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Simple Summary: Tackling the current dilemma of colorectal cancer resistance to immunotherapy is
puzzling and requires novel therapeutic strategies to emerge. However, characterizing the intricate
interactions between cancer and immune cells remains difficult because of the complexity and
heterogeneity of both compartments. Developing rationales is intellectually feasible but testing
them can be experimentally challenging and requires the development of innovative procedures and
protocols. In this review, we delineated useful in vitro and in vivo models used for research in the
field of immunotherapy that are or could be applied to colorectal cancer management and lead to
major breakthroughs in the coming years.

Abstract: Immunotherapy is a very promising field of research and application for treating cancers,
in particular for those that are resistant to chemotherapeutics. Immunotherapy aims at enhancing
immune cell activation to increase tumor cells recognition and killing. However, some specific cancer
types, such as colorectal cancer (CRC), are less responsive than others to the current immunotherapies.
Intrinsic resistance can be mediated by the development of an immuno-suppressive environment
in CRC. The mutational status of cancer cells also plays a role in this process. CRC can indeed be
distinguished in two main subtypes. Microsatellite instable (MSI) tumors show a hyper-mutable phe-
notype caused by the deficiency of the DNA mismatch repair machinery (MMR) while microsatellite
stable (MSS) tumors show a comparatively more “stable” mutational phenotype. Several studies
demonstrated that MSI CRC generally display good prognoses for patients and immunotherapy is
considered as a therapeutic option for this type of tumors. On the contrary, MSS metastatic CRC
usually presents a worse prognosis and is not responsive to immunotherapy. According to this,
developing new and innovative models for studying CRC response towards immune targeted thera-
pies has become essential in the last years. Herein, we review the in vitro and in vivo models used
for research in the field of immunotherapy applied to colorectal cancer.

Keywords: colorectal cancer; immunotherapy; methods

1. Introduction

Colorectal cancer (CRC) is the third most commonly diagnosed malignancy world-
wide, and the second leading cause of cancer related-deaths among men and women with
1.8 million estimated cases and more than 800,000 deaths annually [1]. As the disease
mostly progresses indolently at the initial stages, becomes symptomatic late, and is of-
ten diagnosed at an advanced stage (about 35% of patients presenting with a metastatic
cancer). This issue is of importance because the prognosis for CRC patients is strongly
dependent on the stage of the tumor at diagnosis [2]. Following the Tumor Node Metastasis
(TNM) staging, the 5-year survival rates following surgical removal of tumors for localized
(stage I), regional (stages II and III) and metastatic (stage IV) diseases reach in the USA 90,
72, and 14%, respectively [3]. For stage I and most stage II CRCs, the standard of care is
surgery alone [2]. For high-risk stage II and stage III CRCs, surgical removal is followed
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by adjuvant 5-fluoruracil (5-FU) or capecitabine-based chemotherapy [4,5]. For metastatic
disease, surgical removal of the primary and/or distant lesions is followed by therapies
using a set of chemotherapies and targeted agents [2]. However, as mentioned before,
the prognosis of patients with metastatic CRC (mCRC) remains poor, with a median overall
survival (OS) of about 30 months [6]. In addition to the TNM classification, recent advances
have led to the development of immune-based classifications of colorectal tumors. Indeed,
numerous reports demonstrated that an enhanced T-lymphocytic infiltration in tumor
tissues is associated with an improved prognosis [7,8]. However, the composition of the
tumor microenvironment (TME) varies substantially between colorectal tumors [2,9]. Thus,
in an effort to translate these findings to the clinic, an international consortium developed
the “Immunoscore” [10]. This scoring system is based on the histological quantification and
localization of cytotoxic and memory T-cells in the center of the tumor and invasive margin.
Importantly, time to recurrence was significantly improved in patients with stage I–III
colon cancer presenting a high “Immunoscore” [11]. These observations thus supported
the role of this scoring system in providing a reliable estimate of the risk of recurrence
in patients with colon cancer and its additional prognostic value when combined with
conventional TNM-staging [9]. They also underline the impact of immune cell infiltration
on CRC outcome, thus opening new therapeutic opportunities.

In addition to the characterization of immune cells infiltrates in CRC, significant re-
search has also helped in the last years to better understand the complex interplay between
cancer and immune cells. This knowledge has led to the emergence of novel immunothera-
pies including the development of immune checkpoint inhibitors (anti-CTLA-4, anti-PD-1,
and anti-PD-L1 monoclonal antibodies). These molecules have dramatically changed the
therapeutic situation for several types of cancer [12]. However, for mCRC, only few objec-
tive responses have been observed in unselected colorectal cancer patients. Long-lasting
responses were only restricted to 4 to 5% of patients who presented tumors harboring mi-
crosatellite instability (MSI-H) and/or mismatch repair deficiency (dMMR) [12–15]. For this
small subset of patients, the therapeutic scenario was nonetheless significantly changed
thanks to the introduction of immune checkpoint inhibitors. In 2020, pembrolizumab (anti
PD-1) was approved by the U.S. Food and Drug Administration (FDA) for the first-line
treatment of patients with unresectable or metastatic dMMR CRC. The success of im-
munotherapies for treating metastatic dMMR CRC also paved the way for clinical research
aiming at introducing immunotherapy in the adjuvant setting used for treating patients
with localized MSI/dMMR CRC [14].

This success for this specific subtype of CRC is, however, not surprising in terms of
biological understanding. Indeed, MSI tumors are known for being highly intruded by
tumor-infiltrating lymphocytes (TILs) such as CD8+ cytotoxic lymphocytes, Th1-activated
cells that produce IFNγ, and CD45 RO+ T memory cells [8,16,17]. This phenomenon is
explained by the hypermutated phenotype of these tumors, leading to high mutational
burden (TMB) with highly immunogenic neoantigens as a consequence of a large number
of deletions, insertions, and frameshift mutations accumulated during cancer cell repli-
cation [12,14,15]. The accumulation of tumor-associated neoantigens indeed favors the
identification of cancer cells by the host immune system [18,19]. This hypothesis was
recently confirmed in a controlled murine syngeneic model of CRC [20]. By genetically
inactivating DNA mismatch repair in an otherwise MMR proficient (pMMR) cell line,
the authors clearly demonstrated that MMR loss caused a tumor hyper-mutated status
associated with an increased load of tumor neoantigens. In turn, those triggered long-
lasting immune surveillance that could be further enhanced by immune modulators [20].
Importantly, MSI/dMMR tumors are often associated with an upregulation of checkpoint
inhibitors that exhaust intra-tumor cytotoxic T lymphocytes and consequently protect
MSI/dMMR cancer cells from their hostile immune microenvironment [21,22]. Together,
these made metastatic MSI/dMMR tumors a valuable candidate for immune checkpoint
inhibitors (ICI).
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Unfortunately, this type of ICI responsive tumors (e.g. MSI/dMMR) represents only
15 to 20% of total CRC and about 4% of stage IV CRC [12,23,24]. Therefore, a vast majority
of mCRC is cold refractory to this therapeutic strategy. As with most cancers, CRC is a
genetically heterogeneous disease. However, heterogeneity also emerges from the compo-
sition of the surrounding tissue and cells, commonly called the tumor microenvironment.
This includes epithelial cells, blood and lymphatic vessels, stromal and infiltrating immune
cells, as well as extracellular components (e.g., chemokines, cytokines, and extracellular
matrix) [9]. This general context and the subsequent crosstalks established between TME
and tumor cells are key features to determine the effect of infiltrating immune cells on
clinical outcome. According to these observations, and based on both tumor and infiltrating
stroma gene expression profiles, a consensus molecular subtype (CMS) classification has
been set up in the last years [25]. According to it, four major groups were distinguished:
CMS1 (approximately 14% of cases) are hypermutated tumors, mostly with MSI-H features
and showing a robust immune cells infiltration; CMS2 (approximately 37% of cases) are
canonical CRC tumors characterized by the activation of the Wnt and Myc pathways;
CMS3 (approximately 13% of the cases) are tumors frequently mutated in KRAS and dis-
playing a deregulated cancer cell metabolism; CMS4 (approximately 23% of the cases) are
mesenchymal tumors characterized by transforming growth factor beta (TGF-β) pathway
activation, enhanced angiogenesis, stromal activation, and inflammatory infiltrate [9,12,25].
The 13% of missing samples corresponded to tumors with mixed features (13%) [25].
Interestingly, in this classification, CMS1 and CMS4 were considered as “hot” tumors with
an intense immune infiltration, whereas CMS2 and CMS3 were defined as “cold” tumors
with a lack of immune activation [12]. However, CMS4 tumors, despite their immune infil-
tration, displayed the worse overall and relapse-free survival [25]. This is explained by the
specific immune infiltrate seen in these tumors mostly composed of T regulatory cells (Treg),
myeloid-derived suppressor cells (MDSCs), and monocyte-derived cells. This inflamed
immune-tolerant TME is characterized by marked upregulation of immunosuppressive fac-
tors, such as TGF-β, Vascular endothelial growth factor (VEGF), and CXCL12 [26]. On the
contrary, CMS1 CRC has a diffuse immune infiltrate with notable CD8+ TILs. As discussed
above, those MSI/dMMR tumors also upregulate immune checkpoint molecules (CTLA-4,
PD-1, PD-L1) [21,22,26]. Though the use of ICIs can activate an effective antitumor immune
response for CMS1 but not for CMS4 CRC subtypes [12], nonetheless, strategies aiming at
targeting the TGF-β and/or VEGF pathways might prove useful for CMS4 CRC [27,28].
In contrast to CMS1 and CMS4 tumors, CMS2 and CMS3 tumors were defined as “im-
mune desert” cancers [12]. Different mechanisms can be responsible for this phenomenon,
including lack of major histocompatibility complex (MHC) class I molecules and/or up-
regulation of nonclassical human leukocyte antigens (HLA) [9,12]. Interestingly, targetable
oncogenic-driven cancer cell pathways have been identified as potential sources of the
above immune evasion processes. For example, MEK inhibition has been shown to rescue
low class I MHC expression and augment anti-tumor T-cell immunity [29]. However, acting
on the sole tumor compartment is likely not to be sufficient to overcome resistance in “im-
mune desert” tumors. To that end, combinatorial strategies aiming at increasing immune
cells infiltrate and/or neoantigens generation or release have been proposed to synergize
with immunotherapies [15]. For example, current chemotherapies, like oxaliplatin and
5-FU can improve TME immune-competency by inducing immunogenic cell death and/or
depleting MDSCs [30–32]. VEGF-targeted therapy can also improve TME immune com-
petency by reducing the proportion and number of Tregs in CRC murine tumors as well
as in the peripheral blood of patients with mCRCs [33]. On the other hand, cetuximab
which targets the extracellular domain of epidermal growth factor receptor (EGFR) might
promote activation of the immune response in CRC patients in addition to its direct action
on cancer cells [34]. In the last years, several clinical trials have been launched to evaluate
strategies combining chemotherapies and targeted therapies to extend the efficacy of im-
munotherapy to pMMR CRC [15]. However, to date, those approaches and rationales have
not been successfully transformed in terms of clinical benefits [15]. Further insights into
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the molecular mechanisms underlying the immune competence and/or immunotherapy
resistance are therefore urgently needed for developing predictive biomarkers and/or
improving pharmacological combination strategies for mCRC resistant to immunotherapy.
To this end, substantial help is awaited from translational research with the aim of turning
all cold CRC into hot responsive immunogenic tumors.

Herein, we review the in vitro and in vivo models used for research in the field
of immunotherapy applied to CRC. We discuss their useful meaning and propose to
define the most accurate approaches to expand our knowledge on immunological-based
therapies in pMMR colorectal cancer with a special emphasis on models allowing a better
characterization of the resistance mechanisms, as well as the identification of predictive
biomarkers and the assessment of novel combinatorial therapeutic strategies.

2. In Vitro Models for Immunotherapy Studies
2.1. 2-Dimensional Methods

Tumors, including CRC, are not composed of homogeneous cell populations but
contain a multitude of cells with different characteristics [35]. This heterogeneity leads to
different treatment responses within the tumor itself as well as between patients and has to
be considered early while developing new therapies. Cancer cell lines are a widely used
tool for pre-clinical in vitro research. Their major advantage is their simple manipulation.
Due to the heterogeneity of CRC, there is a multitude of derived cell lines available to date
with different molecular patterns. Hence, the selection of the most relevant model is a
crucial step during the development of new pharmaceutics. Numerous multi-omics studies
have dealt with the analysis and classification of CRC. In particular, following the CMS clas-
sification [25], Berg et al. analyzed 34 CRC cell lines and classified them among the 4 CMS
groups mentioned above, bringing new resources for CRC model selection (Table 1) [36].
As discussed, MSI/dMMR tumors are preferentially immunogenic, heavily infiltrated by
lymphocytes and good responders to immunotherapies [37]. Accordingly, in vitro studies
on CMS1 CRC cell lines gave interesting responses to immunotherapies. However, to
better understand the heterogeneous behaviors seen in tumors, experiments need to be
extended to other cell lines. More specifically, cells corresponding to the major types of
mCRC should carefully be characterized to respond to the huge therapeutic challenge we
are facing now [38]. The initial choice of the cell line is therefore an important criterion.
Testing and comparing responses in cells originating from different CMS clusters will
therefore prove useful for assessing the underlying molecular mechanisms of resistance to
immunotherapies. We thereafter discuss different experimental models based on the use of
commercially available cancer cell lines for the study of immunotherapies in vitro.

Table 1. Classification of 34 colorectal cancer (CRC) cell lines into consensus molecular subtype
(CMS) subgroups. Human colorectal cancer cell lines are assigned into the best fitting CMS group
according to Berg et al. [36].

CMS Type Colorectal Cell Lines

CMS1 MSI, Immune Co115, DLD-1, HCT15, KM12, LoVo, SW48, Colo205, HCC2998
CMS2 Canonical EB, FRI, IS3, LS1034, NCI-H508, SW116, SW1463, SW403, V9P
CMS3 Metabolic CL-34, LS174T, CL-40, HT29, SW948, WiDr
CMS4 Mesenchymal HCT116, RKO, TC71, CaCo2, CL-11, Colo678, IS1, SW480, SW837

2.1.1. Cancer Cells: Secretome Assessment

During culturing, cells naturally release proteins, soluble factors, exosomes, or mi-
crovesicles capable to act on cell interaction, proliferation, death, metabolism, or drug
resistance [39]. In the context of immunotherapy, transferring a conditioned medium (CM)
from one cell culture to another is a simple experiment to address the effect of the cancer
cells’ secretome on immune cells’ phenotype (Figure 1) [40]. In the recent years, numerous
studies have focused on the establishment of therapeutic strategies for converting tumor-
associated macrophages (TAMs) displaying an immunosuppressive M2 phenotype into a
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pro-inflammatory M1 phenotype [41–43]. In order to generate TAMs in vitro, the use of
tumor-based CM has proven to be an effective approach. Several research groups have in-
deed demonstrated that TAMs, differentiated in tumor-based CM, display the same genetic,
phenotypic, and functional characteristics as the tumor-associated macrophages derived
from patients [44,45]. Benner et al. used conditioned media derived from two breast
cancer cell lines which was complemented with a cocktail of cytokines (IL-4, IL-10, M-CSF)
and incubated it with healthy donor monocytes to successfully generate tumor-associated
macrophages (TAMs). Those TAMs which differentiated in M2 macrophages showed an
increased co-expression of the CD163/CD206 TAM surface markers as well as several
functional TAM markers. Importantly, those TAMs also secreted factors in vitro able to
promote tumor cells survival and growth [46]. In a similar approach using tumor-based
CM, Dong et al. also produced TAMs and demonstrated that the immunocomplex formed
between lactoferrin and anti-lactoferrin was capable of converting M2-TAMs towards the
M1 phenotype [47]. These studies demonstrate the potential of producing in vitro TAMs
for studying new immunological opportunities. For CRC, this strategy also was success-
ful since CRC-based CM prepared from 4 distinctive cell lines was able to activate and
induce differentiation of the human monocytic cell line THP-I towards a TAM-associated
phenotype displaying immunosuppressive properties [48].
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immunotherapies. The in vitro 2D co-cultures using commercialized cell lines are a first approach to evaluate the activation,
migration, or cytotoxic potential of immune cells following an immunomodulatory treatment because of its simplicity to set
up, its low cost, and its reproducibility. Indirect co-culture consists of the transfer of conditioned medium from one cell to
another. This allows the effects of soluble factors on immune cells biology to be studied. The indirect co-culture method
using the Transwell assay allows the study of the migratory capacity of immune cells in the presence of tumor-derived
conditioned media. Finally, the direct co-culture assay permits cell-to-cell interactions, thus allowing studies on immune
cells activation and cytotoxic activity towards tumor cells.

In addition to TAMs, T lymphocytes are another immune cell population that is highly
targeted by immunotherapies. Adil et al. studied the effects of cancer cell based-CM on Pe-
ripheral Blood Mononuclear Cell (PBMCs) originating from healthy donors. They showed
an anti-proliferative effect of both MCF7 and HeLa conditioned media. However, CM pre-
pared from the leukemic K562 cell line demonstrated a pro-proliferative effect on PBMC
associated with an increased expression of Treg markers and of the CD4+/Helios+ sub-
population. These results correlate with the induction of immunosuppressive functions of
PBMC promoted by CM [49]. Similarly, it was shown that CM prepared from the RENCA
mouse kidney cancer cell line converted CD4+CD25- T lymphocytes into CD4+CD25+ Treg
cells [50]. Together, these methodological approaches underline the important crosstalk
existing between immune and tumor cells and the influence that secreted soluble factors
can exert on the fate of immune cells. This, combined with the development of new
omics technologies, can help future studies aiming at identifying new targetable immuno-
logic molecules involved in cell–cell trans-communication. Such approaches have yet
been useful for CRC by demonstrating the capacity of the Treg supernatant to enhance
chemoresistance [51]. Recently, conditioned media were prepared from rectal cancer and
non-cancer control biopsies and 19 oversecreted inflammatory proteins were identified in
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the rectal cancer secretome [52]. By comparing CRC-CM-induced effects on immune cells,
and conversely by comparing immune cell-CM-induced effects on colorectal cancer cells,
new interventional opportunities can therefore be identified and secretome components
targeted to eventually be blocked [53]. Alternatively, targetable cellular pathways involved
in the secretion of specific soluble factors having an immunogenic potential might directly
be identified and pharmacologically evaluated through new screening approaches in CRC
tumor cells selected among those classified as CMS2-4.

2.1.2. Co-Culture with Paracrine Interaction: The Transwell Technology

Immunotherapies are ineffective for most pMMR CRC cancer because of the poor
number of infiltrating immune cells in the tumor microenvironment [54]. The development
of immunotherapies able to promote migration and recruitment of immune cells within the
tumor microenvironment is thus essential [8,55,56]. The Transwell technology can be used
in vitro to study the impact of immunotherapeutic molecules to act on the ability of cancer
cells to attract immune cells. The Transwell consists of an upper insert containing a perme-
able membrane allowing the exchange of soluble factors and/or cell migration (Figure 1).
Several Transwell pore sizes are indeed commercially available. Membrane with a pore
size of 0.4 µm exclusively permits measuring the exchange of soluble factors like cytokines
between the two compartments. In contrast, a larger pore size allows cells to migrate
through the membrane. For the study of human-derived immune cell migration, a 3 to
5 µm pore size membrane is usually sufficient [57–59]. In Transwell coculture, immune cells
(PBMCs or isolated subpopulations of immune cells) are seeded onto the upper layer of
the insert, while the tested molecules, CM, or attached cells are deposited in the lower
chamber. Tumor cells can then be stimulated or treated (chemotherapeutics or radiother-
apy) before positioning the Transwell upper layer to trigger the secretion of soluble factors.
After diffusion throughout the well, those factors can reach immune cells with their subse-
quent activation, proliferation, cytokines production, and/or migration easily monitored
(Figure 1). Hence, activation can be studied by flow cytometry through the expression
of specific surface markers. Proliferation can be assessed by counting cells in the upper
chamber. Cytokine secretion can be quantified by ELISA assay and/or cytokine array [60].
Finally, immune cells migration can be evaluated either after fixation, coloration, and count-
ing with a microscope [61,62] or by flow cytometry, after Transwell centrifugation and cell
harvesting, with antibodies directed against specific surface antigens. The percentage of
each cell subpopulation can thus be precisely determined [63,64]. Transwell is commonly
used to test chemotaxis of immune or cancer cells. For example, Harlin et al. demonstrated
that chemokines (CCL2, CCL3, CCL4, CCL5, CXCL9, and CXCL10) are able to induce
migration of CD8+ T-cells from the upper to the lower chamber of the Transwell. They also
demonstrated that, in contrast to the culture medium alone, the presence of M537-CM
melanoma cells in the lower compartment stimulates the recruitment of CD8+ T-cells [63].
Similarly, Hennel et al. used the Transwell technology to study the ability of breast cancer
cells dying after radiotherapy to release factors capable to stimulate monocyte migration.
To do so, they seeded in the upper insert THP-1 macrophages while supernatants from
mock-irradiated and irradiated breast cancer cells were put in the lower chamber. This ap-
proach allowed them to demonstrate that radiation-induced necrosis of HCC1937 cells is
particularly efficient for stimulating THP-1 cell migration and identifying apyrase-sensitive
nucleotides as molecules responsible for attracting monocytes [65]. Transwell assays were
also used to study the migratory capacity of mast cells in CRC [66]. This immune cell type
is one of the earliest to be recruited during CRC tumorigenesis. In this work, the authors
plated human CD34+-derived mast cells in the upper chamber of the Transwell while
CM prepared from either HT29 or Caco2 CRC cells were positioned in the lower chamber.
Their results demonstrated a significant increase of mast cell migration in both conditions.
However, mast cells’ chemo-attraction originated from two distinct mechanisms according
to the CRC cell line used. The stem cell factor (SCF) seems to be involved in the Caco-2-
CM while CCL15 chemokine is responsible for the mast cell migration in HT29-CM [66].
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These works highlight the effectiveness of using the Transwell assay to deal with the
migratory functions of immune cells and could be an asset for the understanding of the
migration mechanisms following treatment by immunotherapies.

2.1.3. Co-Culture with Direct Cell-to-Cell Interaction

The use of direct co-culturing conditions allows physical contact between tumor
and immune cells. This approach should be considered as an alternative method for
studying in vitro anti-cancer immunotherapies [67]. It indeed allows the role of cell–
cell physical contact in addition to the action of secreted soluble factors to be evaluated.
It also the direct cytotoxic activities of immune cells towards cancer cells to be evalu-
ated (Figure 1). Co-cultures can be performed with either PBMC from healthy donors,
mice, patients’ peripheral blood, or immune cells collected and isolated from colorec-
tal carcinoma specimens. Prior to establish the co-cultures, immune cells can be sorted
out in order to isolate specific immune cell subpopulations (LT, LB, NK, DC, Mono) or
differentiated in vitro (macrophages) [68,69]. However, an important issue is the need
to precisely establish the ratio that is used in the co-culture experiment between tumor
cells and immune cells. Moreover, defining the precise cytokines/antibodies cocktail re-
quired for activating immune cells can be particularly tricky. Anti-CD3/CD28 beads, IL-12,
and M-CSF or GM-CSF are usually used for activating T-cells, NK-cells, and macrophages,
respectively [70–72]. In addition, defining the incubation time of the co-culture prior to
performing analyses is an important issue and is likely to depend on the tumor cell type
used. In that sense, a detailed protocol used for performing co-cultures of tumor cells
with T-cells was described by Melief et al. [73]. In addition, Minute et al. performed
co-cultures combining modified MC38 CRC murine cells (MC38EGFROVA) with either
cytotoxic T lymphocytes (CTL) or activated NK-cells. Interestingly, prior to establishing
co-cultures, tumor cells were here pre-treated with IFN-γ in order to increase their expres-
sion of MHC-class I. Human gp100 peptide was also added to load MHC-class I. The first
co-culture was then established with CD8+ splenocytes which were preactivated in vivo in
mice. Activated splenocytes and preconditioned MC38 were then co-cultured for 3 days
at a 10:1 ratio, in the presence of IL-2 and human gp100. The second co-culture model
was established with NK-cells which were also preactivated in vivo in mice. In that case,
NK-cells were co-cultured for 3 days with MC38 cells which were not preconditioned,
at a 5:1 ratio and in presence of IL-2. At the end of the co-cultures, the authors highlighted
the presence of two alarmins in the extracellular compartment, HMGB1, which was re-
leased in the culture medium and the calreticulin which was exposed on the cell surface.
This study presented evidence that T- and NK-cells induce features of immunogenic
cell death (ICD) on tumor cells and that in vitro co-culture can trigger immune response
against tumor cells. Importantly, in the same study, the authors demonstrated the same
capacity of CTL and NK-cells to induce ICD on the human CRC cell line HT29. In the
presence of a bispecific antibody EpCAM-CD3ε, HMGB1 and calreticulin were indeed
exposed on the HT29 cells when co-cultured with CTL or NK-cells (preactivated by IL-2
and IL-15). However, the ratio used here (1:1) was strikingly different from those used
for the murine cells [74]. This underlines the difficulties of setting up general protocols
and the sometimes difficult interpretation in terms of biological relevance. In a similar
context, others performed co-cultures of HT29 CRC cells with CD8+ T-cells isolated from
either healthy donors, CRC patients’ peripheral blood, or from tumor immune infiltrates.
The CD8+ T-cells were then stimulated for 2 h in the presence of anti-CD3/CD28 beads
and then directly and indirectly (Transwell) co-cultured with HT29 cells (4:1 ratio) for 48 h
in the presence of anti-CD3/CD28 beads. In this study, the authors evaluated the effect
of the indirect pharmacological inhibition of Notch by the γ-secretase inhibitor DAPT on
the anti-tumor immunity. Interestingly, they evidenced an increased production of pro-
inflammatory cytokines (IFN-γ, IL-1β, IL-6, TNF-α) in the supernatant of both direct and
indirect co-cultures when HT29 cells were co-cultured with either peripheral or infiltrated
tumor CD8+ T-cells in presence of DAPT. However, a significant increase in CD8+ T-cell-
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induced HT29 cell death was only observed when co-cultures were made with CD8+ T-cells
which were purified from colorectal carcinoma, not CD8+ T-cells isolated from peripheral
blood. This phenomenon was also reported only when cells were co-cultured in conditions
permitting direct contacts between cells. Remarkably, in the absence of Notch inhibition,
this study also demonstrated a greater cytotoxic effect on HT29 cells of peripheral CD8+
T-cells isolated from healthy donors compared to peripheral CD8+ T-cells isolated from
CRC patients. Thus, this study evidenced the immunosuppressive potential of Notch
signaling in CRC and demonstrated the in vitro ability of Notch inhibition to stimulate and
restore anti-tumor immunity [75]. Co-cultures with direct cell-to-cell interaction were also
used for deciphering the mechanism of action of the TIGIT immune checkpoint (present
on T-cells’ surface) and its role in the impairment of metabolism and function of CD8+
T-cells [76]. In this study, CD8+ T-cells were isolated from PBMCs of healthy donors and
co-cultured with the SGC7901 gastric cancer cell line at a 5:1 ratio. Intriguingly, the re-
sults initially showed that tumor cells were capable to inhibit T-cell metabolism and this
effect could be reversed by addition of glucose in the culture medium. The authors also
demonstrated that co-culturing CD8+ T-cells with tumor cells enhanced the expression
of TIGIT on their cellular surface. Interestingly, the blockade of TIGIT antigen with an
anti-TIGIT antibody increased CD8+ T-cell metabolism, glucose consumption, as well as
lactate production. It also restored T-cell effector functions by reversing gastric cancer
cell-mediated inhibition of IFNγ production. This study thus highlights the potential of
targeting TIGIT immune checkpoint to restore immune T-cells’ anti-tumor functions [76].

Finally, assessing the interaction of M1 macrophages with tumor cells can also be
performed through direct co-culturing experiments [77]. To that end, co-cultures were
carried out with RAW264.7 murine macrophage cells, which were previously polarized
as M1 macrophage by LPS and INFγ treatment and the 4T1 breast cancer murine cell line.
The latter cells were also primarily labeled with the CFSE fluorescent probe. Through a
very detailed protocol, the authors described in their manuscript a clever method permit-
ting visualizing 4T1 cells’ engulfment by macrophages which could be used for further
immunotherapy studies aiming at targeting this specific subtype of immune cells [77].

Together, these data show that co-cultures involving direct cell-to-cell contact are
becoming a widely used method for evaluating immunotherapies’ efficacy and the under-
lying molecular mechanisms associated with it. As discussed earlier, it has the advantage
of being easy to set up and to give quick results. However, the experimental conditions
should be carefully defined for not misinterpreting or over-interpreting the data obtained.
Moreover, one of the major drawbacks of these experimental models is the lack of predictive
value in terms of tumor heterogeneity, complexity, and 3D organization.

2.2. 3-Dimensional Methods

The major limitation for the development of new therapies acting on the TME,
including immunotherapies, is the lack of consistent in vitro models. The traditional
two-dimensional (2D) cancer models are still in use to study molecular and cellular features
of tumors and sensitivity to treatments. However, many drawbacks have been identified
for those models [78,79]. 2D culture methods indeed poorly represent patient’s tumor
complexity, thus limiting their reliability. This is particularly true for solid tumors for
which 3-dimensional organization is an important characteristic affecting their biological
properties and survival capacities. 2D cell line cultures are indeed unable to fully reproduce
tumor features such as microenvironment, immune system interaction, stromal compart-
ment, and heterogeneity of cancer cells [80,81]. These limitations led, in the past years,
to tremendous efforts for developing and designing new models capable of reproducing
3D tumor structuring, thus giving a rational intermediate between in vitro 2D culture and
in vivo animal models.
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2.2.1. Spheroids

The easiest method to switch from 2D to 3D models is culturing spheroids, also called
multicellular tumor spheroids (MCTS). These 3D structures can be easily obtained by
incubating cell lines in low attachment plate. This specific surface favors cell-to-cell
interactions, thus promoting spontaneous homotypic aggregation [82,83]. An alternative
hanging drop method can also be used to generate spherical cell growth. Here, a drop of
cell suspension is placed on a dish lid and then inverted onto the bottom chamber. Cells in
the drop then aggregate and form spheroids (Figure 2) [84–86]. Importantly, it should
be noted that not all cell lines are capable of assembling themselves to a 3D spheroid
structure [87]. However, even if spheroids do not contain all the cell types and soluble
factors that are present in the tumor microenvironment, they allow by their 3D organization
mimicking cell-to-cell interactions, hypoxic conditions and low nutrient concentrations
that otherwise characterize tumors. Moreover, it establishes a phenotypic heterogeneity
which is not, or is poorly, observed in 2D cultures. Many studies have indeed highlighted a
metabolic (oxygen consumption and lactate production) and proliferative gradient between
the core and the periphery of the spheroids [88–90]. A necrotic part is also observed in
the center of the spheroid as it is in vivo for solid tumors [85,91]. Another point which is
important to consider is the sensitivity of cellular models to anti-cancer drugs. Indeed,
many drugs show anti-cancer activity in 2D cellular models but their observed effects often
do not predict activity in patients [79,92]. The 3D culture of spheroids, by more closely
mimicking tumor complexity, has thus unraveled resistance mechanisms not found in a
2D cellular context [79,93–95]. Moreover, cell lines are able to form spheroids of varying
density and it is known that dense spheroids show higher chemoresistance [93]. Therefore,
3D spheroids allow, early in their development, for the assessment of the anti-cancer
activity of compounds on cancer cell populations displaying phenotypically distinctive
traits and exposed to either high or low concentrations of tested molecules [96].
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Figure 2. Schematic representation of 3-dimensional (3D) cultures with cell lines (spheroids) or patient tumor tissues
(organoids) helpful for studying immunotherapies. The growth of tumor cell lines in 3D allows the formation of spheroids
characterized by a necrotic core and a proliferative and metabolic gradient mimicking the 3D structure of a tumor.
The spheroid allows the easy assessment of immune cells infiltration and the evaluation of strategies with pro-immunogenic
potential. The main limitation of this model is the lack of heterogeneity related to the use of cell lines. 3D models made
from small pieces of tumor tissues, also called organoids, have shown their ability to mimic tumor heterogeneity in terms of
cellular components, TME, or tumor histology. Co-cultures of 3D-cells isolated from tumor tissues with immune cells in the
liquid–liquid interface (LLI) method allow immune cell infiltration, activation, and their associated anti-tumor effect to be
studied in a context closely reproducing tumor complexity, heterogeneity, and histology. On the other hand, the air–liquid
interface (ALI) culture method has been developed to preserve the micro-environmental cellular components to further
improve studies on immunotherapies in a context as close as possible than those observed in clinical solid tumors.

Spheroids also became a powerful tool for studying immunotherapies. Immune cells
are indeed able to infiltrate them and to exert their biological effects [97–99]. Moreover,
3D-co-culturing of tumor cells with immune cells and fibroblasts demonstrated the accumu-
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lation of cytokines, chemokines, extracellular matrix components, and metalloproteins in
the TME [97]. Interestingly, Rebelo et al. recently studied the increased infiltration capacity
of THP-1 macrophages or donor blood-derived macrophages into heterotypic spheroids
composed of the NCI-H157 lung cancer cell line and cancer-associated fibroblasts (CAF).
The authors also reported the polarization of the infiltrating macrophages towards the M2
phenotype [97]. Similar experiments were conducted with spheroids formed by the LS174T
CRC cell line co-cultured with immortalized fibroblasts (MRC-5). In this model, the au-
thors showed the capability of leukocytes and monocytes to efficiently infiltrate heterotypic
spheroids while T-cell infiltrate was limited [98]. Such co-cultured heterotypic spheroids are
also a useful tool to evaluate therapeutic strategies. In line with this, Alonso–Nocelo et al.
performed 3D co-cultures of A549 lung cancer cells with Jurkat T-cells (ratio 1:1) and evalu-
ated T-cell infiltration into A549 cell line spheroids [99]. Interestingly, they reported the
establishment of an inflammatory and immunosuppressive environment mediated by the
3D structuring of cancer cell spheroids which was increased when Jurkat T-cells were co-
cultured. This makes such models of particular interest for studying anti-tumor immunity
and evaluating anti-tumor activity of drugs [99] This new paradigm can be exemplified by
the recent work published by Courau et al. [100]. Spheroids were grown with either HT29
or DLD-1 CRC cell lines and PBMCs added to the culture medium (ratio 1:10). This study
first revealed the capacity of T- and NK-cells to infiltrate the spheroid and to be activated
in the presence of IL-15, thus leading to spheroid destruction. Second, and maybe more
importantly, this work identified the potential of using immunomodulatory antibodies
targeting NKG2D ligands, a central activator of the NK cytotoxic response. The authors
indeed observed an increased NK-cell infiltration and expression of the CD137 activation
marker at their surface as well as a decreased expression of the CD16 receptor. Together,
those results highlighted a NK-mediated anti-tumor response against CRC spheroids [100].

In addition to their usefulness and relevance for cancer research, 3D culturing ap-
proaches also permit animal uses to be reduced and should be considered as an alternative
to them. Their ability to closely mimic crosstalks between immune, stromal (mostly fi-
broblasts), and tumor cells offers a good template to initially assess strategies aiming
at targeting the TME [97]. Obviously, this method, which is easily available and of rel-
atively low cost, also has some limitations. In particular, it does not permit the tumor
structure and heterogeneity as well as its complex microenvironment to be completely
represented. In addition, because they are often transformed or genetically modified,
the cell lines used to form spheroids lack predictive power. However, to work around these
limits, new methodologies such as organoids are now using patient-derived tumor slices
to preserve the heterogeneous nature of tumors.

2.2.2. Organoids

The organoid model is a 3-dimensional technology allowing the growth of a small-
scale tissue in vitro, leading to its structure mimicking the in vivo parent organ [101,102].
Organoid culture is a promising approach to study the efficacy of immunotherapies in
a context close to the patient’s physiology. The culture of the CRC organoid has long
been studied and is now well characterized [103]. Particularly, it has been evidenced that
organoids, developed from patient-derived colorectal tumor slices, allow the preservation
of the tumor’s genetic heterogeneity, and, from a histological point of view, cells in the
organoid are able to self-organize and to reproduce the morphological architecture of the
original tumor. Hence, depending on the localization of the original surgical resection,
organoids develop specific organizations reproducing the organ-like tissue [104–106].

In practice, organoids are established from small pieces of tumors isolated from sur-
gical resections or biopsies. These fragments are crushed with an enzyme mix, filtered,
and included into a Matrigel to subsequently be cultured in culture medium. A com-
plete protocol has been designed by van de Wetering et al. [104]. With such approaches,
development of co-cultures with immune cells can also be considered for immunotherapy
development. The so-called liquid–liquid interface (LLI) method consists in separately
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culturing first organoids and immune cells before to establish co-cultures. The immune
cells used in these studies can therefore be isolated either from healthy donors’ blood, and
patients’ blood or tumors. Moreover, specific immune cell subpopulation (LT, NK, DC)
can be cell sorted from the entire pool of PBMCs prior to co-culturing in order to study
the response and effect of specific subpopulations on the organoids [68,107]. To initiate
co-cultures, two distinctive approaches are usually considered. The first one consists of
the digestion of organoids, addition of immune cells to the tumor suspension, and the
regrowth of the organoid with immune cells. The second approach consists of the addition
of immune cells directly to the culture medium without prior digestion of the organoids
(Figure 2) [108].

The importance of organoids in cancer research can be exemplified by the work of
Gonzales–Exposito et al. [109]. Co-cultures were performed with patient-derived CRC
organoids and CD8+ T-cells isolated from PBMC of healthy donors (added 24 h after
organoid formation). Suspensions were then treated with cibisatamab, a bispecific an-
tibody recognizing CD3+ T-cells as well as the carcinoembryonic antigen (CEA) which
is overexpressed by CRC cells. In this setting, the authors showed that tumors strongly
expressing the CEA antigen responded to cibisatamab treatment while those expressing
low CEA levels did not. Importantly, this study demonstrated the ability to redirect T-
cells’ response against tumor cells and the potential of using organoids co-cultured with
allogeneic immune cells [109]. To avoid non-specific allogeneic response of immune cells
against “non-self” organoids, proper controls should, however, be used in this setting to
ensure correct interpretation. To work around this problem, the co-culture of dMMR CRC
organoids with PBMC isolated from the same patient can also be performed [110]. In the
presence of IL-2- and CD28-coated antibodies, as well as by targeting PD-1, the authors
succeeded in enriching the tumor-reactive T lymphocytes fraction and showed that reac-
tive T-cells which were generated and were capable of effectively killing organoids [110].
This study also demonstrated that organoids express antigens permitting the recruitment,
proliferation, and activation of T-cells.

To go on with the improvement of organoids, several research groups developed
methods for culturing organoids in vitro in conditions favoring the maintenance of the
whole microenvironment cell components. The so-called “air–liquid interface” (ALI) model
consists of culturing minced tumor biopsy fragments that contain the entire cell popula-
tions actually present in the tumor (endogenous immune cells, fibroblasts, endothelial cells,
epithelial cells, tumor cells) [111,112]. To do so, cells are embedded in a Matrigel solution
and placed in an insert that was pre-coated with Matrigel. The insert is then positioned in
a well containing the appropriate culture medium (Figure 2) [68]. This original approach
helps mimic the intestinal membrane consisting of a monolayer of polarized epithelial
cells with an apical surface towards the lumen and a basal surface towards the lamina
propria [113]. An important issue for studying immune responses is the particular composi-
tion of TILs within the tumor microenvironment as it can generate an immunosuppressive
environment promoting tumor progression. Importantly, it was reported that organoids
prepared in such conditions can maintain the expression of the CD45 surface marker
on leukocytes for 8 days. In the same study, the authors however noted a loss of CD3+
T-lymphocytes [113]. More recently, an alternative ALI culture method was developed
in order to preserve TILs and the original tumor T-cell receptors for up to 30 days [114].
Therefore, co-culturing ALI-prepared organoids with infiltrating leukocytes now allows
short-term studies for assessing the response to immunotherapies in the in vitro 3D model
still harboring their original immune microenvironment. Importantly, after treatment,
the cells that are present in the organoid can be harvested and analyzed (qRT-PCR, imaging,
or flow cytometry) to study the efficacy of the therapy and to understand the underly-
ing molecular mechanisms. By using this model, Neal et al. prepared organoids from
murine tumors which were established in syngeneic models. Then, the authors treated the
organoids for 7 days with immune checkpoint inhibitors (targeting PD-1 and PD-L1) and
demonstrated by flow cytometry an increased number of CD8+ cytotoxic T-cells among
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the whole set of CD3+ T-cells as well as an increased cellular death evidenced by Annexin
V/7-AAD double labeling. Finally, by performing RT-qPCR, the authors identified genes
involved in this stimulation [114].

The ability to co-culture organoids with either heterologous or autologous PBMC
as well as tumor resident immune cells is paving the way for studies aiming at charac-
terizing in vitro the effect of the immune components on heterogeneous tumor models
closely related to what can be found in vivo. These methodological developments open
new perspectives in terms of testing drugs on immune cells as well as on their recruitment
and/or activation. Moreover, the easy access to the tumor-like structure facilitates the
understanding of the underlying molecular mechanisms and the identification of novel
therapeutic opportunities. Importantly, organoids can be cryopreserved, allowing the
development of tumoroid biobanks. Such models are of particular interest notably for
screening molecules [104]. Finally, the development of the two LLI and ALI approaches
offers two distinctive methodological options depending on the purpose of the experiments.
If the objectives of the study are identifying molecules capable of attracting and/or activat-
ing peripheral immune cells or a subset of them to the tumor, the LLI approach seems to be
the most appropriate. On the contrary, the ALI approach should be used for testing in vitro
drugs and screening molecules capable of acting on the intrinsic immune cells and/or the
immunosuppressive microenvironment. As a patient-derived xenograft, ALI organoids
can also be thought of as a tool for personalized medicine. Organoids can therefore be
considered as an excellent pre-clinical model bringing patients into basic cancer research
and facilitating the transfer of knowledge into the clinical practice.

3. In Vivo CRC Models for Immunotherapy Studies

Even if organoids brought new options for drug discovery, in vitro models usually
remain an initial step in the development of novel immunotherapies. Validation in animal
models is indeed required to gain access to the whole parameters involved in the anti-tumor
response such as pharmacokinetics, metabolism, immunity, or organ toxicity. It is therefore
important to use animal models before translating new findings to humans. For most
anti-cancer therapies, immunodeficient mice xenografted with human cancer cell lines
are used. However, due to the lack of immune system, those models cannot apply to
immunotherapy and therefore specific models should be considered.

3.1. Syngeneic Models

The in vivo model the most commonly used by research groups working on im-
munotherapy is the syngeneic mouse model. This model consists of engraft murine
cell lines previously grown in vitro into immunocompetent BALB/c or C57BL/6 mice.
These murine models have an effective immune system. Hence, their treatment with
immunotherapies allows treatment efficacy in terms of immune system activation and/or
cytotoxic activity against tumors to be investigated (Figure 3) [29,67,115]. The major ad-
vantage of working with engrafted mouse cell lines is that the effect of the molecule
can be easily determined by measuring the size of tumors. At the end of the procedure,
tumors can be harvested, and several biological parameters possibly influenced by the
treatment monitored. Immune cell infiltration can thus be evaluated by flow cytometry or
immunohistochemistry. Expression of intra-tumor cytokines can be evaluated by cytokine
array. Western blotting or RT-qPCR can also be performed to assess post-translational
modifications or protein/genes expression levels. The whole set of data thus generated
then improves our understanding of the mechanisms involved in either sensitivity or
resistance to therapeutic interventions (Figure 3) [116–120]. Another major advantage of
using syngeneic models is that engrafted cells can easily be manipulated and genetically
modified in vitro prior to inoculation. Specific genes can be turned off to assess their impact
on therapy and thus better ascribe the mechanism of action [121–123]. Genes encoding
luciferase can also be introduced in the genome of the tumor cells to monitor their outcome
in living organisms [124,125].
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For CRC, the most commonly used syngeneic mouse models are the two CT26 and
MC38 murine cell lines inoculated in immunocompetent BALB/c and C57BL/6 mouse,
respectively [126]. The CT26 cell line is derived from a colon tumor formed in BALB/c
mice exposed to N-nitroso-N-methylurethane, while MC38 cells were isolated from a colon
tumor formed in a C57BL/6 mouse exposed to 1,2-dimethylhydrazine dihydrochloride
(DMH). In human CRC, the majority of tumors present mutations in APC, KRAS, and
TP53 genes. However, CT26 cells only have identified mutations in KRAS (G12D, V8M)
but not in either APC or TP53 genes. Similarly, MC38 cells are mutated in the TP53
gene (G242V, S2581) but not in either KRAS or APC genes [127]. CT26 cells are pMMR
and express CMH class I with a robust binding capability, but not CMH class II antigen
presentation molecules. This model is often considered as the most immunogenic syn-
geneic mouse model and is described as a good responsive model for immunotherapeutic
research [127,128]. In particular, CT26 cells show a high mutational load in contrast to most
pMMR human tumor. Moreover, a large NK-cell infiltrate is observed in CT26 syngeneic
models, a characteristic which does not mirror human colon tumors known to be poorly
infiltrated by NK-cells [127,129]. On the other hand, the MC38 cell line is defined as an
MSI model of CRC and present the highest mutational load among the ten most commonly
used syngeneic mouse models evaluated to date [127]. Several groups used these models to
evaluate CRC responses to classical immunotherapeutic agents. In a detailed study made
on commonly used syngeneic models for different cancer location, CT26 tumor growth
was significantly inhibited by both anti-CTLA4 and anti-PD-1 antibodies. In contrast,
no anti-tumor activity was detected against the MC38 cells [130]. However, in another
study, a complete inhibition of the MC38 tumor growth was observed after treatment with
an anti-PD-L1 antibody [123].

In addition to the direct evaluation of immunotherapies, several research groups are
interested in studying drug combinations capable of enhancing immune-directed molecule
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activity. For CRC, a strong interest is focused on combining oxaliplatin with molecules
in order to potentiate its action. Oxaliplatin is indeed an effective chemotherapy used
for treating CRC patients in clinics but its effect is often limited by the development of
resistance [131,132]. Interestingly, oxaliplatin is also known to strongly induce ICD which
favors the establishment of an immune-favorable microenvironment, thus facilitating
the recruitment and activation of immune cells [133,134]. In a recent work, to overcome
oxaliplatin resistance, this platinated compound was combined with an inhibitor of the
ataxia telangiectasia and Rad3-related protein (ATR) kinase. The results first showed a
strong in vitro synergistic effect in six different human colorectal cancer cell lines and their
oxaliplatin-resistant counterparts. Importantly, this combination was also evaluated in the
MC38 syngeneic mouse model. In this setting, a synergistic effect was also demonstrated
in terms of tumor growth. In addition, the use of the immunocompetent model permitted
further insights in the in vivo activity of this combination to be gained. Indeed, the authors
clearly demonstrated that the combination of oxaliplatin with VE-822 (an ATR inhibitor)
promoted an anti-tumor T-cell response which was characterized by an increased number
of MC38-targeting IFNγ-producing CD8+ T-cells in mice that received the combined treat-
ment compared to those treated with oxaliplatin alone [135]. Another interesting study
investigated the effects of combining oxaliplatin with the anti-PD-L1 immune checkpoint
inhibitor in the CT26 syngeneic mouse model. In this work, the authors successfully
demonstrated the interest of combining these two classes of molecules to inhibit tumor
growth. Maybe more importantly, this work clearly showed that combining oxaliplatin
with an anti-PD-L1 monoclonal antibody led to an increased tumor infiltration of CD8+
T-cells, especially when the anti-PD-L1 molecule was injected before oxaliplatin. This study
thus highlights the interest of these murine models to evaluate novel drug combinations
and to optimize drug administration scheduling [136]. In agreement, the CT26 syngeneic
mouse model was also used to evaluate the combination of MEK inhibitors with anti-PD-L1
monoclonal antibodies [29]. As discussed above, CT26 cells are cancer cells bearing acti-
vating mutations in the Ras pathway. However, beside the direct effect of MEK inhibition
on cancer cells, the authors showed that G-38963 (which is similar to the MEK inhibitor
Cobimetinib) can increase the number of effector-phenotype antigen-specific CD8+ T-cells
within the tumor and act on the tumor-infiltrating CD8+ T-cells’ biology and survival.
Importantly, the authors also reported that combining MEK inhibition with an anti-PD-L1
monoclonal antibody resulted in a synergistic and durable tumor response in mice [29].
However, in clinics, the effect of combining atezolizumab, a humanized IgG1 monoclonal
antibody selectively targeting PD-L1, with Cobimetinib did not show any significant im-
provement of the overall survival of heavily pretreated pMMR mCRC patients compared
with regorafenib or atezolizumab alone [137]. The discrepancy between preclinical and
clinical data might be partly explained by the heterogeneous nature of mCRC at the ad-
vanced stages of the disease. This is particularly true for third-line-treated CRC patients
who present otherwise chemo-refractory metastatic tumors. Moreover, the IMblaze370
clinical trial was not initially designed to assess the activity of the combination in different
subgroups of patients. In addition, the CT26 cell line is known to be mutated in KRAS as
well as for presenting MAPK1 and MET loci amplification [128]. This specific feature might
therefore also impact their global response to MEK inhibitors. Finally, and as discussed
above, the known immune responsiveness of the mouse CT26 syngeneic model is likely not
to mirror the immune phenotype found in advanced pMMR tumors. These results under-
line the difficulties to translate preclinical data obtained on single cell type homogeneous
tumors displaying genetic and immune-specific features to advanced clinical settings with
inter- and intra-patient heterogeneous diseases. However, even if translation to humans
might be tricky in the absence of biomarker assessments, the use of syngeneic mouse
models remains a useful tool for deciphering clinical observations. This can be exemplified
by the recent work demonstrating how liver metastasis might impact immunotherapy
efficacy in patients with cancer [138]. In this work, the authors demonstrated that mice
bearing subcutaneous syngeneic MC38 CRC tumors efficiently responded to anti-PD-L1
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therapy while the same tumors failed to respond to this therapy in the presence of liver
metastases. This phenomenon was related to a systemic loss of antigen-specific T-cells in
mice bearing liver metastasis due an altered liver immune microenvironment favoring
T-cell apoptosis. This model mirrors the systemic T-cell loss and decreased immunotherapy
efficacy observed in patients with liver metastases. Importantly, this study also demon-
strated that radiotherapy might reshape the liver immune microenvironment and abolish
immunotherapy resistance. Together, these results suggest that liver metastases could serve
as a potential biomarker for predicting immunotherapy response. Finally, the development
of novel syngeneic mouse models, capable of better recapitulating the genetic origin of
human CRC, might also prove useful for dealing with “immune desert” CRC. By crossing
mice, mutated in four genes involved in colorectal cancer (APC, KRAS, TGFBR2, PTR53),
Tauriello et al. established mutant mice developing pMMR metastatic intestinal tumors.
From these tumors, the authors prepared organoids and engrafted them into immunocom-
petent mice. Interestingly, only a limited effect of anti-PD-L1 therapy could be observed
on these MSS tumors. In contrast, TGF-β inhibition induced a significant reduction of
the tumor mass thanks to the induction of a strong anti-tumor cytotoxic T-cell response.
Moreover, TGF-β inhibition also prevented the formation of distant metastases and im-
proved the response to anti-PD-L1 monoclonal antibody. Hence, the authors identified the
TGF-β signaling as an interesting target for developing new strategies aimed at treating
pMMR mCRC tumors that are otherwise resistant to immunotherapies [28].

Another important impact of mouse models in the field of immunotherapies is the easy
access researchers have to immunodeficient as well as immunocompetent mice from the
same origin. Indeed, by comparing the effects of molecules in mice with the same genetic
background but in which the immune system is active or compromised, it is possible to
evaluate the impact of the immune system has on the response to novel therapeutics or
strategies. This approach was used for example to demonstrate that caloric restriction or
hydroxycitrate improved the therapeutic outcome in CT26 CRC treated by chemothera-
peutics in a T-cell-dependent fashion [139]. This strategy was also employed to explore
the role of T-cells in the response to a novel immunotherapy targeting the phagocytic
CD47 immune checkpoint [140]. There, the authors first demonstrated the anti-tumor
activity of an anti-CD47 antibody in the treatment of A20 B lymphoma and MC38 CRC cells
inoculated into wild-type BALB/c and C57BL/6 mice, respectively. However, when they
looked at the efficacy of the treatment in immunocompromised nude mice, no effect could
be observed on tumor growth, thus underlying the need for a T-cell-competent immune
system in this process. Further experiments allowed the authors to demonstrate that the
anti-cancer activity of the anti-CD47 antibody actually relied on DC cross-priming of CD8+
T-cells [140]. Finally, this approach can favor the emergence of new drug combinations
which can be exemplified by the development of the prostaglandin E2 receptor 4 inhibitor,
called TP-16 [141]. This molecule reduces the immunosuppressive myeloid cell functions.
In this work, the authors first treated CT26 and MC38 CRC syngeneic tumor models with
TP-16 and showed a significant reduction of the tumor mass. However, this effect was
completely lost when the CRC cell lines were engrafted in immunocompromised nude
mice. Again, these results stressed on the important role of having an intact immune system
for observing an activity of this new molecule. Using in vitro approaches, the authors
demonstrated that TP-16 reverses the immunosuppressive functions of PGE2 leading to an
increased proportion of M1 macrophages, and a decreased fraction of M2 macrophages
leading to a diminution of myeloid-derived suppressor cells thus favoring T-cell prolifer-
ation. These observations led the authors to combine TP-16 with an anti-PD-1 antibody
in an immunocompetent CT26 syngeneic mouse model. Importantly, the combination
showed a much more potent anti-tumor activity than either drug alone. The authors also
reported that the combined effect of both compounds led to a more immune-favorable
tumor microenvironment [141].

Together, these studies highlight the need of using syngeneic murine models for deter-
mining not only the efficacy of immunotherapies but also their underlying mechanism of
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action as well as the immune cells populations involved in. For colorectal cancer, syngeneic
mouse models have yet proven to be a powerful tool for evaluating immunotherapies as
well as strategies capable of turning cold tumors into hot responsive ones.

3.2. Humanized Mouse Model

One of the major limitations of syngeneic murine models is by definition the presence
of a murine immune system which does not fully recapitulate the human one. Phenotypic
and functional differences indeed exist between the two immune systems, thus leading to
potential failures when findings are translated to the clinic [142]. Moreover, monoclonal
antibodies used for targeting ICI in mice or in humans should be duplicated in order to
target proteins in each species.

To circumvent this problem, humanized mice (hu-mice) were developed. They are
models of immunocompromised mice displaying a reconstituted human immune system.
The use of such models is a good alternative for testing the efficacy of immunotherapies
on mice bearing human cell xenografts (Figure 3) [143,144]. Different strains of immuno-
compromised mice with deficiencies in specific immune cells populations are available
to date: (i) Nude mice (Foxn1 mutated) have no T-cells, (ii) scid mice (severe combined
immunodeficient) have no T- or B-cells, (iii) NOD-scid mice (non-obese diabetic severe
combined immunodeficiency) have reduced NK-cell and myeloid cell functions, express hu-
man SIRP-α, and have no C5 complement, (iv) NSG (NOD/SCID/IL2Rnull) and NOG
(NOD/SCID/IL2Rpartial deficiency) mice have no T-, B-, or NK-cells and show a reduced
myeloid cell functions and no complement, (v) NRG mice (NOD/RAG1null/IL2Rnull)
have no T-, B-, or NK-cells as well as no complement or myeloid cells, and (vi) BRG
mice (BALB/c/RAG2null/IL2Rnull) have no T-, B-, or NK-cells, and no complement but,
when compared to the NSG model, display more functional myeloid cells [145,146].

Mice humanization can be performed following different procedures. PMBCs (Pe-
ripheral Blood Leukocyte or PBL model) or hematopoietic stem cells (HSC) isolated from
cord blood, bone marrow, mobilized peripheral human blood, or fetal liver (CD34 model)
can be injected in immunocompromised mice. Alternatively, transplanting human tissues
(thymus + liver) in immunodeficient mice (BLT model) can be done (Figure 3). The PBL
model is probably the easiest to establish since it relies on a simple intra-splenic, intraperi-
toneal, or intravenous injection of human PBMC and it allows an efficient engraftment of
T-cells [147]. However, the engraftment of myeloid cells is generally low and mice survival
is relatively short because of the occurrence of graft-versus-host disease (GvHD) [148,149].
On the other hand, the CD34 model implies intra-femoral or intravenous injection of HSC
and allows the development of multiple hematopoietic lineages and insures primary im-
mune responses. However, the education of T-cells which occurs in the murine thymus
is achieved by the murine major histocompatibility complex (MHC), thus preventing the
development of human MHC T-cells [147]. To overcome this problem, it is now possible
to graft fragments of the human fetal liver and thymus under the kidney capsule of the
mouse in addition to intravenously injecting human CD34+ HSC (BLT method). Hence,
the education of T-cells is taking place in human thymus and it allows for the development
of multiple hematopoietic lineages and functional human MHC T-cells [147]. Nonethe-
less, this technique requires complex surgery and depends on the availability of human
fetal tissue. Moreover, these mice are often subject to lethality because of xenogeneic
GvHD [150,151].

Despite these limitations, those models can help to better understand what might
happen in the human context. This can be illustrated by the work of Wang et al. in which
irradiated NSG mice were humanized by injecting HSC isolated from fetal liver [152].
The authors first confirmed the humanization by labeling human CD45+ cells in the blood
of the mice. Then, they implanted a human breast cancer cell line (MDA-MB-231) into the
mammary fat pad and assessed the treatment efficacy of pembrolizumab, an anti-PD-1
monoclonal antibody used in clinics, on those humanized mice. Interestingly, while a
significant reduction of the tumor mass was observed, the authors could not evidence
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any increase of CD45+, CD3+/CD4+, and CD3+/CD8+ infiltrating cells in the whole
tumor. However, they demonstrated that CD8+ T-cells were relocalized from the tumor
burden to the center after treatment with pembrolizumab. By depleting the human-derived
CD8+ T-cells with an anti-human CD8+ antibody, the authors confirmed in hu-mice the
absolute requirement of a competent CD8+ T-cell population for observing a cytotoxic
effect of pembrolizumab. The anti-PD-1 monoclonal antibody indeed showed no activity
on humanized mice when they were depleted of their hu-CD8+ T-cells [152]. Hu-mice are
also a powerful tool to evaluate the activity of immune cells expressing a chimeric antigen
receptor. In that sense, we can cite the work of Klichinsky et al. who generated chimeric
antigen receptor macrophages (CAR-M) and tested their anti-cancer activity in the Hu-
NSGS (NOD/SCID/IL2Rnull/hIL3/hGMCSF/hSF) mice model obtained after intravenous
injection of human HSC [153]. The authors engrafted the human ovarian cancer SKOV3 cell
line subcutaneously and then started intra-tumor injections of either CAR-M or unmodified
macrophages. After 5 days of treatment, tumors were harvested, and RNA sequencing
performed. The results clearly demonstrated the establishment of a pro-inflammatory
tumor microenvironment promoting anti-tumor immunity when the hu-mice were treated
with CAR-M [153].

Today, human cancer cell lines are still mostly used to engraft hu-mice. However, those
cellular models are known to not strictly represent the tumor complexity and heterogeneity
found in human cancers. Therefore, to better model the human pathology, humanized
mice can be engrafted with patient-derived tumor tissue, the so-called patient-derived
xenografts (PDX) (Figure 3) [154]. For CRC, PDX have been widely studied and have
demonstrated high engraftment success rates [155,156]. PDX are isolated from patient tu-
mor samples and transplanted subcutaneously in anaesthetized mice. The major advantage
of PDXs is that they preserve the characteristics of the original tumor, both in terms of the
gene expression profile and tumor heterogeneity [157,158]. Humanized mice bearing PDXs
are therefore becoming a powerful tool for analyzing tumor and immune cell interaction
and evaluating the efficacy of immunotherapies [159]. Recently, this approach was used to
evaluate the response of CRC-PDX to Nivolumab, an anti-PD-1 monoclonal antibody used
in clinics [160]. In this study, the authors first established their Hu-BRGS mice model by
injecting into the facial vein or, when unsuccessful, into the liver CD34+ human HSC (iso-
lated from cord blood) in irradiated BRGS (BALB/c/RAG2null/IL2Rnull/SIRPαNOD) mice.
CRC-PDX were then established in nude mice in order to favor their initial growth
and thereafter implanted in the Hu-CB-BRGS mice. When tumors volumes reached
150–300 mm3, treatments with Nivolumab were started. Strikingly, the authors demon-
strated a significant tumor growth inhibition when the humanized mice were transplanted
with CRC-PDX derived from MSI CRC patients while no efficacy could be observed in
non-humanized immunodeficient BRGS mice. Moreover, the researchers could evidence,
after treatment with Nivolumab, an increased infiltration of human TIL, T-cells, and CD8+
T-cells in PDX as well as an increased secretion of IFN-G, thus demonstrating an anti-tumor
immune response. Remarkably, when CRC-PDX derived from MSS CRC patients was used
to engraft Hu-mice, the authors only showed a transient and partial anti-tumor effect of
Nivolumab. This limited anti-cancer activity was accompanied by an absence of increased
human TIL infiltration in the tumor [160]. This study thus recapitulated the observations
made in the clinic, namely that dMMR CRC usually respond to ICI while pMMR CRC
do not. This technological breakthrough opens new opportunities to better predict in
patient-derived samples the clinical benefit of immunotherapies, but also to assess new
strategies to overcome ICI resistance in CMS2-4 mCRC.

4. Conclusions

Our understanding of the impact of the immune system on the progression and prog-
nostic of CRC led to tremendous efforts to better define tumor immune phenotypes. How-
ever, targeting most mCRC with immunotherapies remains to date challenging. Nonethe-
less, the development of novel experimental models led, in the last years, to the identifica-
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tion of some of the sources responsible for CRC non-responsiveness to immune-targeted
therapies, thus identifying novel pharmacological opportunities to turn “cold” tumors into
“hot” ones.

The better characterization of the intricate relationships existing between immune
and tumor cells should, however, not limit our focus on these two unique compartments;
the whole TME should indeed be considered. This assumption is particularly true for CRC
if we consider that immunotherapies are, to date, mostly developed to treat metastatic dis-
eases. However, nowadays, the characterization of metastasized CRC is still relatively poor,
notably in terms of understanding of distant tissue TME [9]. In particular, the liver, which is
one of the preferential location for CRC metastases, displays an immunosuppressive TME
which likely facilitates CRC cells settlement but also shows specificities when compared
to the original site of the tumor [9,161]. Accordingly, it has been reported that primary
CRC tumors and CRC liver metastases diverged in terms of immune phenotypes [162].
Therefore, future successes in the field of CRC immunity are permitted due to the devel-
opment of technologies allowing the evaluation of new innovative therapeutic strategies
in this specific setting. In that sense, liver CRC metastasis-derived PDX established in
humanized mice is likely to prove itself as a powerful tool to improve our understanding.
However, the use of humanized mice remains complex, in particular for screening novel
molecules or assessing innovative combinatorial strategies. Thus, emerging in vitro ap-
proaches should be designed to help circumventing the complexity of the in vivo models.
In that sense, the development of multi-organoids-on-a-chip fluidic devices will prove
useful for modeling primary and distant diseases as well as screening new drug modal-
ities [163]. Development and implementation of novel microfluidics technologies might
indeed provide solutions for managing small heterogeneous samples coming from patient-
derived tumors or biopsy materials and for studying cancer cells’ behavior in a closed
physiological context [164]. Interestingly, such a metastasis-on-a-chip fluidic system has
yet to be set up to study early stages of human CRC metastasis [165]. A 3D microfluidic
platform has also been developed for evaluating the migration of interferon-α-conditioned
dendritic cells toward SW620 CRC cells [166]. However, while substantial progress has been
made in developing chip modeling organ physiology, efforts for incorporating immune
components in these micro-physiological systems have only been expanded recently [167].
In the future, such devices might be further improved by adding immune cells as well as
tumoroids derived from either the primary or distant tissues originating from one single
patient. Such a system will therefore permit simultaneous immunity to be assessed on
both locations and to determine whether therapeutic strategies equally apply to both CRC
tumors’ organ implantation sites.
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