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Abstract 
 

Objective: To identify the molecular signaling pathways underlying sudden unexpected 

death in epilepsy (SUDEP) and high-risk SUDEP compared to epilepsy control patients. 

Methods: For proteomics analyses, we evaluated the hippocampus and frontal cortex 

from microdissected post-mortem brain tissue of 12 SUDEP and 14 non-SUDEP epilepsy 

patients. For transcriptomics analyses, we evaluated hippocampus and temporal cortex 

surgical brain tissue from mesial temporal lobe epilepsy (MTLE) patients: 6 low-risk and 

8 high-risk SUDEP as determined by a short (< 50 seconds) or prolonged (≥ 50 seconds) 

postictal generalized EEG suppression (PGES) that may indicate severely depressed brain 

activity impairing respiration, arousal, and protective reflexes. 

Results: In autopsy hippocampus and cortex, we observed no proteomic differences 

between SUDEP and non-SUDEP epilepsy patients, contrasting with our previously 

reported robust differences between epilepsy and non-epilepsy control patients. 

Transcriptomics in hippocampus and cortex from surgical epilepsy patients segregated by 

PGES identified 55 differentially expressed genes (37 protein-coding, 15 lncRNAs, three 

pending) in hippocampus. 

Conclusion: The SUDEP proteome and high-risk SUDEP transcriptome were similar to 

other epilepsy patients in hippocampus and frontal cortex, consistent with diverse 

epilepsy syndromes and comorbidities associated with SUDEP. Studies with larger 

cohorts and different epilepsy syndromes, as well as additional anatomic regions may 

identify molecular mechanisms of SUDEP.   
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Introduction 

 

Sudden unexpected death in epilepsy (SUDEP) affects 1 in 1000 epilepsy patients 

annually and is the leading cause of epilepsy-related deaths.1 SUDEP most often follows 

a generalized tonic-clonic seizure (GTCS), and excludes trauma, drowning, status 

epilepticus, or other causes. Most deaths are unwitnessed, occur during sleep, and the 

patient is found prone. 

 

Studies on SUDEP epidemiology, risk factors, mechanisms, and prevention have 

advanced our understanding, although pathophysiological understanding remains 

limited.2,3 After a GTCS, prolonged (>50 sec) postictal generalized EEG suppression 

(PGES) may increase SUDEP risk and may be a SUDEP biomarker, as severe prolonged 

reduced brain activity impairs arousal, respiration, and other autonomic functions.4 

However, we cannot predict why some low-risk patients become SUDEP patients, high-

risk patients survive for decades, and other patients succumb to SUDEP despite 

recovering from many earlier GTCS. SUDEP patients may harbor pathogenic gene 

variants in brain and heart ion channels,5-7 but a role in SUDEP pathogenesis remains 

speculative. Animal models of genetic epilepsies and chemo-induced seizures implicate 

abnormalities in respiration, arousal, and parasympathetic hyperactivity in SUDEP 

pathogenesis.1,8-10 However, the neuropathology of SUDEP parallels findings in non-

SUDEP epilepsy patients.11,12 Potential proteomic and transcriptional molecular 

signatures associated with SUDEP have not been studied.  

 

Our study investigated the molecular signaling networks associated with SUDEP in brain 

regions implicated in ictogenesis,13 from localized proteomics in autopsy hippocampal 
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CA1-3, dentate gyrus, and superior frontal gyrus from SUDEP and non-SUDEP epilepsy 

patients and transcriptomics in hippocampus and temporal cortex from low and high-risk 

SUDEP (PGES < or ≥ 50 seconds) epilepsy surgical tissue. 

Methods 

Standard Protocol Approvals, Registrations, and Patient Consents: Autopsy brain tissue 

and clinical information from SUDEP or non-SUDEP epilepsy patients was obtained 

with approval by the New York University School of Medicine Institutional Review 

Board (IRB). All next of kin provided written informed consent. 

 

Human Brain Tissue for Proteomics: Post-mortem brain tissue from epilepsy patients 

who died from SUDEP or other causes was obtained through the North American 

SUDEP Registry (NASR), which began enrolling patients in October 20112, with 

approval by the New York University School of Medicine Institutional Review Board 

(IRB). Causes of death were classified (OD, DF) into non-SUDEP epilepsy and SUDEP 

(definite SUDEP, definite SUDEP plus, and probable SUDEP).1,2 Lifetime GTCS history 

was determined from interviews and medical records, representing the best estimate for 

each patient and as described previously for these patients.2 After neuropathological 

review (TW, AF), brain tissue was processed into formalin fixed paraffin embedded 

(FFPE) blocks and sections were stained with luxol fast blue counterstained with 

hematoxylin & eosin (LFB/H&E). Archival time for brain tissue storage in formalin was 

less than or equal to three years, thus patients were chosen from those that were enrolled 

in NASR between July 2014 to March 2017. Patients were age and sex matched from 

available NASR cases. There were no significant differences in age at death (p=0.9190, 

unpaired t-test), disease duration (p=0.7295), disease onset (p=0.4797), or sex 
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(p>0.9999). Clinical and neuropathologic data on the 14 non-SUDEP epilepsy and 12 

SUDEP patients are summarized in Table 1. Group sizes were determined based on the 

number of patients with significant findings as previously reported,14-16 including our 

earlier studies in epilepsy patients with similar methods.17,18 

 

Laser Capture Microdissection for Proteomics: FFPE brain tissue blocks containing either 

hippocampus (lateral geniculate nucleus level)19 or superior frontal gyrus were sectioned 

at 8 µm and collected onto laser capture microdissection (LCM) compatible PET slides 

(Leica). Sections were stained with cresyl violet to localize regions of interest for LCM20 

and air dried overnight in a loosely closed container. LCM was used to individually 

microdissect 10 mm2 from the hippocampal CA1-3 region and superior frontal cortex 

(layers I-IV), and 4 mm2 from the hippocampal dentate gyrus into LC-MS grade water 

(Thermo Scientific). Microdissected samples were centrifuged for 2 minutes at 14,000g 

and stored at -80˚C. LCM was performed at 5X magnification with a LMD6500 

microscope equipped with a UV laser (Leica). 

 

Label-free quantitative MS Proteomics: Label-free quantitative MS assessed differential 

protein expression, as described previously.18,2122 FFPE cuts were incubate in 50 mM 

ammonium bicarbonate (ABC) solution containing 20% (v/v) acetonitrile (ACN) for 1h 

at 95oC followed by 2h at 65oC. Disulfide bonds were reduced with 10 mM DTT (1h at 

57oC) and alkylated with 30 mM IAA (45 min at RT in the dark). Proteins were 

enzymatically digested into peptides with 300 ng of trypsin (sequencing grade, Promega) 

overnight at RT. Digestions were quenched by acidification with Trifluoroacetic acid 

(TFA) and peptides were concentrated and desalted on POROS R2 C18 beads. Eluates 

were dried in a speedvac and resuspended in 0.5% AcOH. LC separation was performed 
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online on EASY-nLC 1200 (Thermo Scientific) utilizing a Acclaim PepMap 100 (75 um 

x 2 cm) precolumn and a PepMap RSLC C18 (2 um, 100A x 50 cm) analytical column. 

Peptides were gradient eluted from the column directly into the Orbitrap Fusion Lumos 

mass spectrometer using a 165 min ACN gradient (A=2% ACN 0.5% AcOH / B=80% 

ACN 0.5% AcOH). The flowrate was set at 200 nl/min. The mass spectrometer was 

operated in a data-dependent acquisition mode. High resolution full MS spectra were 

acquired with a resolution of 240,000, an AGC target of 1e6, with a maximum ion 

injection time of 50 ms, and scan range of 400 to 1500 m/z.  Following each full MS scan 

data-dependent HCD MS/MS scans were acquired in the ion trap (scan rate rapid, AGC 

target of 2e4, NCE of 32). Precursor isolation window were set at 2 Da. 

 

Proteomics Computational Analysis:  MS data were analyzed as previously 

described.1821,22 RAW MS data were processed using the MaxQuant23 software (v. 

1.6.3.4) and the SwissProt human protein database (www.uniprot.org) containing 20,421 

entries. Database including a common list of common laboratory contaminants (248 

entries) were also used in the search. All peptide-spectrum matches, peptide and protein 

identifications were filtered to get a desired FDR level below 1% (calculated using decoy 

database approach). For the MS/MS search enzyme specificity was set to trypsin (up to 2 

miscleavages), precursor mass tolerance was set to 20 ppm with subsequent non-linear 

mass recalibration. Carbamidomethylation of cysteine was set as a fixed modification, 

protein N-term acetylation and methionine oxidation were set as a variable modifications. 

Match between runs (MBR) algorithm was enabled to transfer peptide feature 

identifications between MS runs based on LC retention time (0.7 min tolerance after 

initial recalibration) and precursor mass tolerance. Label-free quantification (LFQ) were 
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performed used built in “maxLFQ” algorithm24 and normalization was performed 

separately for all samples within each ROI. 

Data analysis was performed in Perseus framework25 (http://www.perseus-

framework.org/), R environment (http://www.r-project.org/), or GraphPad Prism.  

 

Proteomics Statistical Analyses: The protein expression matrix (n=4,129) was filtered to 

contain only proteins that were quantified in ≥ 8 replicates in at least 1 condition (SUDEP 

or non-SUDEP epilepsy) in any brain region (n=2,847). Subsequently missing values 

were imputed from the intensity distribution simulated low-intensity protein features 

(width of 0.3 and downshift of 1.8 relative to measured protein intensity distribution). An 

unpaired two-tailed t test was performed for PCA1 in each brain region to determine 

significance of separation in the SUDEP and non-SUDEP epilepsy patients. All other 

analyses were done using nonimputed data. A Student’s two sample t-test was used to 

access statistical significance of the changes in protein abundance between conditions. 

Obtained p-values were adjusted for multiple hypothesis testing using permulation-based 

FDR to a cutoff of 5%.  Cell type specific annotations were included in the data available 

on Dryad (Table e-3) and on volcano plots in Fig. 1F-H, derived from previous data.26 

Annotations were included when a protein had only one associated cell type after 

removing cerebellar annotations and when the annotation included more than one 

associated cell type (both excitatory and inhibitory neuron annotations) and were thus 

assigned a general neuron annotation, for a total of 1066 possible annotations. 

 

Proteomics Correlation: For the correlation in protein abundance between conditions and 

brain regions we used averaged over replicates LFQ values. A Pearson’s correlation was 

calculated for proteins detected in both SUDEP and non-SUDEP epilepsy patients for 
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each brain region, with 2715 proteins for hippocampal CA1-3, 2464 proteins for dentate 

gyrus, and 2695 proteins for the frontal cortex. 

 

 

Immunohistochemistry: Immunohistochemistry was performed to validate the identified 

protein of interest, ermin (ERMN) as previously described.18,27 Briefly, FFPE sections (8 

µm) were deparaffinized and rehydrated through a series of xylenes and ethanol dilutions. 

Heat-induced antigen retrieval was performed with 10 mM sodium citrate, 0.05% triton-x 

100; pH6. Blocking with 10% normal donkey serum was followed by ERMN primary 

antibody (1:200, Sigma HPA038295) overnight at 4°C. Sections were incubated with 

donkey anti-rabbit Alexa-Fluor 647 secondary antibody (1:500, Thermofisher Invitrogen) 

and coverslipped.  

 

Image semiquantitative analysis: Whole slide scanning was performed at 20X 

magnification with a NanoZoomer HT2 (Hamamatsu) microscope using the same settings 

for each slide. One image containing the hippocampal CA1-3 region was collected for 

each patient, 11 non-SUDEP epilepsy and 11 SUDEP patients. Images were analyzed in 

Fiji ImageJ to compare the amount of ERMN in SUDEP and non-SUDEP epilepsy 

patients. The same binary threshold was used for all images to determine the number of 

ERMN positive pixels in each image, which was reported as a percentage of the total 

image area. An unpaired t-test was performed for statistical analysis; p-value <0.05 was 

considered significant. 

 

Confocal imaging was used to collect representative images of ERMN 

immunohistochemistry, using a Zeiss LSM800 confocal microscope with the same 
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settings on each slide with a Plan-Apochromat 20X/0.8 M27 objective and a pinhole of 

38 µm. 

 

RNA-sequencing datasets: Small RNA-sequencing (small RNAseq) and RNA-

sequencing (RNAseq) data sets were retrieved form the European Genome-phenome 

Archive (accession number: EGAS00001003922) from MTLE patients undergoing 

surgical resection and with available PGES duration greater than 1 second.17 The patients 

were age and sex matched, with no significant differences in age at surgery (p=0.6622, 

unpaired t-test), disease duration (p=0.4391), disease onset (p=0.4612), or sex 

(p>0.9999). Small RNAseq and RNAseq data was retrieved for 6 patients with PGES < 

50 sec, indicating a potential low-risk for SUDEP, and 8 patients with PGES ≥ 50 sec, 

indicating a potential high-risk for SUDEP as previously described.4 Table 2 summarizes 

the clinical characteristics of these patients. PGES occurrence and duration was assessed 

by two epileptologists (CS, RT). 

 

Bioinformatic analysis of RNAseq data: Bioinformatic analysis was performed as 

described previously.17 Briefly, library normalization and differential expression testing 

was carried out using the R package DESeq2. The Wald test identified differentially 

expressed genes using a Benjamini-Hochberg adjusted p-value <0.05 for significance. 

Cell type specific annotations were included (Dryad table e-4, table e-5), and on volcano 

plots in Fig. 2C, 2E, derived from previous data.26 Annotations were included when a 

protein had only one associated cell type after removing cerebellar annotations and when 

the annotation included more than one associated cell type (both excitatory and inhibitory 

neuron annotations) and were thus assigned a general neuron annotation, for a total of 

1066 possible annotations. 
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A Reactome pathway enrichment analysis was performed using the R package 

ReactomePA. The differentially expressed genes from the RNAseq differential expression 

analysis were put into R and tested for over-representation of enriched Reactome 

pathways using hypergeometric testing. Pathways with a Benjamini-Hochberg corrected 

p-value <0.05 were considered significantly enriched. 

 

Bioinformatic analysis of small RNAseq data: Bioinformatic analysis of the small 

RNAseq data was performed as described previously.17 Briefly, library normalization and 

differential expression testing was carried out using the R package DESeq2. The Wald 

test identified differentially expressed genes with a Benjamini-Hochberg adjusted p-value 

<0.05 considered significant. 

 

RNAseq validation by qPCR: The gene expression of GDNF Family Receptor Alpha 1 

(GFRA1) was assessed in the same cohort of samples used in the RNAseq analysis for 

which sufficient RNA remained (PGES < 50s, n=4, PGES ≥ 50s, n=7). PCR primers 

based on the reported cDNA sequences were designed using the NCBI primer design 

tool.28 The sequences for the forward and the reverse primers of GFRA1 were 5’-TCT 

TCC AGC CGC AGA AGA AC-3’ and 5’-AAC AGT GGG GAC AAA CTG GG-3’ 

respectively. 700 ng of total RNA was reverse transcribed into cDNA using oligodT 

primers. For each qPCR reaction, a mastermix was prepared as follows: 1 µl cDNA, 2.5 

µl of 2x SensiFAST SYBR Green Reaction Mix (Bioline Inc, Taunton, MA, USA), 0.2 

µM of both reverse and forward primers and the PCRs were run on a Roche Lightcycler 

480 thermocycler (Roche Applied Science, Basel, Switzerland). Each sample and primer 

pair was run in triplicates. Data quantification was performed as previously described 17 
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relative to the reference genes, Eukaryotic Translation Elongation Factor 1 Alpha 1 

(EEF1A1) and Chromosome 1 Open Reading Frame 43 (C1orf43). The normalized ratio 

was compared between the two groups (Mann-Whitney U test); p <0.05 was considered 

significant.  

 

Data availability: All data needed to evaluate the conclusions in the paper are present in 

the paper and on Dryad at https://doi.org/10.5061/dryad.dfn2z3508. Additional data 

related to this paper may be requested from the authors.  

 

 

Results  

 

Proteome of SUDEP and non-SUDEP epilepsy autopsy patients 

 

The differential expression of proteins in autopsy SUDEP (n=12) and non-SUDEP 

(n=14) epilepsy patients was evaluated using label-free quantitative mass spectrometry 

(MS) in the microdissected hippocampal CA1-3 region, dentate gyrus, and superior 

frontal cortex, as these regions have been implicated in ictogenesis and may also be 

influenced by seizure activity.13 Patient histories are summarized in Table 1 and Fig. 1A-

B. A principal component analysis (PCA) did not distinguish SUDEP and non-SUDEP 

epilepsy patients in any of the studied brain regions (Fig. 2A-C). The main source of 

variation in these patients, PCA1, did not show a significant difference when comparing 

SUDEP and non-SUDEP epilepsy patients in each brain region by an unpaired two-tailed 

t test, as depicted by a box plot in Fig. 2A-C. Lifetime GTCS burden, associated with an 

increased SUDEP risk,1 was evaluated to determine whether this factor may contribute to 
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protein differences as seen by a separation of groups. From patients with available data (9 

SUDEP and 8 non-SUDEP epilepsy patients), 55.6% of SUDEP and 62.5% of non-

SUDEP epilepsy patients had > 10 lifetime GTCS, and 22.2% of SUDEP patients and 

12.5% of non-SUDEP epilepsy patients had > 100 lifetime GTCS. Lifetime GTCS 

frequency did not contribute to group differences in the PCA (Fig.2A-C). There was no 

enrichment in SUDEP or non-SUDEP epilepsy patients with > 10 or > 100 lifetime 

GTCS by a Fisher’s exact test. Further, in the PCA, there was no relationship of SUDEP 

status to neuropathology (focal cortical dysplasia (FCD, n = 10), hippocampal dentate 

gyrus dysgenesis (n = 7), hippocampal sclerosis (n = 3), and gliosis (n = 3)). Of note, 

microdissected regions did not necessarily contain observed FCD as it may have been 

present in other brain regions. Similarly, neuropathology was unrelated to SUDEP status 

(FCD in 50% of SUDEP patients versus 28.6% of non-SUDEP epilepsy patients, Fisher’s 

exact test, p = 0.4216).  

 

There were no significant differences in protein expression between SUDEP and non-

SUDEP epilepsy patients in any brain region (Fig. 3A-C, Dryad fig. e-1A-C, table e-3). 

Further, a correlation of LFQ values for all proteins showed the similarity in protein 

expression when comparing SUDEP and non-SUDEP epilepsy patients in each brain 

region by a Pearson’s correlation (p < 0.0001) with the corresponding R2 values being 

≥0.98 (Dryad, fig. e-1). Brain cell type specific annotation was evaluated in the 2847 

identified proteins, derived from previous methods,26 with 19.8% (564/2847) proteins 

having an annotation while the remaining 80.2% did not and were more ubiquitously 

expressed or cell type is unknown. Most (78.2%; 502/564) annotated proteins were 

generally neuronal, with excitatory neuron proteins predominating (48.1%; 271/564) 

(Fig. 3A-C, Dryad table e-3). Some proteins showed a trend for altered expression in 
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SUDEP patients (p<0.01; Dryad table e-1-2), but these were not statistically significant at 

a 5% FDR. Several of these protein changes have been reported in epilepsy animal 

models and non-epilepsy patients or include proteins encoded by genes in which 

mutations have been previously linked to epilepsy. Yet, none of the proteins trending for 

altered expression in this study (Dryad table e-1-2) have been previously linked to 

SUDEP pathogenesis. Ermin (ERMN) had the strongest trend for difference in SUDEP 

with a 2.8-fold decrease in the hippocampal CA1-3 region when comparing SUDEP and 

non-SUDEP epilepsy patients by MS (Dryad  fig. e-2A). Further, ERMN was detected in 

more non-SUDEP epilepsy than SUDEP patients by MS, indicating lower abundance of 

this protein in SUDEP. Validation of the quantitative MS findings with 

semiquantification of immunohistochemistry (Dryad fig. e-2B) also showed a decrease of 

ERMN in SUDEP patients with a 1.3-fold change but was not significant (student’s 

unpaired t test, p-value = 0.4871). Because ERMN may play a role in myelinogenesis and 

myelin maintenance, we reviewed the mature oligodendrocyte marker myelin basic 

protein (MBP) but found no difference between SUDEP and non-SUDEP epilepsy 

patients in the hippocampal CA1-3 region by MS (Dryad fig. e-2C). 

 

Analysis of RNAseq and small RNAseq in low and high-risk SUDEP patients  

 

To determine whether there is a pathological difference in epilepsy patients of low 

(PGES <50 seconds, n=6) and high (PGES ≥50 seconds, n=8) risk of SUDEP, RNAseq 

and small RNAseq analyses were performed on resected surgical frozen hippocampal and 

temporal cortex tissue. Patient histories are summarized in Table 2 and Fig. 4A. A t-SNE 

(t-distributed stochastic neighbor embedding) plot revealed that anatomical region rather 

than PGES segregated patients (Fig. 4B). A differential expression analysis comparing 
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the hippocampus of low and high-risk SUDEP patients identified 55 differentially 

expressed genes: 11 were decreased and 44 were increased in high-risk SUDEP patients 

(Fig. 4C, Dryad table e-4). Brain cell type specific annotation was evaluated in the 55 

differentially expressed genes in the hippocampus, derived from previous methods,26 with 

14.5% (8/55) of genes having a cell type specific annotation: 4 generally neuronal, 3 

excitatory neuron, and 1 inhibitory neuron. The dominant transcripts for the differentially 

expressed genes in hippocampus were: 37 protein-coding, 15 long non-coding RNAs 

(lncRNAs), and three awaiting confirmation (Fig. 4D). A Reactome pathway analysis on 

the 55 significant genes in the hippocampus did not reveal a significant association with 

any signaling pathways. Several of these genes have been associated with epilepsy 

human disease and have been studied in animal models, however none of the genes in 

Table 3 have been linked to SUDEP pathogenesis. The most significantly decreased 

protein-coding gene in the high-risk SUDEP patients, GFRA1, was validated by real time 

quantitative PCR (RT-qPCR, Table 3, Dryad fig. S3). In accordance with the RNAseq 

analysis, GFRA1 was decreased 1.7-fold in the high-risk SUDEP patients (Mann-

Whitney U test, p-value = 0.0121). In the temporal cortex, one protein-coding gene 

(SLC6A5) with an “undefined” cell type annotation was significantly decreased in the 

high-risk SUDEP patients, within this small group of patients (Fig. 4E, Dryad table e-5). 

No genes were differentially expressed in the small RNAseq analyses in the hippocampus 

and temporal cortex (Dryad table e-6-7). 

Comparison of SUDEP Proteome to High-risk SUDEP Transcriptome 

Comparing the 37 differentially expressed protein-coding genes in the RNAseq analyses 

to the proteomics analyses, only four (GRM2, ERC2, CRTC1, AHNAK2) were detected 

in the proteomics analyses. Two (GRM2, ERC2) were detected in most patients of the 
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hippocampal CA1-3 region but showed no trend in differential expression for SUDEP 

patients compared to non-SUDEP epilepsy patients in the proteome. Additional analysis 

on the fold change of proteins in the hippocampus with a p<0.05 (before the FDR at 5%, 

n=83 proteins) that match RNA gene IDs (n=83 gene IDs) do not show a significant 

correlation (p=0.3510, R2=0.01075, Pearson correlation). 

 

Discussion  

 

Our study compared SUDEP or high-risk SUDEP patients to epilepsy controls and 

revealed no differentially expressed proteins in the hippocampus and frontal cortex and 

limited transcriptomic changes in the hippocampus and temporal cortex. Thus, the 

proteome in SUDEP and transcriptome in high-risk SUDEP largely reflects other 

epilepsy patients, consistent with the diverse spectrum of syndromes and severities 

associated with SUDEP.2 In the hippocampus, the few differentially expressed genes 

identified in high-risk SUDEP patients included a high proportion of lncRNAs (15/55, 

27%). Given that we detect robust proteome18 and transcriptome17 differences in the 

hippocampus and cortex with similar group sizes for epilepsy and non-epilepsy control 

patients, our data in this study suggest that these brain regions are not especially or 

uniquely affected in SUDEP. 

 

To validate the label-free quantitative MS findings, immunohistochemistry was used to 

confirm changes in ermin (ERMN) expression, as this protein had the strongest trend for 

difference in SUDEP. Immunohistochemistry results corroborated a trend in a decreased 

fold change of ERMN in the hippocampal CA1-3 region of SUDEP patients when 
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compared to non-SUDEP epilepsy patients, although this similarly was not significant. 

Further, ERMN was not significantly altered in the current RNAseq study or in our 

previous proteomics analyses between non-SUDEP epilepsy and controls.18 However, in 

our previous RNAseq study between MTLE and non-epilepsy controls, ERMN was 

decreased17 and is reportedly decreased in a murine model of status epilepticus.29 

Expressed by oligodendrocytes, ERMN regulates cytoskeleton arrangement during 

myelinogenesis and myelin sheath maintenance.30 Myelin damage may occur after 

prolonged seizures and its loss may promote further seizure activity.31 We found that the 

mature oligodendrocyte marker myelin basic protein (MBP) is decreased in epilepsy 

patients compared to non-epilepsy control patients,18 and it is decreased in the 

hippocampus of an animal model of epilepsy.32 However, we found no further decrease 

in MBP expression in SUDEP or high-risk SUDEP patients when compared to controls in 

this study, nor was MBP different in our recent RNAseq analysis between MTLE and 

non-epilepsy controls.17 Overall, ERMN is significantly decreased in surgical MTLE 

versus non-epilepsy controls at the transcriptomic level17 and trending to decrease in 

protein expression of SUDEP versus non-SUDEP epilepsy, indicating that ERMN may 

be decreased in response to the elevated seizure activity that may be seen in refractory 

epilepsy that requires surgery and in some patients with SUDEP. The affect on 

myelination, as measured by MBP, is only apparent in these patients for protein 

expression rather than gene expression in epilepsy versus non-epilepsy controls with no 

further decrease in SUDEP. Thus, further investigation should assess the potential role of 

ERMN in epilepsy and SUDEP, and whether reduced ERMN may reflect the severity of 

pathology resulting from seizure burden in some SUDEP patients. 
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The RNAseq and small RNAseq analyses showed moderate changes in the hippocampus 

and minimal differences in the temporal cortex in high-risk compared to low-risk SUDEP 

MTLE patients. Interestingly, 15/55 differentially expressed genes in the hippocampus 

were lncRNAs. LncRNAs are an understudied transcriptomic component implicated in 

many neurological disorders,33 but few studies have been done regarding their role in 

epilepsy or SUDEP.34 Among the protein-coding genes differentially expressed in the 

hippocampus, GFRA1 (GDNF Family Receptor Alpha 1) was the most decreased. GDNF 

(glial cell-derived neurotrophic factor) binds to GFRA1 and plays a role in neuronal 

survival and differentiation, including that of GABAergic interneurons.35 Localized 

release of GDNF in the hippocampus of an animal model of epilepsy suppresses seizure 

activity.36 Thus, decreased GFRA1 may reflect a change in cell survival or result in 

reduced GDNF mediated seizure suppression in high-risk SUDEP patients. Of the top 20 

differentially expressed genes (Table 3), SGCG (Sarcoglycan Gamma) had the largest 

change at a 22.0-fold increase (adjusted p=0.0023) in the high-risk SUDEP patients. 

SGCG is expressed in the cerebrovascular system and may localize to vascular smooth 

muscle cells, potentially involved in membrane contractility, stabilization, and signaling 

in the associated dystrophin complex affecting neurovascular coupling.37 Its neural role is 

unknown, but aberrant cerebrovascular organization occurs in MTLE.38 Additional 

studies are needed to determine how the altered levels of some protein-coding genes and 

lncRNAs we identified may affect mechanisms related to SUDEP risk. 

Protein expression in the brain has rarely been studied in human SUDEP. Hippocampal 

HSP70 positive neurons are reportedly increased in post-mortem SUDEP patients when 

compared to non-SUDEP epilepsy patients, but similar to surgical epilepsy patients, 

suggesting this is likely related to ante-mortem neuronal injury perhaps due to a terminal 
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seizure in SUDEP patients.39 HSP70 expression was similar in both the proteomic and 

RNAseq analyses among our patients. Another immunohistochemistry study found few 

differences in the hippocampus, amygdala, and medulla of post-mortem SUDEP 

compared to non-SUDEP epilepsy and non-epilepsy control patients with minimal 

significant changes reported for several markers of inflammation (CD163, HLA-DR, 

GFAP), compromised blood brain barrier (IgG, albumin), and HIF-1α, a transcriptional 

regulator of cellular responses to hypoxia.12 We found increased GFAP in the 

hippocampus of three epilepsy patients (3/26, 11.5%); two had gliosis independent of 

SUDEP status. GFAP was not increased in most non-SUDEP epilepsy patients when 

compared to non-epilepsy control patients,18 but it was increased in the hippocampus of 

one (1/14, 7.1%) epilepsy patient with hippocampal gliosis. Increased GFAP occurs in 

some epilepsy patients and after prolonged seizures in rodent models.40 Further, GFAP 

was not altered in MTLE patients with high-risk of SUDEP in the current RNAseq 

analysis, but this gene was significantly increased in the hippocampus of MTLE patients 

compared to non-epilepsy controls.17  

Our study had some limitations. The LCM derived label-free quantitative MS allows for 

detection of localized protein changes that would not be possible using bulk homogenate, 

however this technique detects a lower quantity of membrane proteins that are relatively 

insoluble with this method. Thus, we may not detect differential expression of some 

membrane proteins, although downstream signaling pathways reflecting their functional 

activity may be identified. Additional limitations include the heterogeneity of epilepsies, 

seizure types, and neuropathology due to available patients, and further reinforces the 

importance of banking various brain tissue samples from SUDEP patients. Our study was 

powered to identify proteomic differences across the representative SUDEP group rather 
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than epilepsy-subgroups. Potential pathogenic gene variants were not assessed in our 

patients. Our proteomics analyses were based on NASR referrals, skewed by major 

referral sources: the San Diego Medical Examiner Office (mainly low socioeconomic 

white and Hispanic patients) and direct referrals (mainly high socioeconomic white 

patients). For the RNAseq analyses, surgical patients had treatment-resistant MTLE. 

PGES duration as a biomarker of SUDEP risk has not been validated, can vary within the 

same patient for different seizures, and the number video EEG-recorded GTCS in each 

patient was limited.4,41,42 Thus, group differences may reflect sampling bias. Further, the 

number of patients used for the RNAseq temporal cortex analyses was low. Finally, 

further investigation is needed in brain regions implicated in SUDEP, including the 

brainstem, as it modulates autonomic functions and it has been suggested that seizure-

induced postictal depression of arousal, respiratory, and cardiac function may occur in 

SUDEP.43,44 

 

In summary, in contrast to robust differences we found in proteomic and RNAseq 

analyses between epilepsy and non-epilepsy patients,17,18 there were no differences 

detected in the proteomic analyses of autopsy tissue from SUDEP and non-SUDEP 

epilepsy patients and limited transcriptomic differences comparing surgical tissue from 

low and high-risk SUDEP patients in the brain regions analyzed, consistent with the 

diverse epilepsy syndromes and comorbidities associated with SUDEP and indicating that 

epilepsy subtypes and additional brain regions should be examined further. 
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Figures and Tables: 
 
Figure 1. SUDEP and non-SUDEP epilepsy patient history. A) Patient history is 

summarized for autopsy SUDEP and non-SUDEP epilepsy patients. B) A summary of 

lifetime GTCS history burden for the patients in this study with known information.  
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Figure 2. Proteomics PCA analyses in hippocampus, dentate gyrus, and frontal 

cortex of SUDEP and non-SUDEP epilepsy patients. A-C) A principal component 

analysis (PCA) of the proteomics analyses shows the indicated variation in each brain 

region of SUDEP patients (n=12) and non-SUDEP epilepsy patients (n=14).  There is no 

separation by SUDEP status or lifetime GTCS history burden. An unpaired two-tailed t 

test of PCA1 between the SUDEP and non-SUDEP epilepsy groups in each brain region 

was not significant, as depicted by a box plot with bars indicating minimum and 

maximum values. ND = not determined.  
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Figure 3. Proteomics analyses in hippocampus, dentate gyrus, and frontal cortex of 

SUDEP and non-SUDEP epilepsy patients. A-C) Volcano plots indicate that there are 

no significantly different proteins in the hippocampal CA1-3 region, dentate gyrus, or 

frontal cortex of SUDEP and non-SUDEP epilepsy patients as determined by a student’s 

two tailed t-test with permutation correction at a 5% FDR. The top proteins with the 

lowest p values in each brain region are noted. Cell type specific protein annotation is 

included, with the most predominant listed in decreasing order in the legend. Proteins 

annotated “General – Neuron” have both excitatory and inhibitory neuron annotations. 
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Figure 4. RNAseq in hippocampus and temporal cortex with low and high-risk 

SUDEP, as determined by PGES. A) Patient history is summarized for low and high-

risk SUDEP patients. B) The t-SNE (t-distributed stochastic neighbor embedding) plot of 

RNAseq data shows separation by brain region rather than SUDEP risk status. C) A 

volcano plot shows the results of differential expression analysis of the hippocampus 

from low-risk (n=4) and high-risk (n=8) SUDEP patients. Eleven genes were decreased 

and 44 genes were increased in hippocampus of high-risk SUDEP patients. The Wald test 

identified differentially expressed genes using a Benjamini-Hochberg adjusted p-value 

<0.05 for significance. Cell type specific gene annotation is included, with the most 

predominant listed in decreasing order in the legend. Genes annotated “General – 

Neuron” have both excitatory and inhibitory neuron annotations. D) Biotypes of 

differentially expressed genes are depicted in the hippocampus for high-risk SUDEP 

compared to low-risk SUDEP patients. Of the 55 differentially expressed genes 67.3% 

were protein-coding genes, 27.3% were long non-coding RNAs, and 5.5% are yet to be 

experimentally confirmed (TEC). E) A volcano plot shows the results of differential 

expression analysis in the temporal cortex from low-risk (n=2) and high-risk (n=3) 

SUDEP patients. One gene was decreased and no genes were increased in the temporal 

cortex. The Wald test identified differentially expressed genes using a Benjamini-

Hochberg adjusted p-value <0.05 for significance.  
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Table 1. Epilepsy and SUDEP Patients in Proteomics Analyses 
 

Table 1. Epilepsy and SUDEP Patients in Proteomics Analyses 

ID 
Age 
(yr) Sex 

Age of 
onset 
(yr) 

Disease 
Duration 

(yr) 
Seizure 

Type 

Total 
Lifetime 
GTCS 

COD & 
SUDEP 
Status 

PMI 
(hr) 

Relevant 
Neuropathology 

 
 
Brain 
Regio
n 

Epilepsy 
    

  
  

 
      

 

1 36 M 29 8 Unclassi
fied 

10-100 overdose/ 
intoxication 

20   HP, 
DG, 
FC 

2 54 M 28 1 ND <10 accident/ 
trauma 

<24 mild gliosis, 
contusion, 
disorganization  

HP, 
DG 

3 64 F ND ND Generali
zed, 

Unclassi
fied 

ND overdose 18   HP, 
DG 

4 50 M 0.5 49.5 Focal 100-500 choking on 
foreign 
object 

15   FC 

5 9 F 1.5 8 ND 10-100 drowning 30 FCD IIA HP, 
DG 

6 45 M 25 20 Focal 10-100 suicide 27 dysgenesis HP, 
DG 

7 36 M 24 12 Focal <10 drowning 48 sclerosis HP, 
DG, 
FC 

8 45 M 2 43 Unclassi
fied 

<10 suicide <48   HP, 
DG, 
FC 

9 24 F ND ND ND ND drowning <48 dysgenesis HP, 
DG, 
FC 

10 28 M 5 22 Unclassi
fied 

ND accident/ 
trauma 

<48 dysgenesis HP, 
DG, 
FC 

11 22 M ND ND Unclassi
fied 

ND drowning <48 FCD IA HP, 
DG, 
FC 

12 34 F 1.5 32 Focal 10-100 pulmonary 
embolism 

13 FCD IB HP, 
DG, 
FC 

13 32 M 19 10 ND ND ethanol 
intoxication 
and 
clobazam 
overdose 

19 FCD IIA, 
Wernicke’s 
encephalopathy  

HP, 
DG, 
FC 

14 49 M 0.6 48.4 Unclassi
fied 

ND aspiration 43 dysgenesis, 
sclerosis, gliosis, 
hemisphere 
atrophy 

HP, 
DG, 
FC 

SUDEP 
  

     
      

 

1 48 M 46 2 Focal <10 definite 
SUDEP 
plus 

<72   HP, 
DG, 
FC 

2 45 F 10 35 Focal 10-100 definite 
SUDEP 

49 FCD IA HP, 
DG, 
FC 

3 48 M 0.8 42 Focal 100-500 definite 
SUDEP 

<48 FCD IA, 
dysgenesis 

HP, 
DG, 
FC 

4 27 M 13 14 Generali
zed 

10-100 probable 
SUDEP 

<48 FCD IIA HP, 
DG, 
FC 

5 32 M 18 10 Generali
zed, 

Unclassi
fied 

100-500 probable 
SUDEP 

<48 mild FCD IIA, 
gliosis 

HP, 
DG, 
FC 

 

Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.  

 



 
6 20 F 9 11 Generali

zed, 
Unclassi

fied 

10-100 definite 
SUDEP 

<48 dysgenesis HP, 
DG, 
FC 

7 28 M 27 1 Focal <10 definite 
SUDEP 

25 dysgenesis HP, 
DG, 
FC 

8 30 F ND ND Unclassi
fied 

ND definite 
SUDEP 

23   HP, 
DG, 
FC 

9 55 M 5 50 Focal ND definite 
SUDEP 
plus 

<48 sclerosis, infarct HP, 
DG, 
FC 

10 20 M 9 11 ND 0 definite 
SUDEP 

<48 FCD IIA HP, 
DG, 
FC 

11 44 M 4 40 Unclassi
fied 

ND definite 
SUDEP 

<48 FCD IIA HP, 
DG, 
FC 

12 49 F 41 9 Unclassi
fied 

<10 definite 
SUDEP 

<24 venous angioma HP, 
DG, 
FC 

yr = year, hr = hours, ND = not determined, GTCS = generalized tonic-clonic seizure, COD = 
cause of death, PMI = post-mortem interval, FCD = focal cortical dysplasia, HP = hippocampus, 
DG = dentate gyrus, FC = frontal cortex, dysgenesis = dysgenesis of the hippocampal dentate 
gyrus, sclerosis = hippocampal sclerosis  
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Table 2. Epilepsy Patients with Low or High-Risk of SUDEP in RNAseq Analyses 
 
Table 2. Epilepsy Patients with Low or High-Risk of SUDEP in RNAseq Analyses 

ID 

Age at 
Surgery 

(yr) Sex 

Age of 
onset 
(yr) 

Disease 
Duration 

(yr) 
Seizure Type 
Prior to GTCS 

 
PGES 
length 
(sec) 

Brain 
Region 

PGES < 50 sec 
             

1 34 M 19 15 Focal with motor  3 TC 
2 22 M 7 15 Focal with motor 37 TC 

3 33 F 9 24 Focal with motor 24 HP, TC 

4 33 F 22 11 Focal with motor 43 HP 

5 58 M 51 7 Focal without 
motor 

2 HP 

6 29 F 13 16 Focal to bilateral 
tonic-clonic 

49 HP 

PGES ≥ 50 sec 
  

    
  

  
 

  
1 30 M 21 9 Focal with motor 62 HP, TC 

2 53 M 0 53 Focal with motor 73 HP, TC 

3 55 F 20 35 Focal without 
motor 

51 HP 

4 32 F 15 17 Focal with motor 52 HP 

5 45 F 23 22 Focal with motor 52 HP 

6 37 M 8 11 Focal with motor 54 HP 

7 25 M 18 7 Focal to bilateral 
tonic-clonic 

51 HP 

8 25 M 17 8 Focal without 
motor 

62 HP 

PGES = postictal generalized EEG suppression, GTCS = generalized tonic-clonic seizure, yr = 
years, sec = seconds, HP = hippocampus, TC = temporal cortex 
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Table 3. Top 20 Significant Protein-coding Genes in Hippocampus of High vs Low-
Risk SUDEP Patients  
 
Table 3. Top 20 Significant Protein-coding Genes in Hippocampus of High vs Low-Risk 
SUDEP Patients  
Ensembl  
Gene ID 

Gene ID  Gene Name UniProt 
ID 

Adjusted 
p Value  

Fold 
Change 

Related 
References 

Increased       

ENSG00000164082.14 GRM2 Glutamate 
Metabotropic 
Receptor 2 

Q14416 0.00002 3.80 Increased protein in 
epilepsy;18 GRM2 
knockout mice are NMDA 
toxicity resistant thus 
GRM2 activation may be 
damaging to neurons 
exposed to toxic insults;45 
decreased transcript in 
MTLE with sclerosis46 and 
in models of status 
epilepticus47,48 

ENSG00000137766.16 UNC13C  Unc-13 Homolog C Q8NB66 0.00026 2.67 Increased transcript in 
status epilepticus murine 
model29 

ENSG00000082293.12 COL19A1  Collagen Type XIX 
Alpha 1 Chain 

Q14993 0.00057 3.33  

ENSG00000164112.12 TMEM155  Transmembrane 
Protein 155 

Q4W5P6 0.00057 3.47  

ENSG00000152784.15 PRDM8 PR/SET Domain 8 Q9NQV8 0.00142 2.79 Gain-of-function mutation 
results in myoclonus 
epilepsy with Lafora 
bodies7,49 

ENSG00000027001.9 MIPEP Mitochondrial 
Intermediate 
Peptidase 

Q99797 0.00142 2.92  

ENSG00000102683.7 SGCG  Sarcoglycan 
Gamma 

Q13326 0.00229 22.01  

ENSG00000033867.16 SLC4A7  Solute Carrier 
Family 4 Member 7 

Q9Y6M7 0.00287 2.47 Increased transcript in 
status epilepticus murine 
model29 

ENSG00000164638.10 SLC29A4 Solute Carrier 
Family 29 Member 
4 

Q7RTT9 0.00412 2.12  

ENSG00000171126.7 KCNG3  Potassium Voltage-
Gated Channel 
Modifier Subfamily 
G Member 3 

Q8TAE7 0.00566 3.09  

Decreased       

ENSG00000151892.14 GFRA1 GDNF family 
receptor alpha-1 

P56159 0.00180 2.39 Localized GDNF release 
in animal models of 
epilepsy suppresses 
seizure activity36,50 

ENSG00000108018.15 SORCS1 Sortilin Related 
VPS10 Domain 
Containing 
Receptor 1 

Q8WY21 0.00318 2.32  

ENSG00000146070.16 PLA2G7 Phospholipase A2 
Group VII 

Q13093 0.00461 2.91 Decreased transcript in 
status epilepticus murine 
model29 

ENSG00000005981.12 ASB4  Ankyrin Repeat And 
SOCS Box 
Containing 4 

Q9Y574 0.00507 4.18  

ENSG00000185567.6 AHNAK2 AHNAK 
Nucleoprotein 2 

Q8IVF2 0.00752 1.65  

ENSG00000140557.11 ST8SIA2 Alpha-2,8-
sialyltransferase 8B 

Q92186 0.01550 3.02  

       
ENSG00000152595.16 MEPE  Matrix Extracellular 

Phosphoglycoprotei
n 

Q9NQ76 0.02729 4.56  

ENSG00000177106.14 EPS8L2 EPS8 Like 2 Q9H6S3 0.02729 1.54  

ENSG00000189127.7 ANKRD34
B  

Ankyrin Repeat 
Domain 34B 

A5PLL1 0.02963 6.12  

ENSG00000224982.3 TMEM233 Transmembrane 
protein 233 

B4DJY2 0.04331 6.65  
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