting features of such electrode-solution
interfaces emerge from the coupling between the charges accumulated on both sides, summarized by the concept of
“Electric double layer” (EDL) [3]. From a classical perspective, in perfect metals the electronic charge is localized
at the surface and the electric potential is uniform inside the solid, so that the interfacial properties are essentially
governed by the ionic densities and electrostatic potential profiles near the interface, which result from the balance
between energetic considerations (attraction of counterions to the surface charge and repulsion of co-ions, favoring
the build-up of charge) and entropic ones (di↵usion leading to uniform concentrations). Of particular interest are of
course the charge accumulated on the electrode and the capacitance of the interface, i.e. the derivative of the charge
with respect to the potential drop across the interface, which can be measured in electrochemical experiments. Voltage
also provides a handle on wetting properties, by changing surface free energies and the resulting contact angle.

While electrostatic interactions play an essential role on the structure, thermodynamics, dynamics and reactivity
of electrode-electrolyte interfaces, these properties also crucially depend on the nature of the ions and solvent, as well
as that of the metal itself. The finite size of the ions and of solvent molecules results in a layered structure near solid
walls, and their ability to form hydrogen bonds (e.g. for water) constrains their orientation. Such features, which can
be investigated using spectroscopic techniques, depend on the atomic lattice of the metal and a given fluid behaves
di↵erently on di↵erent faces of the same crystal of a given metal. Finally, many real materials cannot be considered as
perfect metals, and the charge and potential distribution within the electrode and their coupling with the liquid must
also be taken into account. This e↵ect of the metallic character of the electrode on the properties of the interfacial
liquid is a good illustration of the challenge that such interfaces pose for modeling, because by bridging electrons in
a solid and ions in a solvent, they are a place where Quantum Chemistry meets Statistical Physics.

On the theoretical side, much progress has been made since the pioneering works of Gouy, Chapman and Stern. At
the same continuous level of description, extensions of the mean-field Poisson-Boltzmann theory have been proposed
to capture the e↵ects of electrostatic correlations and excluded volume or solvent polarization [4, 5] on the structure
and capacitance of the EDL, with a low computational cost compatible with routine use in engineering applications.
Even the charging dynamics can be investigated at this level [6], even though the e↵ects of ionic correlations or of
the coupling with the solvent dynamics are more accurately described by mesoscopic simulations with explicit or
implicit ions [7–10]. At the other extreme, quantum calculations, usually based on electronic Density Functional
Theory (even though Quantum Monte Carlo can now provide even more accurate results e.g. on water-carbon
interactions [11]), allow to capture the density of states of the metal as well as a detailed description of a few
interfacial molecules [12, 13]. However, their computational cost prevents a fully molecular description of the EDL,
and resort to a simplified description of the solvent (polarizable continuum) is the rule rather than the exception. As
a result, classical molecular simulations have emerged as a powerful compromise between an atomic description and
a computational cost allowing a su�cient sampling of relevant electrolyte configurations.

In the present review, we explore the recent advances on the description and understanding of electrode-electrolyte
interfaces with classical molecular simulations. While many applications involve porous electrodes with disordered
structures and complex electrolytes such as room temperature ionic liquids, we restrict ourselves to the simpler yet
practically relevant and physically rich case of planar interfaces and solvent-based liquids, from pure solvent to water-
in-salt-electrolytes (we refer the readers to e.g. Refs. [14–18] on the porous and/or ionic liquid cases). In Section II, we
discuss the description of electrode-solution interfaces, emphasizing the choice of the models to represent the metallic
character of the electrode and its interactions with the electrolyte solution. Section III then presents the various
strategies to simulate electrochemical systems, with a potential di↵erence between two electrodes, and fundamental
issues related to such simulations. Finally, Section IV illustrates a selection of properties which can be investigated
with such classical molecular simulations, with examples on the capacitance, the interfacial structure and dynamics,
as well as steps towards electrochemistry.
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II. HOW TO DESCRIBE ELECTRODE-SOLUTION INTERFACES IN MOLECULAR SIMULATIONS?

We begin with an overview of models used in classical molecular simulations of electrode-electrolyte interfaces,
emphasizing first the description of the electrode (Section IIA) and how to capture the electronic response of the
metal at this level of description. We then turn in Section II B to the description of the electrolyte and the non-
electrostatic interactions with the electrode.

A. To be or not to be a metallic electrode

1. Insulating vs conducting

The question of how to model metallic electrodes in classical molecular simulations is related to the more general
question of the electrostatic response of a medium to an electric charge (ion, or partial charges from molecules),
encountered not only in electrochemistry, but in all systems involving interfaces, including e.g. biological macro-
molecules. From a quantum mechanical perspective, electric conduction in a medium is related to the position of
the Fermi level relative to the system’s energy levels: In a metal, the conduction band is thermally accessible to the
electrons, which can be delocalized over the whole material, whereas in an insulator a band gap hinders the conduction
of electrons, which remain localized on atomic sites. From a classical continuum perspective, an essential feature of
these interfaces is a contrast in the polarization response of the various media, quantified by their dielectric constant
✏r, ranging from 1 for vacuum to ⇡ 80 for liquid water and 1 for a perfect metal. Such a dielectric contrast has
strong consequences on the behavior of a charge distribution close to the interface. This is usually expressed in terms
of image charges. For a sharp flat interface between two media 1 (polar solvent) and 2 (solid wall) with dielectric
constants ✏1 and ✏2, the electrostatic potential arising from a set of charges (ions) qext = {qext1 , . . . , qextN } embedded
in medium 1 is identical, within this medium, to that arising from a fictitious system in which medium 2 is assigned a
dielectric constant ✏1 and a set of image charges are placed symmetrically with respect to the boundary (see Figure 1a
below), with magnitudes:

qim =
✏1 � ✏2
✏1 + ✏2

qext (1)

For an insulating interface such as water-vacuum (✏1 � ✏2) the image charges are similar to the source charges
qim ⇡ qext, whereas for a perfect metallic interface (✏2 ! 1) the images have opposite charges qim = �qext. It
follows a radically di↵erent electrostatic interaction of a charge with its image: attractive for the metallic case and
repulsive for insulators.

2. Electrodes in classical molecular simulations

To model these systems at the atomic scale, one should in principle perform quantum calculations taking into account
the electronic density on both the electrode material and the electrolyte. However, this becomes computationally
prohibitive for the simulation of large systems over long time scales and alternative approaches have been developed
to capture the e↵ect of a metallic electrode on an electrolyte within classical simulations. The purpose of these models
is not to provide an accurate description of the metal and its properties, but rather to reproduce the appropriate
boundary conditions for the electrolyte. Within such a simplified description, it becomes possible to sample the
configurations explored by the electrolyte at finite temperature and to investigate the properties of electrochemical
interfaces. In this context, two features are particularly important: accounting for the polarization of the metal by
the electrolyte, discussed in the following section, and the possibility to accumulate a net charge on the interface, e.g.
in the presence of an applied voltage between two electrodes.

A first method to describe charged electrodes is to explicitly put a constant net charge on the electrode, using a
surface charge on a wall [19–22] or discrete point charges [23, 24]. The electroneutrality of the system can be balanced
by excess ions in the electrolyte or by an opposite charge on a second electrode. This setup would correspond to a
charged pore or an isolated (open circuit) charged capacitor. From the electrostatic point of view, two oppositely
and homogeneously charged walls induce a uniform electric field between them, so that it is (at least in principle)
equivalent to directly apply an external electric field on the liquid confined in the electrochemical cell [25–29]. In
a real system, however, the system is rather connected to a voltage generator, which maintains a constant electric

potential di↵erence between the electrodes and allows the exchange of charge between them [21, 22, 30–34]. We will
discuss the corresponding simulation setups in Section III, and now turn to the representation of polarization of the
metal in classical molecular simulations.
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3. Representing the electronic response of the metal

Beyond their net charge, a characteristic feature of metallic electrodes is their polarization by the electrolyte (this is
even the main e↵ect for neutral electrodes). In the context of molecular simulations, one is primarily concerned with
the e↵ect of the metal on the electrolyte and a variety of methods have been proposed. The typical slab geometry
of capacitors allows a number of simplifications, including analytical expressions of the electrostatic forces acting
on the electrolyte charges and of the electrostatic energy. Even though a uniform charge distribution with varying
magnitude can be used to account for an applied external field or voltage, such a description lacks the lateral charge
heterogeneities induced by the discrete nature of ions and molecules of the electrolyte. From the electrostatic point of
view, an e�cient strategy is to impose the proper electrostatic boundary conditions at the surface of the metal using
the above-mentioned concept of image charges, which can be either explicit or accounted for implicitly in modified
Green functions [19, 28, 34–38]. The use of periodic boundary conditions (see section III) also requires special care
to compute electrostatic interactions, and e�cient algorithms have been developed to deal with the image charges in
simulations [39]. Alternatively, the electrostatic problem can also be solved numerically without resorting to image
charges: The Induced Charge Computation (ICC) method treats the charge density of the solid as a dynamical
variable discretized on a grid and solves the Poisson equation to obtain the induced (surface) charge, as illustrated
in Figure 1b. The dielectric medium is then characterized by a space-dependent dielectric constant ✏(r) which can in
principle describe arbitrarily shaped interfaces and non-homogeneous media. Based on the variational procedure of
Allen et al. for solid-electrolyte interfaces [40], extensions using a matrix formulation [41] or an iterative algorithm
(ICC⇤) [42, 43] were proposed. Another example of this numerical approach to induced charges is the Generalized
Minimal Residue (GMRES) method, which provides good performance when used in conjuction with fast Ewald
solver [44].

Nanostructures of precious metals find many applications,
for example, as catalysts, electrode materials, biomarkers,
and therapeutics, including gold (Au) nanorods for

photothermal cancer therapy and nanoparticles for gene deliv-
ery1,2. Metal nano objects have been synthesized in many shapes
and sizes, however, control over nucleation, growth, and ligand
interactions for nanoscale assembly remains a challenge3–6.
Understanding the selective synthesis and structure-property
relationships requires tremendous efforts by imaging, spectro-
scopy, and other laboratory techniques7,8.

Understanding and discovery can be accelerated by use of
atomistic simulations up to the large nanometer scale (e.g., 100
nm) in comparison with experiment9–15. The Interface force field
(IFF), for example, contains Lennard–Jones parameters for face-
centered cubic (fcc) metals to simulate bulk solids, aqueous
interfaces, and multiphase materials with polymers and bioma-
cromolecules9,10. The parameters reproduce the density, surface
tension, and anisotropy of surface energies of (h k l) facets, as well
as the mechanical properties in excellent agreement with
experiments, even better than some DFT methods16. Simulations
using this non-polarizable model have proven helpful in under-
standing the adsorption mechanisms of biomolecules, as well as
growth mechanisms and shape preferences of metal nanos-
tructures using particular ligands13,17–23. Simulations achieved
quantitative agreement with experimental observations5,13,19,22–
25 yet mainly focused on ligands of low polarity, simple shapes,
and simple surface assemblies without accounting for the effects
of induced charges and external potentials. It is a shortcoming
that the non-polarizable potential does not account for the con-
tribution of the induced charges to interfacial processes during
Molecular Dynamics (MD) or Monte Carlo (MC) simulations.
Polarization on the metal surface was shown to affect the surface
adsorption of molecules and could only be “added” a posteriori26.
Such a posteriori calculations are significantly less accurate and
impractical as they are uncoupled from the dynamics, require
time-consuming post-processing of simulation outputs (coordi-
nates and energies), and cannot be applied to corrugated metal

surfaces or under external electric fields. The effects of induced
charges in the metal are known to be substantial in vacuum27–29,
under external potentials in electrodes30,31, in the presence of
ionic liquids21, and at high ionic strength in solution26, although
expected to be weaker in dilute aqueous solution26.

Attempts to include polarization have also been made in
alternative models for metallic nanostructures and electrodes. The
GolP force field adds permanent dipoles to every atom to account
for effects of induced charges11,12,32,33. The dipoles are imple-
mented as fixed rods and shift the image plane for positively
charged vs. negatively charged species on the metal surface.
Another limitation is that surface energies and mechanical
properties of the metal have not been reproduced and the com-
patibility with biomolecular force fields requires many adjustable
parameters12. Several further models have also been developed to
describe metallic electrodes at constant potential34–39. Siepmann
and Sprik34 pioneered models under a constant applied potential
in which variable charges are added to the electrode and their
magnitude is adjusted on-the-fly according to a variational pro-
cedure. The model matches image potentials and accounts for the
polarization of the electrode by the electrolyte. However, para-
meters for the charge distribution are then necessary and mole-
cular dynamics simulations require on-the-fly adjustments of the
charge distribution. Moreover, surface energies, as well as inter-
facial energies of the metals have not been validated relative to
experimental data and the original energy expressions are difficult
to use due to their complexity (see Supplementary Note 1 for
details).

Here we introduce a simple polarizable Lennard–Jones model
for metallic gold. It adds the correct amount of attractive polar-
ization to the neat Lennard–Jones potential and retains the
mobility of all atoms, as well as the other advantageous aspects of
the nonpolarizable model (Fig. 1a)10. The model reproduces the
classical image potential, lattice parameters, surface energy, and
hydration energy with water in excellent agreement with
experiments, and a good correlation with results from density
functional theory is demonstrated. The model is compatible with
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Fig. 1 Polarizable Lennard–Jones model for gold. a Extension of the simple Lennard–Jones model with dummy electrons to add features of the free electron
gas. The virtual electrons rest at the atom core and carry a mass of 1 au. b Visualization of the dummy electrons on the Au (111) surface in the presence of
an adsorbed sodium ion in vacuum. The induced charges spread across several atomic layers laterally and beneath the top atomic layer. c The energy
expression contains terms for harmonic bond stretching, Coulomb energy, and van-der-Waals energy (Lennard–Jones potential). d The model uses five
independent parameters (highlighted in bold) including the mass of the dummy electron me, a combination of the charge q and the bond stretching
constant kr, whereby a certain ratio α= q2/(2kr) determines the magnitude of the image potential, as well as the Lennard–Jones parameters σ, εcore, and εe.
The total mass of the gold atom (mcore+me) and the rest position of the dummy electron r0= 0 Å are constants
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Ei
!1/2" = Ei! ! 2"#ini/$1, !4"

it is then possible to obtain a relation between #i and the
field Ei! generated by all real and induced charges but the ith
one. This relation, obtained by combining Eqs. !2"–!4", reads

#i =
$1

2"
# $1 − $2

$1 + $2
$Ei! · ni, !5"

and represents in fact the discretized form of an integral
equation for #i, since Ei! can be expressed as linear combi-
nation of all !real and induced" charges, but the induced one
located at xi. For convenience we will denote the
permittivity-dependent factor in Eq. !5" as

f =
$1

2"
# $1 − $2

$1 + $2
$ . !6"

Equation !5" is the common starting point for induced
charge-based methods.19,25,39 The strategy which is chosen to
solve this equation strongly influences not only the efficiency
of the methods, but also their scope, in particular, regarding
the type of periodicity which can be treated.

III. THE ALGORITHM

Before introducing the ICC! algorithm, we will briefly
review the basics of a recent similar approach, namely,
ICC,25,26 which we will use as a reference to compare the
characteristics and the performances of ICC!. The strategy
adopted in the ICC algorithm is to split the electric field Ei!
into a contribution from the real charges and one from the
induced charges Ei!=Ei

real+Ei
ind. Due to the linearity of

Maxwell’s equations, the electric field generated by the in-
duced charges can be written as Ei

ind=% jKij# j, so that Eq. !5"
can always be put in the form of a system of linear equations

%
j

!%ij − fKij"# j = fEi
real · ni, !7"

where the kernel Kij encodes the geometrical information
needed to compute the contribution to the field at position xi
from the induced charge located at x j. The polarization
charges in ICC are then determined by solving the linear
system

Au = b , !8"

where Aij = !%ij − fKij", the components of vector u are the
values of the induced charges #i, and the components of b
are bi= fEi

real ·ni. This method is appealing because the ma-
trix inversion has to be performed only at the beginning of
the simulation, but it is lacks, at least in the original descrip-
tion of the algorithm,25,26 treatment of long-range contribu-
tions. !We will turn later on the performances of ICC! with
respect to ICC."

The ICC! algorithm basically exploits a different strat-
egy to solve Eq. !5". No matter how the electric field is
calculated !for example, using nearest neighbor interaction
or taking into account every contribution form periodic im-
ages", it can always be expressed as a linear function of the
charges in the system, and Eq. !5" is precisely a linear system
of equations that is already written in the form which is
typical to iterative methods. Our aim is to employ an itera-
tive scheme in the context of periodic systems. Among the
many different algorithms40 that can be used to implement an
iterative solution for Eq. !5", the successive over relaxations
!SORs" approach is a very versatile and efficient one. In a
SOR scheme, the general equation

u = Bu + c , !9"

is approximated with desired precision by the sequence of
estimates

u!n+1" = &!Bu!n" + c" + !1 − &"u!n". !10"

Here the superscript n denotes the iteration number and & the
relaxation parameter, which usually can be in the range !0,2"
in order to guarantee convergence.40 The iterative solution
for the induced charges reads, explicitly,

#i
!n+1" = &!fEi! · ni" + !1 − &"#i

!n". !11"

The initial values of the induced charges can be extracted
form a random distribution. At every iteration the value of
the electric field is computed by means of the electrostatics
algorithm of choice, and it is used to perform the next SOR
approximation of the charge distribution, according to Eq.
!11". One usually keeps iterating until a desired accuracy has
been achieved. This can be tracked by computing

' = max
i=1,M

&#i
n+1 − #i

n

#i
n & . !12"

When ' is smaller than some preset tolerance value, the
iterative process is stopped. This scheme is highly useful in
molecular dynamics !MD" simulations, as it will converge
quite fast after the first integration step. Suppose, for ex-
ample, that for a given configuration of the real charges, the
induced ones have been determined up to the desired accu-
racy. After one MD integration step the induced charge dis-
tribution has to be recalculated. However, because the mo-
bile charges normally have moved only slightly from their
previous positions, the old induced charge values already
serve as good approximation. Therefore, when using these
values as a starting guess for the iterative procedure at the
next MD step one will obtain a sufficiently well converged
solution in, at most, a handful of iterations. In practical ap-

FIG. 1. Sketch of a section of two domains R1 and R2, characterized in the
outer and inner regions by the dielectric permittivity $1 and $2, respectively.
A discretized surface element is highlighted, and the normal vector n and
the electric fields E1 and E2 at the dividing surface are shown.
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photothermal cancer therapy and nanoparticles for gene deliv-
ery1,2. Metal nano objects have been synthesized in many shapes
and sizes, however, control over nucleation, growth, and ligand
interactions for nanoscale assembly remains a challenge3–6.
Understanding the selective synthesis and structure-property
relationships requires tremendous efforts by imaging, spectro-
scopy, and other laboratory techniques7,8.

Understanding and discovery can be accelerated by use of
atomistic simulations up to the large nanometer scale (e.g., 100
nm) in comparison with experiment9–15. The Interface force field
(IFF), for example, contains Lennard–Jones parameters for face-
centered cubic (fcc) metals to simulate bulk solids, aqueous
interfaces, and multiphase materials with polymers and bioma-
cromolecules9,10. The parameters reproduce the density, surface
tension, and anisotropy of surface energies of (h k l) facets, as well
as the mechanical properties in excellent agreement with
experiments, even better than some DFT methods16. Simulations
using this non-polarizable model have proven helpful in under-
standing the adsorption mechanisms of biomolecules, as well as
growth mechanisms and shape preferences of metal nanos-
tructures using particular ligands13,17–23. Simulations achieved
quantitative agreement with experimental observations5,13,19,22–
25 yet mainly focused on ligands of low polarity, simple shapes,
and simple surface assemblies without accounting for the effects
of induced charges and external potentials. It is a shortcoming
that the non-polarizable potential does not account for the con-
tribution of the induced charges to interfacial processes during
Molecular Dynamics (MD) or Monte Carlo (MC) simulations.
Polarization on the metal surface was shown to affect the surface
adsorption of molecules and could only be “added” a posteriori26.
Such a posteriori calculations are significantly less accurate and
impractical as they are uncoupled from the dynamics, require
time-consuming post-processing of simulation outputs (coordi-
nates and energies), and cannot be applied to corrugated metal

surfaces or under external electric fields. The effects of induced
charges in the metal are known to be substantial in vacuum27–29,
under external potentials in electrodes30,31, in the presence of
ionic liquids21, and at high ionic strength in solution26, although
expected to be weaker in dilute aqueous solution26.

Attempts to include polarization have also been made in
alternative models for metallic nanostructures and electrodes. The
GolP force field adds permanent dipoles to every atom to account
for effects of induced charges11,12,32,33. The dipoles are imple-
mented as fixed rods and shift the image plane for positively
charged vs. negatively charged species on the metal surface.
Another limitation is that surface energies and mechanical
properties of the metal have not been reproduced and the com-
patibility with biomolecular force fields requires many adjustable
parameters12. Several further models have also been developed to
describe metallic electrodes at constant potential34–39. Siepmann
and Sprik34 pioneered models under a constant applied potential
in which variable charges are added to the electrode and their
magnitude is adjusted on-the-fly according to a variational pro-
cedure. The model matches image potentials and accounts for the
polarization of the electrode by the electrolyte. However, para-
meters for the charge distribution are then necessary and mole-
cular dynamics simulations require on-the-fly adjustments of the
charge distribution. Moreover, surface energies, as well as inter-
facial energies of the metals have not been validated relative to
experimental data and the original energy expressions are difficult
to use due to their complexity (see Supplementary Note 1 for
details).

Here we introduce a simple polarizable Lennard–Jones model
for metallic gold. It adds the correct amount of attractive polar-
ization to the neat Lennard–Jones potential and retains the
mobility of all atoms, as well as the other advantageous aspects of
the nonpolarizable model (Fig. 1a)10. The model reproduces the
classical image potential, lattice parameters, surface energy, and
hydration energy with water in excellent agreement with
experiments, and a good correlation with results from density
functional theory is demonstrated. The model is compatible with
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Fig. 1 Polarizable Lennard–Jones model for gold. a Extension of the simple Lennard–Jones model with dummy electrons to add features of the free electron
gas. The virtual electrons rest at the atom core and carry a mass of 1 au. b Visualization of the dummy electrons on the Au (111) surface in the presence of
an adsorbed sodium ion in vacuum. The induced charges spread across several atomic layers laterally and beneath the top atomic layer. c The energy
expression contains terms for harmonic bond stretching, Coulomb energy, and van-der-Waals energy (Lennard–Jones potential). d The model uses five
independent parameters (highlighted in bold) including the mass of the dummy electron me, a combination of the charge q and the bond stretching
constant kr, whereby a certain ratio α= q2/(2kr) determines the magnitude of the image potential, as well as the Lennard–Jones parameters σ, εcore, and εe.
The total mass of the gold atom (mcore+me) and the rest position of the dummy electron r0= 0 Å are constants
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(d)	Fluctua6ng	charges	

FIG. 1: Strategies to account for the polarization of the metal by the electrolyte in molecular simuations. (a) Image charges
qim inside the solid with permittivity ✏2 induced by the electrolyte charges qext in a medium of permittivity ✏1 (see Eq. 1).
(b) Solving the Poisson equation on a grid to compute the induced (surface) charges. (c) Describing the electronic response
with mobile charges: here gold atoms are modeled using opposite charges tethered by a spring, with the cores representing
the nuclei (yellow) fixed and the shells (pink) moving in response to the presence of a sodium ion (purple). (d) Describing the
electronic response with fixed sites with fluctuating charges: here the charge of atoms in a graphite electrode is distributed
inhomogeneously (darker red means more negative) in response to the presence of a cation such as Li+ (blue). Panel b
reproduced from Ref. [42], J. Chem. Phys. 2010, 132, 154112, with the permission of AIP Publishing; panel c reproduced from
Ref. [45], Nature Commun. 2018, 9, 716, with permission of Springer Nature.

In order to include the molecular details of the interface (both in the shape and its atomistic nature), one can
turn to descriptions based on the electrode atoms, i.e. treating the metal at the same level of description as the
electrolyte, albeit with dedicated force fields. A first class of such descriptions consists in allowing mobile charges

to rearrange in response to the configuration of the electrolyte: This includes core-shell models such as the Drude
oscillator [45], with a charge tethered to the electrode atom via a spring (see Figure 1c), or the rod model [46, 47], in
which the auxiliary charge can rotate at a fixed distance around the atom. Such models have the advantage of being
easily implemented in standard molecular simulation codes. To ensure a correct adiabatic separation of the charge
dynamics and avoid instabilities and/or energy transfers, the mass of the auxiliary charge and the spring strength or
rod length should be carefully chosen. A second class of models, described in the following section, considers instead
fixed but fluctuating charges, illustrated in Figure 1d. One advantage of all these atomistic descriptions compared to
those based on image charges is that they are not restricted to slab geometries and can be used to deal with disordered
porous electrodes. They capture the polarization e↵ects by rearranging the charge distribution of the metal due to
the electric potential created by the electrolyte at each step. While this is not completely in the scope of the present
review, we finally briefly mention attempts at including simplified quantum mechanical treatments of the interface
in classical simulations, e.g. based on the Jellium model, to represent the spilling of the electronic charge out of the
electrode [48, 49], or the “direct dynamics” [50, 51]. Recent developments of mixed quantum/classical (QM/MM)
simulations or tight binding approaches might also provide interesting alternatives in the near future.
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4. Focus on fluctuating charge methods

We now present in some more detail the family of models describing the polarization by assigning charge distributions
(typically point charges or Gaussians) to the electrode atoms, with magnitude q = {q1, . . . , qM} treated as additional
degrees of freedom which fluctuate in response to the dynamics of ions and molecules of the electrolyte. Early models
to account for the polarization of the metal by external charges in fact included both fluctuating charges and induced
dipoles at the atomic sites as additional degrees of freedom [52, 53], but this idea doesn’t seem to have been explored
much further. The energy of the system is then expressed as a function of the positions rN = {r1, . . . , rN} and
momenta of all electrolyte atoms (see also section II B), and the charges q = {q1, . . . , qM} are determined at each
time step either by following an equation of motion, or by responding instantaneously to the motion of the electrolyte
so as to impose the electric or electrochemical potential of the electrode atoms (see Section III).

This general idea has resulted in a variety of models, which to some extent share the same quadratic form of the
energy as a function of the electrode charges q, even though the physical meaning of the parameters may di↵er, and
of numerical algorithms to determine the charges at each time step. While fluctuating charge models had already
been used for molecules, with the charge equilibration (QE) method or the electronegativity equalization method
(EEM) [54–57], their use to represent a metallic surface was first described by Siepmann and Sprik [30], using
Gaussian charge distributions on the electrode atoms. This model allowed them to simulate a water film near the
tip of a scanning tunneling microscope and was then adapted within a Born-Oppenheimer framework to simulate an
electrochemical cell by Reed et al. [31]. The electrostatic energy of the system reads

Uel(r
N ,q) =

qTAq

2
� qTB(rN ) + C(rN ) (2)

where the symmetric M ⇥M matrix A depends on the positions of the electrode atoms and the parameters describing
the charge distribution on each atom, while the components of the vector B are the electrostatic potentials due to
the electrolyte on each electrode atom (see Refs [31, 58] for explicit expressions of A and B in the particular case of
Gaussian charge distributions with 2D Ewald summation), and the scalar C corresponds to electrostatic interactions
within the electrolyte. The set of electrostatic potentials on each electrode atom is given by the gradient of Uel with
respect to qT ,

@Uel(rN ,q)

@qT
= Aq � B , (3)

and depends on the positions of the electrode atoms and on the electrolyte configuration. As a result, the set of
charges satisfying the constraint of fixed electrostatic potentials  = { 1, . . . , M} for each atom, typically the same
value for all atoms belonging to a given electrode and a di↵erence � between the values for both electrodes, is given
by q = A�1 (B+ ). In practice, if the matrix A can be inverted numerically (this has to be done only once if
the electrode atoms do not move), the charges are computed at each step by a simple matrix-vector multiplication.
Other methods are possible, such as finding the charges by minimizing Uel�qT numerically, e.g. with the conjugate
gradient method, or treating the fixed potential as a holonomic constraint [59].

The expression of the energy is similar in the case of the QE/EEM method, which was used to investigate electro-
chemical interfaces [60–65], but the expressions of the matrix A and vector B involve terms such as electronegativities
and chemical hardnesses, instead of the purely electrostatic picture described above. It is also related to the split
charge equilibration approach, which includes bond-specific terms in the energy [66]. Finally, Pastewka et al. pushed
the concept of using fluctuating charges as a proxy for a quantum description even further, by also parametrizing
the band-structure energy, which appears in the tight-binding approximation with self-consistent charges to describe
the terms beyond the electrostatic interactions between them, as a function of q [67]. This allowed a purely classical
description of various carbon electrodes, taking into account to some extent their di↵erent band structures. The
potential of such a promising strategy doesn’t seem to have been much exploited so far.

B. It takes two to tango

1. Description of the electrolyte

On the other side of the interface, the electrolyte can be represented using various levels of sophistication. In molec-
ular dynamics simulations, two main families of models are generally employed: all-atom models, with intramolecular
interactions or rigid bonds, or coarse-grained models, o↵ering a compromise between computational cost (due to the
reduced number of interacting sites and the use of larger timesteps) and accuracy [68]. In the case of electrochemical
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interfaces, coarse-grained models generally include between 4 and 10 atoms per grains [69], resulting in a decrease
of the number of interaction sites by one order of magnitude compared to all-atom models (note that an alternative
consists in using “united-atom” models in which only the hydrogen atoms are merged with heteroatoms to which they
are bonded).

In both families of models, the intermolecular interactions will then determine most of the liquid properties. Many
analytical expressions are used in order to account for the short-range repulsion between the electronic clouds, the
dispersion e↵ects and the electrostatic interactions. Concerning electrostatics, all the models employ partial charges
which are distributed among the interaction sites of the molecules, which interact between them and with the electrode
charges. In a few cases, polarization e↵ects are included by adding either charge-on-a-spring (Drude oscillator model)
or induced dipoles on the atomic sites [70–72]. These simulations are more costly from the computational point of
view since they involve additional degrees of freedom that have to be either propagated or determined by solving a set
of self-consistent equations (they have a many-body character), but they should in principle be more accurate since
the electrostatics interactions are of primary importance at the interface. An alternative is to use rescaled charges in
order to mimic these polarization e↵ects [73].

2. Electrode-electrolyte: non-electrostatic interactions

The electrostatic interactions between the electrode and the electrolyte ions and molecules follow from their re-
spective descriptions as charge and dipole distributions, discussed above. Another crucial aspect is to account for
the repulsive and dispersive intermolecular interactions between the electrolyte atoms and the electrode surface.
In the earliest studies, the surface was materialized by a structure-less wall, that took the form of a hard wall, a
purely repulsive potential or di↵erent flavors of one-dimensional Lennard-Jones potentials such as the Steele poten-
tial [21, 25, 26, 35]. These descriptions are computationally less demanding but lack important molecular features
close to the interface, that give rise e.g. to specific adsorption sites or templating e↵ects. Atomic descriptions of the
electrodes are therefore employed, using a finite number of discrete atoms, in order to account for di↵erent geome-
tries and crystal structures [29, 30, 45, 47]. Usual intermolecular potentials are employed such as Lennard-Jones and
Born-Mayer potentials. In most of these studies, the non-electrostatic electrode-electrode interactions are neglected,
because the individual electrode atoms are immobile, with a few exceptions where the electrode structure is rigid
but can translate as to mimic a piston at constant pressure, as done in Ref. [59]; in only a few cases, the electrodes
atoms are free to move and interact with a harmonic potential [74]. It should be highlighted that the inclusion of
explicit atoms for the intermolecular part of the interactions does not necessarily imply an atomistic treatment of
the electrostatic part and vice versa. Mixing atomistic and structure-less descriptions however poses the problem of
where to locate the interface (in a continuum picture) with respect to the atomic positions. Intermediate approaches
have also been used, which formulate the interaction potential as a corrugated potential, avoiding the calculation of
pair terms but reproducing the local roughness of the substrate [75].

As usual, the parametrization of these non-electrostatic interactions, which may lead or not to good predictions
depending on how the electrostatic part is described, is crucial. While some force fields were fitted on ab-initio calcu-
lations or to reproduce experimental data, in the absence of reliable data the choices are often based on the availability
of parameters from other studies. Accurate quantum Monte-Carlo reference data were reported for interfaces between
water and graphene or carbon nanotubes [76], that could be used to develop new classical force fields for carbon
electrodes, for which no specific optimization has been proposed to date. Comparatively, more e↵orts were put in the
representation of metal surfaces. For example, Heinz et al. have proposed a systematic parameterization of Lennard-
Jones potentials for several face-centered cubic metals, that were shown to reproduce a few experimental data for
interfaces with water, such as surface tensions [77]. When used in combination with a core-shell model to represent
the polarization of the metal, it was necessary to reparametrize the Lennard-Jones potentials as well [45]. In the case
of platinum, Siepmann and Sprik showed that using a three-body function was necessary to push water molecules on
top of metal atoms to represent chemisorption e↵ects [30]. An alternative approach was recently proposed to include
these e↵ects through an attractive two-body Gaussian potential [78]. We will also come back to reactive force fields
to capture the breaking and formation of bonds in Section IVD.

III. HOW TO SIMULATE POLARIZED ELECTRODE-SOLUTION INTERFACES

Beyond the choice of the force field to describe the metallic electrode, the electrolyte and the interactions between
them, a molecular simulation requires the definition of the simulated system and an algorithm to sample its configu-
rations in order to compute physical properties. In this section, we explore more specifically the available options to
simulate an electrochemical cell with an applied potential di↵erence between two electrodes, as well as issues related
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to the sampling of the corresponding microscopic configurations. Even though the discussion below applies more
generally, we illustrate the various points with a description of the electrode based on fluctuating charges. In addi-
tion, we will not discuss in detail the possibilities o↵ered by existing open source softwares for the classical molecular
simulation of electrochemical interfaces with the methods described in the present review, but refer the reader to the
corresponding descriptions of e.g. Metalwalls [79], which is dedicated to the simulation of such interfaces, or more
generic simulation packages allowing such simulations (possibly with an open source modification not provided in the
standard distribution) such as LAMMPS, OpenMM or ESPRESSO (see [80] for links).

A. Increase tension (between electrodes) or handle (the electrolyte) with care

1. Simulation setup

In a typical electrochemical system, two electrodes are separated by a slab of liquid electrolyte with all dimensions
along the surfaces and between them much larger than molecular ones. In order to ensure that the two interfaces
do not interfere (even though the total charge accumulated on both electrodes are of course correlated, see also
Section III B 1), the distance between the electrodes must be large compared to the screening length. In experiments,
one also introduces a separator to prevent contact (hence short-circuit) between the electrodes. The typical dimensions
of systems that can be simulated with classical molecular simulations is in the range of a few to a few tens of
nanometers. This requires a simplified description of the real device and limits the range of physical systems that can
be simulated in a meaningful way. In particular, one always neglects the presence of the separator, which is a safe
assumption provided that the distance between the electrodes remains large compared to the screening length. This
in turn sets a lower bound on the ionic concentrations that can be considered – typically ⇠0.1 mol L�1, a limit which
also emerges from the constraint of having enough ions in the simulation box to ensure a good sampling of the phase
space.

(c)	

(a)	

(b)	

2D	PBC	
Constant	poten.al	

3D	PBC	+	slab	correc.on	
Constant	poten.al	

3D	PBC	
Constant	electric	field	

FIG. 2: Simulation setups to simulate a capacitor consisting of graphite electrodes separated by a 1 mol L�1 aqueous NaCl
solution under a voltage � = 2 V; the color of the electrode atoms reflects their instantaneous charge. (a) Periodic boundary
conditions (PBC) are applied only in the two directions along the surfaces, but not in the direction perpendicular to the
electrodes, and the two electrodes are maintained at di↵erent potentials, corresponding to a voltage � . (b) PBC are applied
in all directions, but the simulation box also includes vacuum (here the length of the box in this direction is three times
larger than the electrochemical cell) and a “slab” correction is applied when computing electrostatic interactions; as in the
previous case, the two electrodes are maintained at di↵erent potentials. (c) PBC are applied in all directions, without vacuum;
all electrode atoms are maintained at the same potential and the capacitor is charged by applying an electric field to the
electrolyte such that � = �ELz, with Lz the box dimension in the direction perpendicular to the electrode.

Last but not least, the small number of atoms in the system (103-105) compared to a real device requires, as always
in molecular simulation of condensed matter, the use of periodic boundary conditions (PBC). Based on the above
discussion, it is natural to consider PBC in the two directions along the surfaces, but not in the direction perpendicular
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to the electrodes, as illustrated in Figure 2a. This requires in particular computing long-range electrostatic interactions
with dedicated approaches, such as 2D Ewald summation, also taking into account the description of electrode atoms
by Gaussian charge distributions instead of point charges if needed [31, 58]. An alternative approach, more easily
implemented in standard packages, is to mimick 2D PBC by considering PBC in all directions, but adding vacuum
to the simulation box, as illustrated in Figure 2b. In that case, it is necessary to apply a “slab” correction when
computing electrostatic interactions [81].

2. Constant-voltage or finite field

The simulation of an electrochemical cell also requires a way to impose voltage between the two electrodes. The
most straightforward way to achieve this, with descriptions allowing to set the potential of electrode atoms such as
methods based on fluctuating charges, is to impose di↵erent values of the potential for atoms belonging to the two
electrodes, i.e. one value for each electrode with a di↵erence � between the two electrodes, as illustrated in panels 2a
and 2b for the 2D and 3D-slab PBC cases, respectively. Recently, an alternative approach has been proposed to allow
the use of 3D PBC without the need to introduce vacuum, hence decrease the computational cost, and facilitate the
implementation in standard simulation packages. The method introduced by Dufils et al. [82], illustrated in Figure 2c,
consists in applying a finite electric field to the electrolyte via an extended Hamiltonian. Such finite field methods,
developed in the framework of the modern theory of polarization [83], had first been adapted to investigate EDLs near
charged or polar insulator-electrolyte interfaces [84, 85]. By imposing a constant potential on all the electrode atoms
(there is a single electrode in this setup) using the fluctuating charge method and an electric field on the electrolyte
such that � = �ELz, with Lz the box dimension in the direction perpendicular to the electrode, one can charge
the capacitor by creating two EDLs, one on each side of the electrode. If the width of the electrode is su�cient, one
recovers the same results (in particular for the induced charges on the electrode or the structure of the interfacial
electrolyte) as in the 2D periodic case of Figure 2a, with a reduced computational cost. A further benefit of this finite
field approach is that it could easily be used with other methods to describe the metal (it had already been used in
3D PBC with the ICC method [39]) with explicit electrode atoms, e.g. with the core-shell model of Ref. [45], which
capture the polarization of the metal but does not provide a handle to control the potential of the electrodes (hence
the voltage between them), or even in ab initio simulations [86].

B. Enough is enough? Sampling configurations

While the previous section presented the di�culties related to the description of the system, we now turn to the
theoretical and numerical challenges pertaining to the sampling of microscopic configurations of electrode-electrolyte
interfaces. Molecular simulations are inherently related to Statistical Mechanics and the fundamental problem of
sampling configurations from a thermodynamic ensemble, from which physical properties can be computed as averages.
Even though most molecular simulations with constant-potential electrodes are performed in the canonical ensemble
(constant number of electrolyte ions and molecules, N , volume V and temperature T ), one can in principle also
consider a constant normal pressure on the electrodes (at least with rigid electrodes acting as pistons), or even grand-
canonical (fixed chemical potential) and Gibbs ensemble (exchange between two systems) simulations. In the latter
cases, which involve the exchange of particles, it might be necessary to resort to Monte Carlo simulations, as done e.g.
in Refs. [21, 22, 87, 88] instead of molecular dynamics more commonly employed in this field. We focus here on three
separate though related aspects, which apply generally to all the above situations, but limiting ourselves to the more
common canonical ensemble: the issue of global electroneutrality, the statistical mechanics of the constant-potential
ensemble, and importance sampling.

1. Electroneutrality

When studying an electrochemical system with electrodes held at a constant potential di↵erence by a generator at
a classical molecular dynamics level, the main focus and interest is rather on the electrolyte properties. Importantly,
the details of the device that applies a potential di↵erence are not taken into account. Instead the models consider an
open system, very much like in a grand-canonical ensemble, exchanging charge (instead of particles) with a reservoir.
In order to properly separate the electrochemical cell from the electric potential generator, the interaction between
them should be negligible. This requires both subsystems to be electroneutral so as to cancel the leading term in the
long-range electrostatic interaction. Although in the real device there are fluctuations and the electroneutrality of
the cell is only verified on average, it should be enforced at a microscopic level in molecular simulations not explicitly
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including the charge reservoir. This can be achieved easily in descriptions with fluctuating charges by adding a
Lagrange multiplier to enforce this constraint when computing the charges of the electrode atom. This multiplier
corresponds to a potential shift applied to both electrodes simultaneously, while keeping the potential di↵erence
unchanged [59, 89, 90].

2. Statistical mechanics of the constant-potential ensemble

The natural ensemble associated with the above-mentioned simulations is the canonical constant-potential ensemble,
characterized by the total number of atoms N , the volume V , the temperature T and the applied potential  
(more precisely, the set of potentials imposed no each electrode atom, usually one value per electrode). The charge
distribution on the electrode atoms is then the conjugate variable of the applied potential and its fluctuations contain
useful information. The aim of molecular simulations is to sample configurations from this ensemble in order to
compute meaningful statistical averages. Along with approximations in the choice of force fields and the level of
description of the quantum degrees of freedom, there are approximations related to how the chosen algorithm samples
this thermodynamic ensemble. Using constant charges on electrode atoms ignores any charge fluctuation around the
mean. One can use external inputs or post-processing to link the total electrode charge to an equivalent applied
potential, but the configurations are not sampled according to their weight in the constant-potential ensemble.

Even though in principle one could also use Monte Carlo algorithms to sample the electrolyte configurations and
electrode charges, to date most simulations using fluctuating charge models used molecular dynamics. In addition,
except in earlier studies using Car-Parrinello (CP) dynamics with a fictitious mass for the additional degrees of
freedom [30], the vast majority of simulations employing fluctuating charge models rely instead on Born-Oppenheimer
(BO) dynamics, by assuming a separation of time scales between the electronic and nuclear degrees of freedom [31].
This allows using larger time steps, but reduces the full phase space to that of electrolyte configurations, since
to any such configuration corresponds a single set of electrode atom charges q⇤. A thorough discussion of the
statistical mechanics of the constant-potential ensemble can be found in Ref. [90], where we clarified in particular
which observables can be computed exactly using BO dynamics on the charges. This is e.g. the case of the average
total charge of an electrode hQtoti = hQ⇤

toti. In contrast, the variance of the total charge,
⌦
�Q2

tot

↵
, which is related to

the di↵erential capacitance by [21, 91]:

Cdi↵ =
@ hQtoti
@� 

= �
⌦
�Q2

tot

↵
(4)

with � the voltage between the two electrodes and 1/� = kBT the thermal energy, includes a contribution from the
suppressed thermal charge fluctuations. The di↵erential capacitance is then given by

Cdi↵ = Celectrolyte
di↵ + Cempty

di↵ = �
⌦
�Q⇤2

tot

↵
+ Cempty

di↵ (5)

where
⌦
�Q⇤2

tot

↵
is the variance sampled within BO dynamics and Cempty

di↵ , for which an explicit expression can be found
in Ref. [90], corresponds to the empty capacitor (i.e. in the absence of thermal fluctuations of the electrolyte).

3. Importance sampling

As usual in molecular simulations, one may also face sampling issues due to physical processes that result in long
time scales not accessible by straightforward simulations. This includes e.g. slow transport within the electrolyte, or
adsorption/desorption at the interface, or even phase transitions. In that case, one can resort to dedicated approaches,
such as umbrella sampling to compute free energies, or transition path sampling to compute rates and analyze
mechanisms. Examples of studies in the context of electrolyte interfaces, illustrated in Section IVC, involve collective
variables such as the distance of an ion to the surface or between two ions to investigate their adsorption/desorption and
pair formation/dissociation, or the number of water molecules in a probe volume, to investigate the hydrophilic/phobic
behavior of the interface.

An importance sampling approach more specific to electrode-electrolyte interfaces was proposed in Ref. [91]. By
adapting the standard histogram reweighting approach to the case of constant-potential simulations, it is possible to
combine simulations performed at di↵erent potentials in order to optimally compute the properties of the system as a
function of voltage, including for voltages for which no simulations are performed. The only requirement is an overlap
of the distributions of the total charge P (Qtot), or the joint distribution P (Qtot, p), with p a property of interest
such as density profiles or orientational distributions, between the simulations at various voltages. This approach
has been used for example in the study illustrated in Section IVB. Even though to the best of our knowledge it has
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never been done to date, one could use the same idea to derive a parallel tempering algorithm, exchanging replicas
between simulations at di↵erent potentials (instead of temperature in the original method) to enhance the sampling
of phase space. Histogram reweighting has also been used recently in Ref. [92] to sample the so-called vertical energy
gap related to electron transfer reactions (see Section IVD). Other strategies not requiring an explicit biais on the
collective variable of interest, but taking advantage of statistical tools, include indirect umbrella sampling to reweight
configurations using a bias on an auxiliary collective variable, which was applied in Ref. [93] to the Madelung potential
experienced by ions at an electrochemical interface (see Section IVC).

IV. WHAT CAN WE LEARN FROM MOLECULAR SIMULATIONS OF ELECTRODE-SOLUTION
INTERFACES?

Once a description of the system and a sampling strategy are chosen, one can perform classical molecular sim-
ulations to compute observable properties. In this section, we provide a selection (hence by no means exhaustive
list) of illustrations of such properties typical of electrode-electrolyte interfaces: capacitance, interfacial structure
and dynamics and an opening towards electrochemistry. We also present in Supplemental Material an application to
electrowetting. All examples have in common the use of a fluctuating charge model to describe the electrode.

A. Capacitance

We begin by considering one of the most relevant property for practical applications, namely the capacitance. More
precisely, one generally applies a voltage � between two metallic electrodes separated by an electrolyte, and the
charge ±Qtot on both electrodes, which fluctuates in response to the thermal motion of the liquid (see Section III B 2),
allows the definition of an integral capacitance Cint = hQtoti /� and a di↵erential capacitance Cdi↵ = @ hQtoti /@� .
Both quantities coincide only when the di↵erential capacitance does not depend on voltage, i.e. when the response to
applied voltage is linear. Such a linear behavior is expected from continuum electrostatics for polar liquids behaving
as pure dielectric media and for dilute electrolyte solutions. However, the organization of the molecular solvent and
ions at the interface do not exactly follow the assumptions leading to simple analytical expressions, and molecular
simulations allow to evaluate Cint and Cdi↵ , as well as to correlate their evolution as a function voltage with structural
changes in the interfacial fluid.

In practice, one could compute the average charge hQtoti as a function of voltage and perform a numerical derivative
to obtain the di↵erential capacitance. A much more e�cient and accurate approach is to use the fluctuation-dissipation
relation Eq. 5, which provides Cdi↵ from the variance of the charge distribution in a single simulation. We show in
the Supplemental Material an illustration of this method with results from Scalfi et al. for two capacitors consisting
of graphite electrodes separated by pure water or a 1M aqueous NaCl solution [90]. For pure water, the above-
mentioned continuum prediction for the capacitance, taking the permittivity of the SPC/E water model used in this
work, results in a value 3-4 times larger than the one obtained from the simulations, because it fails to account for the
e�cient screening of the field by the first layers of interfacial molecules [94–96]. Adding salt increases the capacitance
compared to pure water, but this increase is moderate for the considered concentration and inter-electrode distance.
As for the pure water case, the above-mentioned continuum prediction is not accurate, as expected for Debye-Hückel
theory at such a high concentration. The shortcomings of such continuous descriptions to estimate the capacitance
(both for pure solvent and electrolyte solutions) reflect their limitations to account for the detailed organization of
the interfacial fluid, which can also be investigated by molecular simulation, as discussed in the next section.

B. Interfacial structure

One of the most straightforward yet valuable information provided by molecular simulation is the microscopic
structure of the system. In the case of planar electrode-electrolyte interfaces, density profiles as a function of the
position z in the direction normal to the interface can be computed from the trajectories as an ensemble average as
⇢↵(z) =

⌦P
i2↵ �(zi � z)

↵
, with � the Dirac delta function and where the sum runs over atoms i of type ↵. Similar

definitions can be used to compute (1D, 2D or 3D) number, charge or polarization density profiles, distributions
of molecular orientation, radial distribution functions, coordination numbers, etc. From the charge density profiles,
one can also obtain electrostatic potential profiles by integrating the 1D Poisson equation, to make the link with
the interfacial capacitance (in the presence of ions, using the potential drop across each interface) or the dielectric
permittivity of the liquid (in the absence of ions, using the slope of the potential in the bulk region). The insights
from molecular simulations are particularly valuable, since they capture explicitly the e↵ects of the discrete nature
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of ions and solvent molecules, which lead in particular to their layering near the planar electrode, and of their
complex interactions (steric, electrostatic, dispersion, ...). This allows a detailed investigation of the composition and
organization of the interfacial liquids and their evolution as a function of applied voltage. The results can also serve
as reference data for simpler theories, such as the ones mentioned in the introduction.

(c)	

(d)	

(e)	

FIG. 3: (a) Capacitor consisting of graphite electrodes separated by a water-in-salt-electrolyte (20 mol/kg aqueous LiTFSI
solution). An all-atom model is used, with H (white), O (red), Li (green), F (orange), C (cyan), S (yellow), and N (blue)
atoms, but for clarity the TFSI anions beyond interfaces are represented by isosurfaces. (b) Density profiles for Li (blue), water
(orange) and TFSI (green) at � = 0 V (top) and 3 V (bottom). (c) Density profiles for O and F from TFSI anions on the
positive electrode, for � = 1.5 and 2 V; the shaded areas indicate the first and second adsorbed layers; the key indicates the
potential of the positive electrode, assumed to be  + = � /2). (d,e) Snapshots illustrating the structure close to the positive
electrode from simulations at � = 1.5 and 2 V. Adapted with permission from Ref. [97], J. Phys. Chem. C 2018, 122, 23917,
Copyright (2018) American Chemical Society.

As an illustration, we consider here the complex case of a water-in-salt electrolyte (WiSE), proposed recently as
promising for high-voltage batteries and supercapacitors [98, 99], by reporting some results of Li et al. [97]. Figure 3a
shows a system consisting of a 20 mol/kg aqueous LiTFSI solution between two graphite electrodes maintained at a
constant potential using the method described in section IIA 4. In such an electrolyte, the number of water molecules
per ion pair is lower than 3 (compared to ⇡50 for a typical 1 mol/L concentration), so that standard EDL theories
are not expected to hold. The density profiles in Figure 3b clearly illustrate the layering of the interfacial fluid even
in the absence of applied voltage and a bulk region far from the surfaces, as well as the change in composition and
structure of both interfaces under voltage. One can note in particular the increase in water concentration near the
negative electrode (left) accompanying that of Li+, which approach the surface with their limited hydration shell. The
structure on the positive electrode is further illustrated in panel 3c, which shows the density profiles for oxygen and
fluorine atoms from the TFSI anion for two voltages. The most dramatic structural change occurring at this surface
between � = 1.5 and 2 V is the reorientation of the anions, leading to a closer approach of O atoms (carrying
a larger partial charge than F) to the surface, also visible on the typical snapshots of panels 3d and 3e. Even
though we do not discuss this further here, it was also found in this work, using importance sampling techniques,
that changes in the interfacial composition and structure as a function of voltages could be linked to peaks in the
di↵erential capacitance [97], as previously reported for room temperature ionic liquids [16, 100] and concentrated
electrolytes [101]. One can finally note that, even in such complex cases, molecular simulation results can be used as
reference data to validate and parameterize simpler theories, as was done e.g. by McEldrew et al. in a contemporary
study of a similar WiSE between uniformly charged walls [5].
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C. Interfacial dynamics

Applications of electrode-electrolyte interfaces to energy storage (batteries, supercapacitors) not only aim at im-
proving the amount of energy that can be stored, by increasing the capacitance of the interface or the voltage, but
also at reducing the charge/discharge time to increase the power that can be delivered. In the standard RC circuit
picture, the charging time depends on the resistance of the bulk electrolyte and the interfacial capacitance, but not
on the interfacial dynamics. The situation in realistic porous electrode materials is more complex and molecular
simulation has contributed to a better understanding of the charging dynamics in these systems, also making the link
with more involved equivalent circuit models used in electrochemistry [102–105]. However, even in the simpler case
of a planar electrode and a solvent-based electrolyte, which is the focus of the present work, the dynamics of the
interfacial fluid is modified by the presence of the solid. This in turn may modify not only the charging dynamics but
also the kinetics of electron transfer reactions (which will be discussed in more detail in section IVD). We illustrate
here some important findings on the dynamics at a water-platinum interface uncovered using molecular simulation.

cases, the imposed water structures allow for facile hydrogen
bonding within the adlayer and subsequently only a few, fleeting,
hydrogen bonds are donated from the adlayer to the surrounding
bulk. Although the adsorbed oxygens at both surfaces still afford
hydrogen bond acceptor sites, the asymmetry associated with
lacking donor sites results in an interface that is liquid–vapor-like
in the sense that large density fluctuations occur through the
collective formation and deformation of an interface (21).
Even though the underlying metal lattices we study are or-

dered, over large length scales the planar geometry of the surface
is incommensurate with water’s preferred tetrahedral structure. A
consequence of this frustration is the presence of an equilibrium
number of defects in the hydrogen bond network within the
adlayer. These defects facilitate reorganization within the surface
and the resulting dynamics are heterogeneous and relax on
timescales larger than nanoseconds. The characteristic time for this
surface relaxation, τs ( 1 ns, is much larger than that for typical
equilibrium density fluctuations in the bulk liquid, τb ∼ 5 ps.
Therefore, although the presence of the surface introduces a static
inhomogeneity, the water bound to this surface introduces a dy-
namic inhomogeneity. The resultant separation of timescales
between bulk and surface reorganization is illustrated in Fig.
1. Fig. 1, Upper shows snapshots during slow reorganization of
the surface water dipoles, whereas Fig. 1, Lower illustrates faster
interfacial fluctuations.
These two features of the metal interface, the static hetero-

geneity of the extended interface and the slow dynamics of
water at its surface, cause a decoupling of ensemble and dy-
namic averaging on timescales t < τs. The decoupling implies
that for a given configuration of the adlayer, liquid water swiftly
equilibrates, and for t ! τb the properties of the subsequent
hydration layers are in dynamic equilibrium. Over intermediate
timescales, however, temporal heterogeneity of the hydrogen bond
network couples to the dynamically heterogeneous properties of
the interface.
The next section illustrates the dependence of the adlayer

structure with the exposed metal surface geometry and shows how
the passivation of the hydrogen bond network on the surface cre-
ates a liquid–vapor-like interface that attracts hydrophobic par-
ticles. The subsequent section shows how frustration of the water

structure on the surface, coupled with a separation of relaxation
times between the surface and bulk, creates temporal regions of
spatially heterogeneous hydrophobicity that decays over
nanoseconds. We then discuss how the effects we have detailed
can influence electrochemical properties. The techniques we
apply to simulate this system are outlined inMethods and in our
earlier paper (11).

Static Heterogeneity of the Extended Metal Interface
Equilibrium adlayer structures can exhibit incomplete surface
coverage, the extent of which depends on surface geometry and
reflects a competition between adsorption and hydrogen-bonding
energetics (20). The interplay between water–metal and water–
water interaction energetics is reflected in the structural motifs
present on the different crystal faces. Fig. 2 A and C shows char-
acteristic snapshots of the adlayer of water for both surfaces
obtained fromour simulations, as well as their subsequent effect on
wetting (Fig. 2 B and D). (A liquid phase lies above the pictured
metal surfaces and adlayers in Fig. 2 A and C, but the liquid mol-
ecules are not rendered.) For the 100 surface, metal atoms are
locally fourfold coordinated and are commensurate with a 2D
projection of local hydrogen-bonding patterns. As a result, the
structure of water on the surface is highly ordered with water
dipoles oriented parallel to the surface and approximately all top
sites are occupied. At any particular instant, however, line defects
exist on the surface, separating planes of dipole aligned molecules
by 90° turns in their orientations. For the 111 surface, metal atoms
are locally sixfold coordinated and although they also have lattice
spacings that are commensurate with a hydrogen bond, the sixfold
coordination frustrates preferred bonding patterns. As a result this
surface has regions of local hexagonal order, rings of water sur-
rounding a vacancy, that are seen in the monolayer structures of
water absorbed on the 111 surface of many face-centered cubic
(FCC) metals (22). Because such a hexagonal arrangement cannot
tile space, this surface also has a fluctuating concentration of
interstitials that occupy the empty top sites with water dipoles that
point away from the surface on average. This disorder results in an
average coverage of about 85% of all top sites. For both surfaces
the lattices are entirely regular, and therefore the heterogeneity in
the hydrogen-bonding network is dynamic. However, the imposed
order within the adlayer dictates that relaxation occurs over long
timescales. Similar hydrogen-bonding defects have been observed
experimentally under ultrahigh vacuum conditions at low temper-
atures on Pd(111) (23) and inwater-hydroxyl films onCu(110) (24).
The presence of extended interfaces in solution, such as the

solvated metal surface, is expected to influence the properties of
subsequent solvent layers over distances corresponding to the
bulk correlation length. For a liquid near coexistence with its
vapor, such as water at ambient conditions, extended in-
homogeneities can give rise to a dewetting transition (21), whose
interfaces subsequently have larger correlation lengths. Fig. 3A
graphs the mean density of water molecules as functions of the
distance away from the metal surface. Although the structure on
the adlayer depends intimately on the metal geometry, the sur-
rounding water is fairly insensitive to the exposed crystal face. We
find for both surface geometries that the density profile for water
away from the interface exhibits a sharp peak at the metal surface,
indicative of the adlayer, followed by a region of a density depletion
∼3 Å thick. Density oscillations decay over 1 nm away from the
surface. The asymmetry between hydrogen bond donors and
acceptors at the interface results in an unbalanced attraction;
however, the effective interactionwith the surface is not so weak so
as to allow the formation of capillary waves that would destroy the
density oscillations seen away from the metal.

Water–Metal Interface Is Hydrophobic
The unbalanced attraction immediately adjacent to the adlayer is
enough to make solvation of ideal hydrophobes (hard spheres)

Fig. 1. Illustration of the separation of timescales between reorganizing
surface configurations, which occurs on average every τs, and reorganizing
the bulk density, which occurs on average every τb. Small tick marks are
separated by 20 ps, which is on the order of although larger than timescales
for typical density fluctuations. Large tick marks are separated by 100 ps,
which is on the order of the typical relaxation times for relevant interfacial
fluctuations.
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of ion pairs, despite the fact that their solvation structures differ
significantly.

When simple classical ions are solvated in aqueous solution,
they are dressed by a solvation shell of water molecules whose
orientations are polarized in response to the ionic charge. Simi-
larly, bound pairs of ions are dressed by water molecules whose
orientations are polarized in response to the electric dipole of
the bound ion pair. In order for a bound pair of ions to sepa-
rate, this dipolar solvation shell must be deconstructed and trans-
formed into two separate and oppositely polarized ionic solva-
tion shells. This solvent reorganization has been identified as the
rate-limiting step for aqueous ion dissociation, and numerous
efforts have been aimed at quantifying water’s role in this process
(1–4, 14). These efforts have revealed that, although the over-
all process of aqueous ion dissociation is usually thermodynam-
ically favorable, solvent reorganization leads to the emergence
of a free-energy barrier that is on the order of typical thermal
energies, kBT , where kB is Boltzmann’s constant and T is the
temperature.

Water ions, specifically hydroxide and hydronium, are the prod-
ucts of proton transfer to and from an individual water molecule.
These ions can easily integrate into the aqueous hydrogen-
bonding network and leverage the Grotthuss-like shuttling of pro-
tons for delocalized and rapid transport (6). This feature leads
the solvation properties of water ions to differ from those of sim-
ilarly sized monovalent ions (21). The solvent’s role in mediating
the separation of water ions is thus different from that of sim-
ple monovalent salts. It has been shown with ab initio simula-
tion that the dissociation of bound water ions, a process known
as autoionization, requires the well-timed coordination of solvent-
induced electric field fluctuations and the making/breaking of
hydrogen bonds. These correlated fluctuations result in a near-
spontaneous relocation of a proton from a neutral water molecule
to a newly formed hydronium (H3O

+) (6, 12), leaving behind a
negatively charged hydroxide ion (OH�).

Because the water-mediated separation of water and classical
ions occurs via different mechanisms, they can be affected differ-
ently by changes in the aqueous environment. In this work, we
consider specifically the environmental changes that are associ-
ated with an electrochemical interface of an extended platinum

B

D

A

C

Fig. 1. A and B contain typical snapshots going from a recombined state (black-bordered panel) to a dissociated state (red-bordered panel) for classical
ions and water ions, respectively. The positive ion is highlighted in green, and the negatively charged ion is highlighted in yellow. C and D contain plots of
the free-energy profile as a function of R, the interionic separation for classical ions and water ions, respectively. The data plotted in red correspond to ions
in the bulk, and the data plotted in blue correspond to ions at the electrode interface.

electrode. A unique feature of these interfaces is the way that
water binds to them, with its oxygen centered on the top site and
its dipole pointing along the plane of the surface (22, 23). The
partial chemical bond formed is typically strong and leads to the
formation of an electrode-adsorbed water monolayer (24, 25).
This monolayer can be hydrophobic, exhibiting molecular relax-
ation dynamics that are orders of magnitude slower than that
of the bulk liquid (8). Snapshots taken along charge separation
trajectories near the electrode interface are shown in Fig. 1 A
and B. This slowly evolving water monolayer affects the struc-
ture and dynamics of the adjacent bulk liquid (26). For pure
water systems, this effect is subtle in comparison with the dra-
matic slowdown of the monolayer itself; however, ions at this liq-
uid interface can incorporate part of the monolayer into their
solvation shell and thus couple directly to the slow dynamics of
adsorbed water.

Simulating Rare Events in Heterogeneous Environments

To study ion dynamics at the aqueous electrode interface, we
performed atomistic simulations of liquid water in contact with
the (111) surface of an extended platinum electrode. We used
two different model systems: The first was designed to study
the dissociation of a classical ion pair, Na+ and I�, and the
second was designed to study the recombination of water ions,
H3O

+ and OH�. In the first model system, we describe the aque-
ous solution using classical force fields. Specifically, we describe
water using the SPC/E model (27), and we describe the ions sim-
ilarly, as spherically symmetric point charge particles. This effi-
cient combination has been demonstrated to accurately repro-
duce the molecular structure and dynamics of liquid water as
well as experimental measures of ion hydration and mobility.
Although we studied this particular ion pair, previous studies on
the adsorption free energies and mobilities of other alkyl halides
have shown consistent qualitative changes between behaviors at
and away from the electrode (26). Unfortunately, this classical
nondissociative model is inadequate to describe the dynamics
of water ions, whose transport is facilitated by the making and
breaking of covalent OH bonds. Thus, in the second model sys-
tem, we used an ab initio model of water based on density func-
tional theory (6).
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FIG. 4: (a) Typical configurations for the dissociation of an ion pair (Na+ in green, I� in yellow) in water near a (111) Pt
electrode surface, from a contact ion pair (black-bordered panel) to a dissociated state (red-bordered panel). (b) Free energy
profile as a function (in units of the thermal energy kBT = 1/�) of the distance R between the ions in the bulk (red) and near
the surface (blue). (c) Illustration of the slow time scale ⌧s associated with structural rearrangements of water near a (100)
Pt surface, compared to that ⌧b for the relaxation of bulk density fluctuations (small ticks are separated by 20 ps, larger than
typical values for ⌧b). The blue surface in the bottom panels indicates the instantaneous interface between the first adsorbed
layer and the rest of the fluid, which fluctuates due to local changes in the hydrogen bond pattern. Collective fluctuations
eventually leading to global rearrangements such as between the top panels occur on much longer time scales. Panels (a) and
(b) adapted with permission from Ref. [93], PNAS, 2017, 114, 13374; panel (c) adapted with permission from Ref. [106], with
permission of PNAS, 2013, 110, 4200.

Kattirtzi et al. investigated the dissociation of ion pairs near a Pt electrode using classical (for Na+-I�) and ab

initio (for water ions H3O+-HO�) molecular dynamics [93]. Figure 4a shows configurations for the Na+-I� case near
a (111) Pt electrode surface, modeled using the method described in section IIA 4 and the force field of Siepmann
and Sprik [30] for the water-Pt interaction, which includes two and three body terms. The three configurations are
typical for a contact ion pair, an intermediate state and a dissociated state, corresponding to the regions visible in
the free energy profiles as a function of the interionic distance R, obtained by umbrella sampling (see section III B 3)
and shown in panel 4b. This panel further shows that the free energy profile along this distance R is in fact only
slightly a↵ected by the vicinity of the surface, with no change in the relative free energies of the states (suggesting
limited changes in their solvation structure with respect to the bulk) and a small increase in the activation barrier
for the dissociation/recombination, which would suggest only a slight decrease in the corresponding rates. However,
as in the bulk [107], the interionic distance is not su�cient to examine the mechanism. It also involves collective
water fluctuations, which were described by Kattirtzi et al. using a simple collective variable, namely the Madelung
potential on the ions. From the change in free energy barrier including this variable (with an increase of 1.5 kBT
with respect to the bulk), one would predict a decrease in the dissociation rate near the electrode kelec ⇡ 0.2 kbulk.
However the dissociation rate measured in the simulations is in fact kelec ⇡ 0.02 kbulk, i.e. the decrease is ten times
larger. This is because the free energy is not su�cient to predict the rate, as the dynamics of water fluctuations also
plays a role [93].

The dynamics of water near a Pt surface was in fact considered in earlier work by some of the same authors [106, 108–
110]. It was found that these dynamics can be highly collective, heterogeneous and slow. Figure 4c illustrates the
slow time scales associated with structural rearrangements of water near a (100) Pt surface, compared to that for the
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relaxation of bulk density fluctuations. On this particular surface, water molecules in the first adsorbed layer form an
ordered network of strong H-bonds between them. The lack of interactions with molecules beyond this layer (see the
bottom parts of this panel) in fact results in an unexpected hydrophobic behavior, with e.g. a large contact angle of
a water droplet on this adlayer. From the dynamical point of view, switching between distinct but equally probable
H-bond patterns (see top parts of Figure 4c) requires collective rearrangements, associated with very long time scales
and displaying dynamical heterogeneity [106]. While some results observed on this particular surface should apply
generally to other Pt surfaces and other metals, the details of the dynamics crucially depend on the interplay between
the geometry of the solid lattice and the interactions with the fluid, so that molecular simulation is ideally suited for
such investigations. It was for example used recently to analyze the reorientation dynamics of water molecules at an
electrified graphene interface [111].

D. Towards electrochemistry

In general, simulating reactive systems is challenging in molecular simulation: Reactive force fields need to be
employed, which are di�cult to parameterize. Nevertheless, many electrochemical reactions do not involve bond
breaking/formation, but only a change of the redox state of the species. This observation is central in Marcus theory,
which was developed in order to calculate reaction free energies for electron transfer [112]. In short, this classical
transition state theory introduces a key quantity, the solvent reorganization energy, associated with the solvent
rearrangement when the redox state of the solute changes. In classical molecular simulation, Warshel introduced
the vertical energy gap, that is the potential energy di↵erence between the oxidized and the reduced species at fixed
solvent coordinates, as the key reaction coordinate for simulating electrochemical reactions [113].

Although this development allowed straightforward studies of electron transfer reactions in bulk solutions, in an
electrochemical cell setup an additional complexity arises because the electrons are transferred to the electrodes instead
of vacuum. Madden and co-workers proposed an approach in which the constant applied potential condition is enforced
before and after the electron transfer reactions, leading to di↵erent charge organizations inside the electrodes [114].
Using this approach, they showed how the solvent reorganization energy, and hence the free energy curves, depend on
the applied potential and on the distance of the redox species from the electrode in a molten salt. Surprisingly, the
variations they observed where much smoother than expected from the pronounced oscillations in the mean electrical
potential inside the double-layer region, a result which was confirmed in further studies [115].

The next challenge for classical simulations relies on the study of active interface. First steps in this direction
were made using the Empirical Valence Bond method to describe the transfer of proton in water on silver or platinum
electrodes [116, 117]. Switching in electrometallization cells has also been studied using reactive force fields (REAXFF)
together with the charge equilibration method for the electrostatic part [61, 62]. The electrodes, made of copper, were
allowed to dissolve inside an amorphous silica and redeposit upon application/cancellation of a voltage, eventually
leading to the formation of a conductive contact between the two electrodes. The extension of this approach to
more conventional solvents is yet hindered by the di�culty of developing accurate reactive force fields for complex
systems. Another strategy was recently proposed, in which the charge transfer is modeled as a stochastic process,
using methods borrowed from grand canonical Monte Carlo simulations [118]. We can therefore expect that more
simulations of reactive electrochemical interfaces will be proposed in future years.

V. SUMMARY POINTS

1. Over the last 30 years, classical molecular simulations have emerged as an essential tool to investigate the
properties of electrode-electrolyte interfaces: By providing a compromise between an atomic description and a
computational cost allowing a su�cient sampling of relevant electrolyte configurations, they o↵er the possibility
to face the challenge posed by such interfaces bridging electrons in a solid and ions in a solvent, i.e. Quantum
Chemistry and Statistical Physics.

2. We have provided an overview of the models and methods to describe the metallic character of the electrode
and its interactions with the electrolyte solution, and we discussed simulation setups, algorithms and statistical
tools to sample configurations from the statistical ensemble corresponding to constant-potential electrodes.

3. We have illustrated a selection of properties which can be investigated with classical molecular simulations, with
examples on the capacitance, the interfacial structure and dynamics, electrowetting, as well as steps towards
electrochemistry.
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4. The results obtained at this classical level can be compared directly to experiments probing the interface on the
molecular scale, but also serve as reference data for simpler theories of electric double layers, generally used to
interpret macroscopic electrochemical experiments.

5. Even though we restricted ourselves to the simpler yet practically relevant and physically rich case of planar
interfaces and solvent-based liquids, from pure solvent to water-in-salt-electrolytes, some of the methods dis-
cussed here also apply to more complex (e.g. disordered nanoporous) electrodes and to solvent-free electrolytes
(room temperature ionic liquids).

VI. FUTURE ISSUES

1. The classical description of a metallic electrode remains a challenging issue. For example, most electrode
materials do not behave as perfect metals. Electrostatic screening inside the solid can be captured at the
continuum level using Thomas-Fermi theory, an approach which can also be exploited for classical molecular
simulation. Earlier attempts included this e↵ect of screening on the electrolyte via an external potential [119,
120], but new strategies have been proposed very recently, based on fluctuating charges [121] or on mobile
charges [122]. This will be particularly useful to address the e↵ect of the metallic character of the electrode on
the properties of the interfacial fluids, such as the nanoscale capillary freezing of ionic liquids [123].

2. The treatment of non-electrostatic interactions also o↵ers opportunities for improvement. The flexibility of the
electrode has almost never been addressed, even though it might play a role in particular in porous electrodes.
Due to the importance of electrochemical reactions, it is likely that reactive force fields will also gain importance,
if their parametrization can be extended to more complex systems. The availability of accurate reference data
from ab initio calculations, in particular quantum Monte Carlo, will allow a better parametrization of force
fields based on existing models. One can also anticipate that the rapid development of Machine-Learning based
approaches (e.g. force fields based on neural networks) in molecular simulation will also reach the community
working on electrode-electrolyte interfaces.

3. Another promising strategy is o↵ered by hybrid approaches, coupling several levels of descriptions. As an
example, a mesoscopic description of the solvent, based on classical density functional theory, was recently
coupled to a fluctuating charge model of a graphene electrode [96] and used to investigate electron transfer
reactions in a classical solute [124]. In the other direction, the development of classical models of the interface
might also help improving the coupling between the electrolyte and the electrode in QM/MM simulations.

4. From the physical point of view, all these developments should allow to investigate new phenomena such as the
electro-mechanical couplings related to electrotunable lubricity [125] or Electrochemical Quartz Microbalance
Experiments. The ability to take bond formation an breaking into account would also open the way to the study
of the formation of the so-called solid electrolyte interphase (SEI), which plays a crucial role in batteries.
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I. CAPACITANCE
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FIG. 1: Capacitors consisting of graphite electrodes separated by (a) pure water and (b) a 1M aqueous NaCl solution under
a voltage � = 0 V; the color bar indicates the instantaneous charge of the electrode atoms. (c) Distribution of the total
charge of the electrode Q⇤

tot for both systems, computed within Born-Oppenheimer dynamics simulations; solid lines are
normalized Gaussian distributions with the corresponding standard deviation. (d) Contributions to the di↵erential capacitance
per unit area Cdi↵/A at 0 V: from the empty capacitor, Cempty

di↵ , and from the charge fluctuations induced by the electrolyte,

Celectrolyte
di↵ = �

⌦
�Q⇤2

tot

↵
(see Eq. 5 of the main text); the latter corresponds to the variance of the distributions of panel (c).

Panels a, b and d adapted from Ref. [1], Phys. Chem. Chem. Phys., 2020, 22, 10480 by permission of the PCCP Owner
Societies.

Supplementary Figure 1 illustrates the discussion of Section 4.1 of the main text with results from Scalfi et al. for
two capacitors consisting of graphite electrodes separated by pure water or a 1M aqueous NaCl solution, under a
voltage � = 0 V [1]. The variance of the distribution P (Q⇤

tot) of the total charge computed in Born-Oppenheimer
dynamics simulation in the constant-potential ensemble (see Section 3.2.2), provides the contribution of the electrolyte,
Celectrolyte

di↵ = �
⌦
�Q⇤2

tot

↵
, to the di↵erential capacitance. This contribution is large compared to that of the empty

capacitor, Cempty
di↵ , consistently with the observation of Haskins and Lawson for ionic liquids [2] – and with the fact

that it had escaped the attention of the community until recently.

II. ELECTROWETTING

Electrochemistry also goes beyond simple setups with two electrodes facing each other and an electrolyte in between.
For example, electrowetting-on-dielectric setups were proposed for switchable optical devices. An example of design is
made of two concentric electrodes (with di↵erent radii) separated from the liquid, which is made of a water nanodrop,
by a layer of dielectric [4]. The use of constant potential simulations allowed an accurate representation of such
systems at the molecular scale [3], as shown on Figure 2a. Applying a potential between the two electrodes results in
a noticeable spreading of the drop, an e↵ect which is reversible. Figure 2b shows the cross-section profiles at various
applied potentials, from which contact angles can be extracted. In this example the angle varies from 111� at null
voltage down to 84 � at 4 V. Changing the radii of the two electrodes leads to di↵erent values but the spreading
e↵ect persists. At the macroscale, the variation of the contact angle with the applied potential is well predicted
by the Young-Lippmann equation, but simulations showed that it does not hold anymore at the nanometric scales.
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fluctuating charges to capture the conductor behavior. Two
systems are used to check for any dependence of the effects of
electrowetting on the initial contact angle, and to explore the
dynamics of spreading and retraction at varied liquid/substrate
frictions. The target contact angles of water at 111° in System A
and 149° in System B are captured by adjusting the short-
ranged attraction between water and insulator atoms, which
was essentially weaker than for the Pt atoms.
The circular electrodes beneath the hydrophobic layer are

separated by an insulator ring of width 2.6 nm in System A and
2 nm in System B. The electrode under the center (inner
electrode) has the shape of a disk of radius 1.4 nm in System A
and 1.0 nm in System B, and the inner radii of the ring-like
outer electrode in Systems A and B are 4 and 3.6 nm,
respectively. The width of the outer electrodes is 0.6 nm in
both systems. The remainder of the substrate is made of the
insulator atoms. With the selected dimensions, the perimeter of
the drop’s base, Rb, is located above the region between the
electrodes both in the presence and absence of the electric field,
that is, Ri < Rb < Ro. The simulation box is a cube of 98 Å side
with the periodic boundary conditions (PBC) imposed along
the lateral directions. From above, the box is closed by a purely
repulsive wall to prevent the escape of vapor molecules along
the nonperiodic z direction.
Below, we report the magnitude and dynamics of the

response of simulated nanodrop’s shape to the applied voltage,
as done macroscopically in EWOD experiments.
Static Response. By attracting dipolar water molecules, the

local electric field generally enhances materials’ wetting
propensity. The field effect on wetting can be characterized
through nanodrop contact angle calculations.17 Our results for a
set of interelectrode potential differences in the interval 0−4 V
show consistently enhanced spreading under the applied field,
in analogy to experimental34 and continuum-simulation35,36

results. Figure 2 presents the fitted droplet contours at varied

voltages for both System A and B. In Table I, we present
simulated contact angles as functions of the applied voltage for
both systems. We observe no hysteresis in contact angles
provided at least ≃150 ps equilibration is used after each
voltage change.
For constant areal capacitance, C/Asl, the Young-Lippman eq

(eq 1) predicts cos θc to rise in proportion to the voltage

squared. Simulation results for cos θc(U
2) in systems A and B,

Figure 3, however, reveal a sublinear dependence on U2

reminiscent of the saturation behavior observed in macroscopic
experiments. In the absence of charge carriers in the drop, the
saturation cannot be attributed to charge redistribution effects
discussed in ref 25. To explore possible relation to changes in
the system’s capacitance C, we determined C = q/U as a
function of wetted area, Asl(U), in both systems studied. Here,
q is the absolute value of the charge on the electrodes, required
to maintain preset voltage U at the specified extent of the
droplet spreading. Area Asl equals πRb

2, where Rb = Rs sin θ and
Rs is the radius of curvature of the drop with volume V

�
� � �

= � +
⎛
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Drop dimensions for different voltages are included in Table
1 of the SI.
Charge q and capacitance C depend on the shape of the

drop, which requires a finite time to respond to the imposition
of the voltage. The charge equilibration is illustrated in Figure
4. The solid symbols in Figure 5 represent the equilibrium
capacitances for the four values of the droplet base area Asl
corresponding to U = 1, 2, 3, or 4 V. The empty circles
correspond to capacitances at zero voltage, obtained by an
extrapolation to respective Asl. The capacitances at the origin
(hypothetical states with Asl = 0, θc = π) differ between the two

Figure 2. Vertical cross section of the water droplet on the insulator
surface, showing drop’s contours (solid red line) fitted through
simulation data points for different electric fields. The solid line in
magenta represents the position of the surface reference plane.
Left, System A; right, System B.

Table I. Equilibrium Contact Angle θc at Different Values of
Potential Difference, U, between the Electrodes in Systems A
and Ba

U/V θc
A/° θc

B/°

0 111 149
1 106 144
2 99 135
3 90 125
4 84 119

aThe error bar of θc, estimated as the standard deviation of the mean
for 12-15 subaverages in each of the 1.2 ns runs, is rounded up to δθc
∼ ± 1°. (See Supporting Information).

Figure 3. Variation of the cosine of contact angle with square of the
applied potential difference (U) between the electrodes for System
A (black) and System B (blue). Solid circles are simulation results,
with the dotted lines showing a likely interpolation between them.
Error bars correspond to the estimated ±1° uncertainties in θc (See
Supporting Information). Long-dashed lines show predictions from
eq 1.

ACS Nano Article

DOI: 10.1021/acsnano.6b03753
ACS Nano XXXX, XXX, XXX−XXX

C

(a) (b)

VΔΨ

fluctuating charges to capture the conductor behavior. Two
systems are used to check for any dependence of the effects of
electrowetting on the initial contact angle, and to explore the
dynamics of spreading and retraction at varied liquid/substrate
frictions. The target contact angles of water at 111° in System A
and 149° in System B are captured by adjusting the short-
ranged attraction between water and insulator atoms, which
was essentially weaker than for the Pt atoms.
The circular electrodes beneath the hydrophobic layer are

separated by an insulator ring of width 2.6 nm in System A and
2 nm in System B. The electrode under the center (inner
electrode) has the shape of a disk of radius 1.4 nm in System A
and 1.0 nm in System B, and the inner radii of the ring-like
outer electrode in Systems A and B are 4 and 3.6 nm,
respectively. The width of the outer electrodes is 0.6 nm in
both systems. The remainder of the substrate is made of the
insulator atoms. With the selected dimensions, the perimeter of
the drop’s base, Rb, is located above the region between the
electrodes both in the presence and absence of the electric field,
that is, Ri < Rb < Ro. The simulation box is a cube of 98 Å side
with the periodic boundary conditions (PBC) imposed along
the lateral directions. From above, the box is closed by a purely
repulsive wall to prevent the escape of vapor molecules along
the nonperiodic z direction.
Below, we report the magnitude and dynamics of the

response of simulated nanodrop’s shape to the applied voltage,
as done macroscopically in EWOD experiments.
Static Response. By attracting dipolar water molecules, the

local electric field generally enhances materials’ wetting
propensity. The field effect on wetting can be characterized
through nanodrop contact angle calculations.17 Our results for a
set of interelectrode potential differences in the interval 0−4 V
show consistently enhanced spreading under the applied field,
in analogy to experimental34 and continuum-simulation35,36

results. Figure 2 presents the fitted droplet contours at varied

voltages for both System A and B. In Table I, we present
simulated contact angles as functions of the applied voltage for
both systems. We observe no hysteresis in contact angles
provided at least ≃150 ps equilibration is used after each
voltage change.
For constant areal capacitance, C/Asl, the Young-Lippman eq

(eq 1) predicts cos θc to rise in proportion to the voltage

squared. Simulation results for cos θc(U
2) in systems A and B,

Figure 3, however, reveal a sublinear dependence on U2

reminiscent of the saturation behavior observed in macroscopic
experiments. In the absence of charge carriers in the drop, the
saturation cannot be attributed to charge redistribution effects
discussed in ref 25. To explore possible relation to changes in
the system’s capacitance C, we determined C = q/U as a
function of wetted area, Asl(U), in both systems studied. Here,
q is the absolute value of the charge on the electrodes, required
to maintain preset voltage U at the specified extent of the
droplet spreading. Area Asl equals πRb

2, where Rb = Rs sin θ and
Rs is the radius of curvature of the drop with volume V

�
� � �

= � +
⎛
⎝⎜

⎞
⎠⎟R V( ) 3

(1 cos ) (2 cos )s 2

1/3

(3)

Drop dimensions for different voltages are included in Table
1 of the SI.
Charge q and capacitance C depend on the shape of the

drop, which requires a finite time to respond to the imposition
of the voltage. The charge equilibration is illustrated in Figure
4. The solid symbols in Figure 5 represent the equilibrium
capacitances for the four values of the droplet base area Asl
corresponding to U = 1, 2, 3, or 4 V. The empty circles
correspond to capacitances at zero voltage, obtained by an
extrapolation to respective Asl. The capacitances at the origin
(hypothetical states with Asl = 0, θc = π) differ between the two

Figure 2. Vertical cross section of the water droplet on the insulator
surface, showing drop’s contours (solid red line) fitted through
simulation data points for different electric fields. The solid line in
magenta represents the position of the surface reference plane.
Left, System A; right, System B.

Table I. Equilibrium Contact Angle θc at Different Values of
Potential Difference, U, between the Electrodes in Systems A
and Ba

U/V θc
A/° θc

B/°

0 111 149
1 106 144
2 99 135
3 90 125
4 84 119

aThe error bar of θc, estimated as the standard deviation of the mean
for 12-15 subaverages in each of the 1.2 ns runs, is rounded up to δθc
∼ ± 1°. (See Supporting Information).

Figure 3. Variation of the cosine of contact angle with square of the
applied potential difference (U) between the electrodes for System
A (black) and System B (blue). Solid circles are simulation results,
with the dotted lines showing a likely interpolation between them.
Error bars correspond to the estimated ±1° uncertainties in θc (See
Supporting Information). Long-dashed lines show predictions from
eq 1.
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FIG. 2: (a) Representation of the electrowetting-on-dielectric simulated system. Ochre atoms below the aqueous drop constitute
a hydrophobic insulator monolayer. The magenta and blue atoms are the inner and outer platinum electrodes, which are also
separated by an insulator ring (a vertical shift was introduced between the two layers of the substrate material for a better
visualization). (b) Vertical cross section of the water droplet on the insulator surface at various applied voltages. The contact
angle is determined by a fit of the drop contour. Adapted with permission from Ref. [3], ACS Nano 2016, 10, 8536, Copyright
(2016) American Chemical Society.

By performing additional non-equilibrium simulations where the potential was suddenly applied or released, it was
observed that the retraction at zero voltage is much faster than the corresponding spreading, an e↵ect which could
be explained by di↵erent liquid/solid friction properties.
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