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Abstract: High-spatial-resolution land-surface temperature is required for several applications
such as hydrological or climate studies. Global estimates of surface temperature are available
from sensors observing in the infrared (IR), but without ‘all-weather’ observing capability. Passive
microwave (MW) instruments can also be used to provide surface-temperature measurements but
suffer from coarser spatial resolutions. To increase their resolution, a downscaling methodology
applicable over different land environments and at any time of the day is proposed. The method
uses a statistical relationship between clear sky-predicting variables and clear-sky temperatures
to estimate temperature patterns that can be used in conjunction with coarse measurements to
create high-resolution products. Different predicting variables are tested showing the need to use
IR-derived information on vegetation, temperature diurnal evolution, and a temporal information.
To build a true ‘all-weather’ methodology, the effect of clouds on surface temperatures is accounted
for by correcting the clear-sky diurnal cycle amplitude, using cloud parameters from meteorological
reanalysis. Testing the method on a coarse IR synthetic data at ∼25 km resolution yields a Root
Mean Square Deviations (RMSD) between the ∼5 km high-resolution and downscaled temperatures
smaller than 1 ◦C. When applied to observations by the Special Sensor Microwave Imager Sounder
(SSMIS) at ∼25 km resolution, the downscaling to ∼5 km yields a smaller RMSD compared to
IR observations. These results demonstrate the relevance of the methodology to downscale MW
land-surface temperature and its potential to spatially enhanced the current ‘all-weather’ satellite
monitoring of surface temperatures.

Keywords: microwave remote sensing; land-surface temperature; all-weather; spatial resolution

1. Introduction

Land-Surface Temperature (T) is the physical temperature of the uppermost layer
of the Earth continental surfaces. It plays a key role in the land–atmosphere exchanges,
driving the longwave surface-emitted radiation, and controlling the partitioning between
latent and sensible heat fluxes. It is one of the Essential Climate Variable (ECV) of the Global
Climate Observing System of the World Meteorological Organization [1]. Development of
global, long time series of T data records is currently encouraged, but it faces difficulties.
Contrarily to ocean surfaces, land surfaces have a lower heat capacity, and when exposed
to solar fluxes, T undergoes strong diurnal and seasonal variations, with high spatial
variability related to surface properties such as vegetation density or soil moisture [2].

T at the global scale can be estimated from satellite observations of the thermal
emission in the infrared (IR) [3]. From geostationary satellites, T maps with a 15 min
sampling time at ∼5 km spatial resolution are derived [4]. Higher resolutions are reached
with polar orbiters (up to a few hundreds of meters), but at the expense of the revisit
time [5]. However, IR cannot penetrate clouds, and consequently, T estimation from IR
observations suffers from a clear-sky bias [6]. To overcome this limitation, some products

Remote Sens. 2021, 13, 1325. https://doi.org/10.3390/rs13071325 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-8600-1949
https://doi.org/10.3390/rs13071325
https://doi.org/10.3390/rs13071325
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13071325
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/13/7/1325?type=check_update&version=1


Remote Sens. 2021, 13, 1325 2 of 20

use T derived from a land-surface energy balance model to fill the cloud gaps in the
IR-derived T estimates (e.g., [7,8]). Alternative methods to provide ‘all-weather’ land-
surface temperature rely on sensor fusion method [9–11], using a combination of model or
IR measurements.

Satellite passive microwave (MW) observations are an attractive alternative for the T
estimation under cloudy conditions, as they are much less affected by clouds than the IR.
Ref. [12–14], or [15] developed methodologies to retrieve T from MW polar imagers such
as the Special Sensor Microwave Imager (SSM/I), the Special Sensor Microwave Imager
Sounder (SSMIS), or the Advanced Microwave Scanning Radiometer (AMSR). Some of
these instruments have been in operation for a long time now (∼40 years), opening up
the prospect of creating long term series of consistent ‘all-weather’ T estimates. However,
the spatial resolution of the MW T is significantly lower than the IR one (∼25 km), and
MW T is generally less accurate than the IR one due to the larger dependence on the more
varying surface emissivities in the MW compared to the IR, the smaller dependence of the
measurements to T, and the impact of subsurface emissions for very dry soils [16,17].

Downscaling of MW T, i.e., the increase of the spatial resolution of these products,
would greatly benefit the T user community, and would facilitate the comparison of IR and
MW retrievals. Downscaling has already been applied to improve the spatial resolution
of the IR T itself [18,19], but in the MW it has so far been more widely applied to other
parameter estimates, such as soil moisture [20,21]. Downscaling methods are typically
based on establishing either a statistical relationship, or a physically based model, between
the initial parameter at a coarse spatial resolution and the ancillary variables that will
describe the fine spatial structures. Ref. [19,21] review different downscaling methodologies
and insist on the importance of the selection of the ancillary information at high spatial
resolution needed to provide the high-resolution spatial patterns. This information is
typically extracted from vegetation-related satellite products derived from visible and
infrared observations, or from digital elevation models. Both vegetation and elevation are
expected to affect the T spatial distribution, with the vegetation increasing the surface heat
capacity and the elevation decreasing the local T. Another potential source of information
is the T diurnal cycle itself if it can be made available from model or observation, as the T
cycle is modulated by the surface conditions [22,23].

A few attempts have already been conducted to downscale the MW T. [24] combined
MW T estimates from AMSR-E observations at ∼25 km and Moderate-Resolution Imaging
Spectroradiometer (MODIS) IR T at 1 km. Under cloudy sky, the high-spatial-resolution
information is provided by a digital elevation map (DEM) and a linear correction is applied
to correct for the altitude effect on the MW T at low spatial resolution. The retrieval
is applied over China, at the overpassing times of the Aqua satellite (01:30 and 13:30).
Similarly, [25] calibrated a MW T retrieval from AMSR observations with infrared MODIS
and Geostationary Operational Environmental Satellite (GOES) T estimates, to fill the
cloudy gaps with the MW and they used the normalized difference vegetation index
(NDVI) and elevation information to downscale the MW estimates over North America.
In the two methods described only static information (such as DEM or vegetation index)
are used under clouds and the T patterns of cloudy scenes are expected to be the same as
the ones for clear sky. An alternative is proposed by [26], also noticing that the methods
adopted for downscaling MW T fail to quantify the effect of temporal variations related to
the diurnal T cycle, limiting their use to a single overpassing time of the satellite. They used
high-resolution vegetation, elevation information at 1 km resolution and data assimilation
model outputs to downscale the MW T from AMSR-E. A decomposition of the diurnal
cycle variation at each location into different components (annual variation, meteorological
variation, and a daily cycle) is adopted to correct the MW-derived high-resolution T
estimates and it is applied over northeastern China. However, the complex input required
for this method hinder its applicability.

In this study, a simpler methodology is proposed to downscale MW T for global appli-
cation, regardless of the overpassing time of the satellite, for both clear and cloudy scenes.
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The main benefits of this method are the possible application to different instruments, with
a downscaling method valid regardless of the local time of the satellite observations. So far,
only the study in [26] accounted for this issue, the other methods being specific to a given
overpassing time. Within a coarse resolution MW T ground footprint, heterogeneous sur-
faces can have different heat capacities and related T diurnal cycles, and this must be taken
into account. In addition, it is also important to develop a downscaling scheme that can
operate efficiently under both clear and overcast scenes. To our knowledge, downscaling
methods were so far applied to the MW T estimates, without considering the cloud cover.
However, it is expected that clouds affect the local T. For instance, the study by [6], showed
significantly colder daytime T under clouds than under clear conditions. This difference is
expected to depend upon the surface types, with large heat capacity areas (e.g., vegetated
and wet surfaces) less prone to T changes than other surfaces (such as dry arid areas), upon
the cloud characteristics (e.g., its optical thickness), as well as upon the time of the day.

To obtain a high-resolution MW T product, the procedure described here relies on a
statistical relationship between high-resolution ancillary information and the T estimates.
This statistical function is first derived for clear-sky conditions using IR T and several
ancillary products from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) [27].
The original ∼5 km T estimates are used as the fine resolution T, with the coarse resolution
T required to test the method being synthetically produced from aggregation of the original
T to a ∼25 km resolution. For cloudy scenes, the same statistical function will be used, but
with a prior correction of the input to account for the change caused by cloudy conditions.
This correction is derived by studying the relationships between the downscaling inputs
and cloud-relevant variables from the European Centre for Medium-Range Weather Fore-
casts (ECMWF) ERA5 reanalysis [28]. Finally, the downscaling with the cloud correction is
illustrated by deriving a real MW T scene at ∼5 km spatial resolution from an original T
scene at ∼25 km resolution from a Special Sensor Microwave Imager / Sounder (SSMIS)
product currently under development by the European Space Agency (ESA) Land-Surface
Temperature (LST) Climate Change Initiative (LST-CCI) project [29,30].

The study is organized as follows: the study datasets are described in Section 2,
then the downscaling methods and overall processing are given in Section 3, and the
methodology is evaluated in Section 4, followed by a discussion of the results obtained in
Section 5. Finally, Section 6 presents the study conclusions.

2. Data
2.1. SEVIRI

Statistical downscaling relies on information at the high spatial resolution aimed for.
As mentioned in the introduction, the objective is to develop a method that is flexible
enough to be applicable to different local times. Therefore, satellite surface information
sampled at different times of the day is required, which restricts the choice of platform to
geostationary satellites. SEVIRI is selected here to provide measurements every 15 min,
between ±60◦ N and ±60◦ E. The European Organization for the Exploitation of Meteoro-
logical Satellites (EUTEMSAT) Land-Surface Analysis of the Satellite Application Facility
(LSA SAF) distributes SEVIRI products at ∼5 km resolution, including instantaneous T un-
der clear-sky conditions [31]. When developing the downscaling function, these estimates
will be the targeted fine spatial resolution T, while aggregation by simply averaging the
∼5 km T estimates will be used as a synthetic coarse resolution T to test the downscaling.

To characterize the surface vegetated cover, the SEVIRI 10-day average of Fraction of
Vegetation Cover (FVC) representing the fraction of green vegetation per unit of horizontal
soil surface [32] is selected. LSA SAF also provides several parameters that describe
the median T diurnal cycle, over the same 10-day period. The SEVIRI T estimates are
used to derive these parameters, assuming that the diurnal T cycle follows the model
described in [23]. This simple model summarizes the diurnal cycle with a harmonic and
an exponential term and is parameterized with a few parameters among which T0, the
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minimal T of the median diurnal cycle, and well as Ta, the median amplitude of the T
diurnal cycle over the same period that are considered in this study.

The SEVIRI spatial coverage does not encompass extreme latitudes but the diversity
of situations is deemed enough to develop and test the methodology. Estimates of T, FVC,
T0, and Ta were extracted from the LSA SAF archive for 2016. One month per season
(February/May/August/November) is downloaded to capture the seasonal variability.

2.2. ERA5

To study the changes in the downscaling function inputs under cloudy conditions
a dataset providing ‘all-weather’ T is required. ERA5 skin temperature, Total Column
Liquid Water (TCLW), and Leaf Area Index (LAI) are available over the globe every
hour at a spatial resolution of ∼25 km, and are selected here to study these changes. The
resolution is lower than the one from SEVIRI, and ERA5 estimation of T does not always
reproduce observed T [33]. However, the reanalysis T and cloud conditions are expected to
be physically consistent and realistic enough for a first attempt to take the cloud information
into account in the proposed methodology.

Similar months from 2016 are downloaded from the ECMWF archive to derive the
cloud correction.

2.3. SSMIS

Once the downscaling methodology is developed using the SEVIRI and ERA5 datasets,
it is applied to MW T estimates from SSMIS. The MW T estimates are based on inverting
satellite observations from 19 to 90 GHz, for both perpendicular polarizations. The method-
ology is currently applied to the SSM/I and SSMIS time series (overpassing times around
06:00 and 18:00) as well as to AMSR data (overpassing time at 01:30 and 13:30), providing
T at a spatial resolution of ∼25 km [34]. When MW T is compared with in situ T time
series over a large range of environments, good agreement is typically found in vegetated
environments, but larger uncertainties in the T retrievals are noted under cold conditions
due to the large variability of snow and ice surface emissivities, and over very dry surfaces
due to microwave penetration problems in sandy terrain [16].

To illustrate the use of the downscaling method, one day (26 November 2016) of SSMIS
T retrievals for a region in Southern Africa are downloaded from the LST-CCI archive.

3. Methods and Processing
3.1. Downscaling
3.1.1. Methodology

The statistical downscaling consists of finding an estimate of T at high-resolution T(i)
HR,

given T at low-resolution TLR and ancillary information A(i)
HR provided at high resolution.

TLR can be written as the average of THR:

TLR =
1
N

N

∑
i=1

T(i)
HR. (1)

In Figure 1, TLR is downscaled into 25 high-resolution pixels THR (N = 25), for consis-
tency with SSMIS and SEVIRI T products at respectively ∼25 and ∼5 km.

The downscaling relies on the hypothesis that a general statistical relationship F can
link the ancillary information A(i)

HR and T(i)
HR, to provide a high-resolution spatial pattern to

be applied to low-resolution TLR, i.e.,

T̃(i)
HR = F(A(i)

HR). (2)

For each high-resolution pixel, a correction ∆T̃(i)
HR will be applied to TLR to describe

the fine spatial structure:
T̃(i)

HR = TLR + ∆T̃(i)
HR. (3)
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It can be shown that this correction is a function of A(i)
HR by doing:

∆T̃(i)
HR = T̃(i)

HR − TLR = T̃(i)
HR − 1

N

N

∑
j=1

T̃(j)
HR

= F(A(i)
HR)−

1
N

N

∑
j=1

F(A(j)
HR).

(4)

This equation describes the increase or decrease induced by the T pattern at high
resolution, computed with the average T on the pixel at low resolution as estimated by the
F relationship.

(a) The initial surface temperature at low resolution. (b) The target surface temperatures at high resolution.

Figure 1. Schematic of the downscaling problem.

3.1.2. Input Selection

The LSA SAF variables FVC, T0, and Ta at ∼5 km spatial resolution are used as the
AHR inputs to the F statistical function. Figure 2 shows the joint distribution of these
variables to illustrate their relationships with T. Each variable is binned to represent the
distribution of another variable under different conditions. The upper and lower quartiles
(dotted lines) as well as the extrema for each distribution are shown. A positive correlation
between T and T0 is evident (upper-left panel), but similar trend is not visible between
T and Ta (upper-right). Low T0 is associated with lower T during the day but there is no
clear correlation between Ta and T. This is expected considering that high temperatures are
encountered in contrasting situations such as equatorial forest (small Ta) and desert regions
(large Ta). This is corroborated by the negative correlation between Ta and FVC related to
the lower amplitude of the diurnal cycle over vegetated areas, and the lack of correlation
between T and FVC (bottom-left). The latter shows that vegetation alone cannot be the only
source of information to discriminate warm and cold temperatures, confirming the need to
have more predictors than just a vegetation-related product to derive the ∆T̃(i)

HR correction.
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Figure 2. High-resolution surface-temperature T as a function of the high-resolution ancillary vari-
ables suggested as predictors for the downscaling. T versus the minimal temperature (T0) (top left),
versus the amplitude of the diurnal cycle (Ta) (top right), versus the fractional vegetation cover
(FVC) (bottom-left). Ta versus FVC is also shown (bottom-right). For each panel the distribution of
the y-axis variable for a bin of value for the x-axis variable is shown in the blue shade. Additionally,
the mean (solid line), upper and lower quartiles (dotted lines) are indicated, as well as the extrema of
the variable.

The spatial pattern of T is expected to change with local time. For instance, rivers
and arid areas can show similar T at night but very different T at midday, with the water
T being rather stable during the day, but the arid area undergoing large T changes. To
account for changes in the T spatial pattern with local time, a variable related to the solar
radiation is added as a fourth input to the F function: the Sun elevation angle over the
horizon is calculated and its sinus (sin(αS)) is used as a continuous predictor of the spatial
T pattern, to account for the local time and the season.

3.1.3. Function Implementation

The statistical function F aim is to model the relationship between the 4 inputs and
T to provide the high-resolution spatial pattern to be added to the low-resolution TLR.
The function provides an absolute estimate of the temperature that is used with the low-
resolution T (Equation (4)) to provide the high-resolution temperature pattern for a given
pixel. Here it is implemented by a feed-forward multilayer perceptron [35], with 4 input
neurons, 1 hidden layer with 10 neurons (with sigmoid activation), and 1 output. A
neural network architecture can represent any continuous function given enough internal
parameters [36], so it is widely used to approximate this type of mappings [19]. Its inputs
are the AHR variables FVC, T0, Ta, and sin(αS), its output the THR, and it is trained with a
database of ∼50 M data points from the 4 months in 2016 extracted from the SEVIRI archive.
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The SEVIRI disk is centered over the equator in Africa, and before training the original
database distribution is resampled to avoid an over representation of desert situations
(with very low vegetation) and a better sampling of solar elevation angles for which the
low values are more common.

The residuals, i.e., the Root Mean Square Deviation (RMSD) between the targeted THR
and the neural network output after training, are displayed for the range of T covered by
the training database in Figure 3. To illustrate the choice of inputs, similar neural networks
are trained using T0 and Ta, or FVC only, as inputs and their residuals are displayed. Over
the whole T range, the neural network using the four predictors displays a more even
performance, especially for the very low and high T. It is interesting to note that FVC on
its own does not seem to be enough to provide a clear distinction between temperatures,
for all hours of the day. It is also noticeable that even for the four-input neural network,
the function residuals appear to be high. However, this is expected, as this function aim is
not to predict the exact high-resolution T from the four ancillary variables, but rather to
inform about the relative local differences related to the information content of its inputs.
The result of the F model are used in the downscaling procedure (Equation (4)) and yields
much lower error as apparent in Section 4.1.

Figure 3. Root Mean Square Deviation (RMSD) of the T estimated with the statistical function F as a
function of T, for different combinations of the predicting ancillary variables. In blue F is trained
with T0 and Ta, with only FVC in green, and finally with T0, Ta, FVC, and sin(αS) in brown. The
distribution of T in the testing set is shown in gray bars (labels on the right axis).

3.2. Cloud Correction
3.2.1. Methodology

Exploring T changes due to clouds for a variety of cloud and surface conditions is
challenging. Isolating the cloud effect would require an estimate of T for the same area,
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under the same surface and insolation conditions, for different times of the day, and for a
variety of cloud cover. Here the objective is only to develop a pragmatic solution that can
be systematically and easily integrated into the downscaling processing. To achieve this,
if the available cloud information indicates that the TLR estimates correspond to a cloudy
scene, a correction is applied to the AHR ancillary data (that exists for clear-sky scenes) to
account for the impact of the clouds on the T̃(i)

HR high-resolution patterns. The correction

∆A(i)
HR is based on a simple function C parameterizing the cloud effect as function of the

values observed for a selection of input variables B(i)
HR, so it can be expressed as

∆Ã(i)
HR = C(B(i)

HR). (5)

The F statistical relationship remains unchanged, so the new correction ∆T̃(i)
HR for a

cloudy scene is

∆T̃(i)
HR = F(A(i)

HR + C(B(i)
HR))−

1
N

N

∑
j=1

F(A(j)
HR + C(B(j)

HR)). (6)

3.2.2. Input Selection

ERA5 TCLW and LAI are selected as inputs to drive the parameterization of function
C. Clouds limit the amount of solar radiation on the Earth surface during daytime, with this
effect depending upon the cloud optical thickness. Clouds also limit the outgoing longwave
flux with a magnitude depending on cloud base height and cloud amount [37]. At the
surface level, the resulting T changes will essentially depend upon the type of surface, with
an expected damping of the T spatial variability compared with clear-sky conditions. This
is illustrated in Figure 4, where the impact of cloudiness for two surfaces with contrasting
vegetation is displayed. The distribution of ∆T, i.e., the surface T difference between clear
and thin (TCLW < 50 g/m2), or clear and thick (TCLW > 50 g/m2) clouds are presented
over evergreen forests and savanna, selected using the International Geosphere Biosphere
Program (IGBP) land cover [38], at different local times. The selected times are close to
the overpass time of the SSMIS and AMSR sensors and include times of day close to
the minimum and maximum of the T diurnal cycle. Nighttime (01:00 and 06:00) ∆T are
mostly negative, which would indicate that cloud cover tends to increase the T, due to
the trapping of the thermal radiation emitted from the surface. The 06:00 negative ∆T
appears to be slightly larger than the 01:00 one, which is consistent with the declining
surface temperatures until the sun starts illuminating the surface again. On the other hand,
daytime T seems to decrease when a cloud is present, with an effect stronger near the
middle of the day (13:00), when the T diurnal cycle has its maximum. Thicker clouds can
also be associated with a stronger effect, either positive or negative on ∆T. The distributions
for savanna (with sparse vegetation) and evergreen forest (with a dense vegetation) are
shown in Figure 4 and this also seems to have an impact on ∆T: vegetation appears to
reduce the magnitude of the effect on T.

Although additional effects can also affect the T distributions, Figure 4 distributions
show that the variations of TCLW and vegetation can be informative enough for a first
order description of the cloud impact on T. To have continuous variation on vegetation
content, LAI from ERA5 replaces the static IGBP classification.
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Figure 4. Distribution of ∆T, i.e., surface-temperature difference, from ERA5 data in January, May,
and September 2016. The difference is computed between clear and thin clouds (TCLW < 50 g/m2)
on the first columns, and between clear and thick clouds (TCLW > 50 g/m2). The first row shows
distribution over evergreen forest and the second row over savannas. Each distribution is computed
at different time of the day: 01:00, 06:00, 13:00, 18:00.

3.2.3. Function Implementation

Figure 4 shows that the effect of clouds on nighttime ∆T is negligible compared to
the one on daytime ∆T. The effect is stronger near the peak of the diurnal cycle, when the
warmest T is reached. Therefore, a correction on the maximum temperature of the day
driven by the TCLW and LAI variations, which translates into a correction of the Ta input
to the F function, is proposed as an implementation for the function C.

The C function parameterization is based on the distributions shown in Figure 5. The
observed difference between clear and cloudy Ta (computed from the ERA5 dataset) for
different LAI (left panel) and TCLW (right) values is displayed. For each bin the standard
deviation around the mean of the computed ∆Ta is shown in the solid line. As with
the observations from Figure 4, the thicker the clouds and the less dense the vegetation,
the larger ∆Ta. A polynomial parameterization derived from the distributions is also
displayed as dashed lines, and it is used to practically implement the function C. The
1σ uncertainty on the fitted parameters is given as a colored area around the polynomial
fits. The uncertainty increases for larger TCLW and smaller FVC, related to the smallest
number of samples in the database for these extremes resulting in a more uncertain fit.
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Figure 5. Average difference of Ta from ERA5 data from the month of January, May and September
2016 as solid lines (with 1 standard deviation) as a function of the leaf area index (LAI) (left) and
total column liquid water (TCLW) (right). On each plot different colors are used for bins of TCLW
(left) and LAI (right). The dotted lines show the predicted values of ∆Ta by the parameterization
with the same input, and the shaded area shows the 1σ uncertainty on the fitted parameters.

In essence, the parameterization acts as a damping coefficient reducing the amplitude
of the diurnal T cycle when clouds are present. It is rather simple, but is considered efficient
enough for a first order attempt to include cloud information in the downscaling scheme.

3.3. Processing

The overall processing of the downscaling scheme is illustrated in Figure 6. In a first
training phase, the statistical function F is trained on a representative ensemble of LSA
SAF THR and corresponding AHR inputs: FVC, T0, Ta, and sin(αS). Next to this, a simple
correction function C is parameterized to damp the Ta under cloudy conditions using ERA5
TCLW and LAI. Once these functions are implemented, they can be used to downscale
the TLR in the application phase. Here, for a selected scene with a given number of TLR
estimates, the corresponding AHR inputs FVC, T0, and Ta are extracted, passed through the
F function to derive the ∆T̃HR high-resolution patterns, which are then combined with the
original TLR as described by Equation (3). If the scene contains TLR estimates considered to
be cloudy by ERA5, for those estimates the ERA5 TCLW and LAI are extracted, passed
through the C function to correct the Ta input to the F function, and the processing continues
as before. Finally, previous experience with downscaling of geophysical variables showed
that when applied separately to individual low-resolution estimates, this type of methods
tends to produce spurious discontinuities at the edges of each low-resolution pixel [39].
Following that study, a smoothing procedure is applied considering that the temperature
of a given HR pixel results from a contribution of neighboring low-resolution T. So, each
LR pixel contribution is spatially averaged with a weight proportional to its distance to
the considered high-resolution pixel. The partial contribution of neighboring LR pixels
is relevant considering that the real measurements come from an antenna pattern with
contributions larger than a single pixel.

The different parts of the methodology are evaluated in the following manner: the
statistical model F is trained and tested on a different part of a large database of training
samples as described in Section 3.1.3, the cloud correction is built using an independent
set of data (Section 3.2). Then, the following section evaluates the performance of the
methodology in an artificial clear-sky set-up only before illustrating the combined cloud
correction and downscaling with a real scene.
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Figure 6. Schematic representation of the downscaling methodology, on the left for the training
phase, on the right the application phase.

4. Results

The downscaling methodology is tested with two different low-resolution T. In a first
test, synthetic low-resolution T estimates at ∼25 km is produced by averaging the original
SEVIRI IR T at ∼5 km over 5 × 5-pixel windows. This allows to evaluate the downscaling
scheme independently of potential differences between the MW and IR temperatures, as
it would be the case when comparing downscaled MW T with the corresponding high-
resolution IR T. In addition, it makes it possible to test the methodology at different time of
day as the full diurnal cycle is observed by the geostationary IR instrument (and not by a
single MW polar satellite with only 2 overpass times). Illustrating scenes are shown and a
global evaluation of the performance over Africa is computed. In a second test, SSMIS MW
T is downscaled from its original ∼25 km to the ∼5 km of the IR ancillary information.
Unlike with the previous IR clear-sky scene, the downscaling for cloudy conditions can
now be illustrated as the MW T estimates are available for all weather conditions.

4.1. Downscaling of Synthetic IR Temperature

A SEVIRI T scene is selected in the south of Africa (16.7◦S 21.0◦E to 19.8◦S 24.7◦E),
in the Okavango region that shows high surface heterogeneities. Sharp spatial structures
are caused by the Okavango Delta with its water presence and vegetation variability also
impacting the T patterns. Results are presented for two contrasted seasons and times of
the day, in February (11 February 2016) at 05:00 (early morning) and in August (13 August
2016) at 12:00 (noon) respectively in Figures 7 and 8 illustrating the good performance
independently of the time of day of the scene.

For both figures, the three left panels (A, D, G) show the values of the ancillary
variables T0, Ta and FVC. Differences in the spatial structures of the three variables are
visible, with an apparent opposite behavior between Ta and T0 around the inner delta.
This is related to the difference in heat capacity between these areas: colder minimal
temperatures are associated with higher amplitude during the day. The difference in
vegetation cover between the 2 selected scenes (at different seasons) is also strong.
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Figure 7. Different steps of the methodology applied to a scene from 11 February 2016 at 05:00 over
the Okavango Delta (16.7◦S 21.0◦E to 19.8◦S 24.7◦E). Input ancillary variables (T0, Ta, FVC) are in the
(A,D,G) panels. T at low resolution and original high resolution in the panels (B,C). The T obtained
by the downscaling method, before and after smoothing in the second row (E, F). The (H) panel
contains the difference between the input T and 5 × 5 average Tdownscaled at low resolution with
the RMSD overlaid over the scene. Finally, the bottom-right panel (I) shows the difference between
the original high resolution and the Tdownscaled produced by the methodology. The RMSD and the
coefficient of determination (R2) are overlaid on the scene.

Panel B shows the low-resolution aggregates (TLR), with each pixel representing
around 25 × 25 km2, whereas panel C displays the original T from SEVIRI (THR), i.e., the
target T to be reproduced by the downscaling. The temperature range differs between
the 2 selected times: around 20 ◦C in the 05:00 scene, and around 40 ◦C in the 12:00 scene.
As the low-resolution values are synthetically constructed from the high-resolution ones,
some are missing because of clouds contamination or invalid values (e.g., no T retrievals
over water bodies). Panel E shows T after downscaling but before the smoothing step, with
the final downscaled T (Tdownscaled) after smoothing displayed in panel F. The smoothing
effect is apparent from the absence of block-like artifacts on the final product. Compared to
the original THR, Tdownscaled appears smoother with less contrast and some missing spatial
structures. This can be explained by the method (averaging of contributions), F model
errors, or missing data in the ancillary datasets used (e.g., around the water bodies for the
February scene).
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Figure 8. Same as Figure 7, but for 13 August 2016 at 12:00.

Finally, the bottom-row central and right panels (H, I) show the departure between
Tdownscaled and original THR. In the central panel, Tdownscaled is spatially averaged to get
a low-resolution product that can be compared to the synthetic TLR used as input to the
downscaling scheme. This shows where the downscaling procedure degrades the input
temperature information. The only areas with large departures are those around places
with missing data or sharp contrast between nearby pixels. The right panel displays the
difference between the original THR and Tdownscaled. The dark blue (red) spots are mostly
around local extreme T that are regularly over(under)-estimated. This lower performance
on extreme values is inherent to the neural network training scheme used to implement
the F function. This scheme minimizes the squared deviation error, which leads to an
underestimation of variance in the output that can sometimes be addressed with variance
inflation methods [40]. Some strong errors also appear near missing values, for instance
close to the water extent in the delta.

The downscaling method is further illustrated in Figure 9 where a transect along the
latitude of the estimated Tdownscaled, the targeted original THR, and the spatially averaged
input to be downscaled TLR are displayed. The transect integrates spatially between 12.6◦N
and 12.7◦N, extending from 20◦E to 22◦E for the 18th of February/May/August/November
in 2016 at 10:00. The variability shown in THR is clearly damped on TLR as expected, while
it is well captured in Tdownscaled, with relatively large correlation values (coefficients of
determination R2 between 0.65 and 0.88). The applied downscaling performs equally
well for a variety of temperatures between 30 ◦C and 60 ◦C. The already mentioned
underestimation of extrema is also visible on the transect.
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Figure 9. Transect of the T around 12.5◦N between 20◦E and 22◦E at 10:00 on the 18th of the months
of February, May, August and November (top to bottom). For each month, the SEVIRI THR in orange,
the 5 × 5 average TLR in blue and the Tdownscaled in green are shown. Also, the RMSD and coefficient
of determination R2 between the Tdownscaled and THR is displayed in each subplot title.

The previous examples show that the F function correctly reproduces the T variations
at the fine scale, although it performs less well for the more extreme T values within the
scenes. Overall, the downscaling produces a good approximation of the high-resolution
temperatures. It also adapts well to different seasons, times of the day, and surface condi-
tions. To quantify the performance, the Root Mean Square Deviation (RMSD) between THR
and Tdownscaled was computed for the 18th of the February/May/August and November
months in 2016 at all hours between 35◦S–35◦N and 22–35◦E. The RMSD values range
between 0.62 ◦C in May and 1.07 ◦C in November. The RMSD but calculated between
THR and the spatially averaged THR lies between 0.74 ◦C and 1.16 ◦C, confirming the
effectiveness of the downscaling method in producing a T estimate closer to the true T.

4.2. Downscaling of Observed SSMIS Temperature

The downscaling methodology is now applied to SSMIS MW T from the same area in
the Okavango Delta. The results are presented in Figure 10. 26 November 2016 at 05:00
is selected as it presents both clear (the southern part of the scene) and cloudy conditions
(the northern part, with no IR T corresponds to the cloud presence). The two panels on
the left (A, D) show the ancillary variables Ta and FVC. Their values are different from the
ones in Figures 7 and 8, reflecting the seasonal changes of these variables. Please note that
even if the northern part of the scene is cloudy, IR-derived Ta and FVC estimates still exist
due to their 10-day temporal integration. Consequently, the downscaling can be applied
everywhere in the scene. Panel B shows the SSMIS TLR, i.e., the low-resolution T input to
be downscaled. In panel C, the cloud correction, aggregation, and smoothing steps are
applied to produce Tdownscaled. Panel E shows the 5 × 5 averaged THR from SEVIRI. Finally,
the original SEVIRI THR is shown in panel F.
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Figure 10. For a scene from the 26th of November 2016 at 05:00 over the Okavango Delta (16.7◦S
21.0◦E to 19.8◦S 24.7◦E): the first column shows 2 of the input ancillary variables: Ta (A) and FVC (D).
Panel (B) shows the original SSMIS (TLR) and panel (C) the Tdownscaled, finally panel (F) shows
the TSEVIRI at high resolution and panel (E) the IR T after a 5 × 5 spatial average. The average
temperature and standard deviation for the clear-sky part of the scene are indicated for TSSMIS

and TSEVIRI .

Comparison of original SSMIS TLR, Tdownscaled, and SEVIRI THR shows that the SEVIRI
THR spatial structures are well captured by Tdownscaled estimates. In the clear-sky part of
the scene, Tdownscaled correctly reproduces the north-to-south T gradient and the colder T
in the riverbed, as observed on SEVIRI THR. The average value and standard deviation of
the scene clear pixels are given for the SSMIS TLR and SEVIRI THR in Figure 10, showing a
warm bias of ∼1 ◦C for SSMIS. This bias is likely related to an initial difference between the
MW and IR T in this area, not to an artifact of the downscaling. For the clear-sky part of
the scene, RMSD computed between the SEVIRI THR and SSMIS T gives values of 1.72 ◦C
with the original resolution that is improved to 1.60 ◦C after the downscaling.

The downscaling for the cloudy part of the scene is reasonable, without any obvious
artifacts compared with the clear part. The cloud correction on the Ta variable was of
the order of 3 ◦C for this particular scene, but its impact on Tdownscaled was not very large
compared with a clear situation as the effect of Ta on the F function is lower around the
early morning hours than around midday. Comparing Tdownscaled with SEVIRI THR close to
the cloud edges reveals some inconsistencies. Some SEVIRI T estimates appear much colder
(∼10 ◦C) than the surrounding average T of the scene (∼20 ◦C) and than the corresponding
SSMIS Tdownscaled estimates, suggesting a likely cloud contamination in the IR T estimates.

To better highlight the correction provided by the parameterization of the cloud effect
Figure 11 shows the downscaling scheme applied to 2 consecutive days over a scene in
northern Tanzania (2.4◦S 32◦E to 4.9◦S 35.4◦E). For each day, in 2 columns, the first row
(panels A, B) shows the original SSMIS T and indicates the average temperature and
standard deviation over the clear-sky parts of the scene. Then the second row (C, D) shows
the result after the downscaling procedure is applied. TSEVIRI is displayed in the third
row (E, F) with the average temperature and standard deviation over the scene. Finally,
the last row (G, H) shows the correction on the Ta variable that is applied based on the
cloud parameterization and ERA5 data, for the cloud structure from the south-west to the
north-east of the image.
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Figure 11. Scenes from the afternoon overpass during 2 consecutive days, 26 and 27th of May 2016
over northern Tanzania (2.4◦S 32◦E to 4.9◦S 35.4◦E) : On the first line (A,B) is the SSMIS observation at
low resolution, then panels (C,D) show the result after the downscaling scheme is applied, (E,F) show
the TSEVIRI at the same time. Finally, the last row (G,H) shows the correction on the Ta parameter
derived from the ERA5 reanalysis. The average and standard deviation of TSSMIS and TSEVIRI for
the clear-sky parts of the scene are indicated in the sub-panel titles.
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Most of the cloud presence is visible in the north-east of the scene for the second day.
Over the clear parts of the scene the second day is warmer than the first day, both for
SSMIS and SEVIRI. The SSMIS TLR clear-sky part of the scenes are ∼3 K warmer than the
SEVIRI THR ones. This bias is larger than the one found in Figure 10 (∼1 K), and can be
partly caused by a larger cloud contamination in TSEVIRI due to the challenges of filtering
a more broken cloud. Over a large part of the cloudy area in the second day TSSMIS is a bit
colder, compared to the first day, possibly reflecting the impact of the cloud presence on the
surface T. The illustrated Ta correction, at the same resolution as ERA5 it is derived from,
in the cloudy part of the scene reduces the Ta of the day, with the largest correction not
exceeding 2.0 ◦C. The Tdownscaled for both clear-sky and cloudy scenes show comparable
structures, with very realistic high-resolution patterns, in agreement with the geophysical
structure in this area such as the delta leading to Lake Victoria in the north-west, or the
crater highland in the north-east with lower average temperatures.

5. Discussion

The previous section illustrates the performance of the methodology for the downscal-
ing of synthetic data but also the application of the procedure to real world land-surface
temperature derived from SSMIS observations. Several points arise from these results that
should be taken into account when implementing such a downscaling scheme.

First, the methodology developed here is independent of the overpass time of the
platform carrying the MW instruments used to derive the T. The different overpass times
of each instrument (06:00 for SSMIS and 13:30 for AMSR-E for instance) are handled by
the solar zenith angle factor dependence introduced in the model. The same model can
therefore be applied to a low-resolution land-surface temperature product at any time of
the day. This is a great benefit toward a coherent high-resolution MW-derived T product
given the changing overpass times depending on the satellite missions. However, the
performance of this method relies a lot on the performance of the underlying MW T, for
which evaluation have been conducted for instance in [16,17,34].

Also, the ancillary variables used in the training of the F model, especially the diurnal
cycle derived parameter Ta and T0, offer new information sources to describe the high-
resolution T patterns with a finer accuracy. This performance benefit is shown in Figure 3,
and is understandable as these variables inherently summarize the thermal behavior
of different surfaces. The 10-day period used in this study is a conveniently available
timescale but these values could be replaced with longer time scale climatologies. For
future developments outside the regions covered by geostationary satellites, MODIS T
and vegetation indexes that are globally available could be used. MODIS being on board
a polar orbiter with overpassing times at 01:30 and 13:30, it will not provide information
over the full T diurnal cycle, but T at 01:30 is close to the minimum T and its difference
with T at 13:30 can be a proxy to the amplitude of the T diurnal cycle.

The known difficulties in comparing IR and MW T over some surfaces are mitigated
in this study as only the relative increase in temperatures from IR is used to infer the
correction to the MW T. The training of the F model is independent from the sensor on
which the methodology is applied. Of course, known limitations of the MW (over arid
areas for instance) are not corrected by this methodology, but it can nevertheless improve
the MW T resolution in most situations.

Finally, the correction for ancillary values under clouds developed here is not only
a major building block of this methodology but is also a valuable contribution to the
understanding of the expected impact of clouds on surface T. As noted in the work
of [26], the assumption that clear-sky derived coefficient can also be used for cloudy scenes
should be further investigated. The parameterization of the cloud effect proposed here is
a first attempt to better understand what remains a high source of uncertainty in global
T measurements.
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6. Conclusions

To provide high-resolution ‘all-weather’ land-surface temperature, this study develops
a methodology to perform a downscaling of MW-derived T, from their original spatial
resolution of ∼25 km to a resolution of ∼5 km, similar to IR geostationary observations.

To that end, a statistical relationship is first established between high-resolution
ancillary information and high-resolution T, to estimate the T fine spatial resolution
patterns under clear-sky conditions. The model is trained using IR T and ancillary products
from IR SEVIRI geostationary observations at ∼5 km. Different combinations of variables
are tested and the model error is lowest over the whole range of temperature, using the
minimal value and the amplitude of the median clear-sky temperature diurnal cycle (T0 and
Ta), along with the fractional vegetation cover FVC, and the solar elevation angle (sin(αS)).
In an application phase, the statistical function is then used to produce a high-resolution
temperature pattern that is added to the coarse resolution T and provides spatially finer
T estimates.

To test the methodology under clear-sky conditions, the original ∼5 km T estimates
are used as the fine resolution T, with the coarse resolution T synthetically produced from
aggregation of the original T to a ∼25 km resolution. The RMSD of the downscaled T
against the high-resolution one remains below 1 ◦C for a variety of conditions (spanning
multiple months and all hours of day), showing the possibility to correctly reproduce
the original T with this method. For cloudy scenes, the same statistical function is used,
but with a prior reduction of the Ta input to account for the cloudy conditions. This
correction is based on an analysis of the average impact of clouds on T using cloud
information from ECMWF ERA5 reanalysis. Finally, the downscaling and cloud correction
performance are tested on an original SSMIS-derived land-surface temperature scene at
∼25 km resolution, and the resulting downscaled scene at ∼5 km is compared to the nearly
coincident SEVIRI-derived estimates. The RMSD over the clear-sky part of the scene and
the original low-resolution is 1.72 ◦C and is reduced to 1.60 ◦C after downscaling. The
downscaling could not be tested under cloudy conditions as no high-resolution satellite
product is yet available for cloudy scenes.

The results demonstrate the relevance of the methodology to perform the downscaling
of MW land-surface temperature, with an adaptability to seasons and times of the day,
along with a specific handling of the cloudy areas. The required inputs are limited, keeping
the implementation of the method rather simple. The method can already be used for all
areas for which the geostationary satellites data is available, including the often-cloudy
tropical areas. Additional study could be performed to evaluate the possibility to generalize
the predictors for a global downscaling, for instance using polar orbiting high-resolution
IR sensors. These data sources would also provide an opportunity to downscale the MW T
to a higher resolution, up to ∼1 km.

This is the first step toward the application of a generic methodology to downscale
the ∼40 years of MW-derived land-surface temperature currently under production [29]. It
will provide an ‘all-weather’ climatology of land-surface temperature at global scale with a
high spatial resolution, to complement the clear-sky only IR estimates.
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