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Abstract: Agricultural droughts impose many economic and social losses on various communities.
Most of the effective tools developed for agricultural drought assessment are based on vegetation
indices (VIs). The aim of this study is to compare the response of two commonly used VIs to
meteorological droughts—Moderate Resolution Imaging Spectroradiometer (MODIS) normalized
difference vegetation index (NDVI) and Soil Moisture and Ocean Salinity (SMOS) vegetation optical
depth (VOD). For this purpose, meteorological droughts are calculated by using a standardized
precipitation index over more than 24,000 pixels at 0.25◦ × 0.25◦ spatial resolution located in central
Europe. Then, to evaluate the capability of VIs in the detection of agricultural droughts, the average
values of VIs anomalies during dry and wet periods obtained from meteorological droughts are
statistically compared to each other. Additionally, to assess the response time of VIs to meteorological
droughts, a time lag of one to six months is applied to the anomaly time series of VIs during their
comparison. Results show that over 35% of the considered pixels NDVI, over 22% of VOD, and over
8% of both VIs anomalies have a significant response to drought events, while the significance level
of these differences and the response time of VIs vary with different land use and climate conditions.

Keywords: agricultural drought; SMOS VOD; NDVI; SPI

1. Introduction

Drought is one of the characteristics of the climate system that occurs at any time
of the year without any warning and regardless of geographical boundaries or economic
and political differences. Multiple studies have shown the far-reaching consequences of
droughts and heatwaves on the social and economic conditions of the people in central
Europe and other areas exposed to these conditions [1–3]. Therefore, understanding the
characteristics of droughts and their interactions with different industries (e.g., agriculture,
energy, commercials, and residences) is an essential step in providing effective measures
for reducing their damages and for their proper management.

One of the drought mitigation ways is to evaluate and monitor it by using indicators
that can determine its severity and persistence in a region. Most of the indicators used in
drought monitoring studies are based on meteorological variables such as precipitation,
temperature, or soil moisture. Among different meteorological drought indices, standard-
ized precipitation index (SPI) has been used in many studies and has been shown to be
effective in assessing meteorological drought conditions by using long-term precipitation
patterns that are usually tied to streams, reservoirs, and groundwater levels [4,5].

With the advent of different remotely sensed observations related to vegetation cover
and elongation of the length of their time series, it has become possible to use vegetation-
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based drought indices to assess the effects of drought events on vegetation cover and
agriculture accurately. Different vegetation indices (VIs) have been developed based on
the analysis of the reflective spectrum using a combination of infrared short-wave infrared
(SWIR) and near-infrared (NIR) reflections. The principle behind VIs developed by land
surface reflectances is mostly based on the absorption of visible red radiation by leaf
chlorophyll and the reflection of NIR radiation by the leaf mesophilic layer in the structure
of healthy plants, whereas this function works reversely in the case of diseased or water-
stressed vegetation conditions. The normalized difference of NIR and SWIR radiances
of Landsat Thematic Mapper (TM), called ND45 [6], normalized difference vegetation
index (NDVI; [7]), and enhanced vegetation index (EVI; [8]) are examples of these indices
that have been shown to be effective in the monitoring of vegetation water content, crop
phenology, and patterns of crop production in different regions of the world [9–12]. Among
different VIs, the NDVI is the most widely used VI due to its simplicity in transforming
spectral bands, the easy procedure of its calculation, and its availability for a long time
period [13–16].

On the other hand, other recently developed VIs such as soil moisture and ocean salin-
ity (SMOS) vegetation optical depth (VOD) [17], a dimensionless variable that quantifies
the canopy microwave emission attenuation by vegetation structure and water content,
can also provide complete information on spatio–temporal variations of vegetation cover.
In addition, VOD can solve many issues that cause impurities in the NDVI (e.g., inherent
nonlinearity with plant measurements, sensitivity to canopy background brightness, and
asymptotic signals over dense vegetation conditions). VOD, by its nature, differs from the
optical measurement of vegetation covers and is linked mostly to the total crop produc-
tions through measurement of the amount of vegetation water in both woody and leafy
components of all aboveground biomasses. One of the substantial advantages of VOD
over NDVI is the availability of its retrievals during dark times of the day and cloudy days,
which leads the VOD time series to have higher temporal resolution [18].

Multiple research studies have been conducted to assess the added value of VOD on
the monitoring of drought [19–21], biomass evolution [22,23], and phenological monitor-
ing [24–26]. There are also studies that analyzed its interaction with other existing VIs and
its added value to them in reflecting plants water status [20], wildfire assessments [27],
land surface phenology [28], vegetation dynamics [29,30], ecosystem management [31,32],
drought monitoring [33,34], crop yield prediction [35], and monitoring of biomass and
gross primary production [36,37].

A review of the above-mentioned studies reveals that in most cases, drought assess-
ment studies use a single source VI (i.e., either optical or microwave-based indices) or
use multi-source VIs in order to analyze the impact of specific drought events at country
scales. Given that there are very limited studies using a combination of VIs (e.g., VOD
and NDVI) for agricultural drought monitoring, and that the impact of using multi-source
VIs on drought monitoring has yet not been explored widely, it seems there is still room
for comprehensive clarification of the interactions between agricultural droughts and
different VIs.

The goal of this study, hence, is to analyze comprehensively the response of two
commonly used VIs derived from different sources (i.e., NDVI and VOD) to the drought
events. To this end, a paired t-test is used to compare the average values of anomaly
time series of both NDVI and VOD observations of 24,442 pixels over central Europe
statistically during dry and wet periods that are determined by using a meteorological
drought index (i.e., SPI). Moreover, to understand the effectiveness of VIs in capturing
agricultural droughts better, the response time of VOD and NDVI VIs to the drought
events (i.e., the time lag between emergence and termination of drought events from
meteorological and VIs point of view), in addition to the significance level of the difference
between their average values during dry and wet periods, are compared to each other
according to the interactions of climate and land use conditions of pixels and relative
performance of each index performing relatively better than the other over them.
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2. Materials and Methods
2.1. Study Area

In order to compare the response of different VIs to meteorological drought events,
in this study, the anomalies of NDVI and VOD VIs during dry and wet periods (derived
by using SPI-12 time series) are statistically compared over 24,442 pixels located mainly
in central Europe within the boundary of 10 W and 50 E longitudes and 30 N and 70 N
latitudes. The selected boundary consists of 16 different land cover and 15 different
climate classes that make it an appropriate region for investigating the interactions between
different VIs and drought events on different climate and land use conditions. The spatial
distribution of the long-term average of different climatic variables of precipitation [38],
temperature [38], soil moisture [39–41], VOD [17,42,43], and NDVI [44], and the variety
of climate [45] and land use [46] classes of studied area are presented in Figure 1. The
detailed information about the time period, drought indices, and the steps that have been
performed for the statistical comparison of VIs are presented below in Sections 2.2 and 2.3.

The land cover and climate classes used in this study are retrieved by resampling the
high-resolution ESA Climate Change Initiative (ESA-CCI) land cover map [46] and Köppen
Climate Classification [45]. Given that the resampled land cover class at 0.25◦ × 0.25◦

resolution is composed of different high-resolution land cover classes with different proba-
bilities, for all of the analyses that required the land cover classes of pixels, only those pixels
were considered that consisted of a land cover class with more than 60% probability, in
which the analysis of the response of VOD and NDVI VIs to meteorological droughts over
those pixels that contain diverse high-resolution land cover classes are performed by using
their average monthly precipitation, average temperature, and average NDVI variabilities.
The application of this criterion significantly decreased the number of available pixels
of different land cover classes. Here, only those land cover classes in which resampled
products have more than 100 pixels over the study domain are considered in the analyses.
Table 1 demonstrates the detailed information of the auxiliary datasets used in this study.

Table 1. List of auxiliary data used in this study.

Dataset Source and Product
Version

Considered Time
Period

Spatial Resolution
before Resampling Reference

Precipitation ERA5 Global reanalysis 1981–2019 25 km [38]
Temperature ERA5 Global reanalysis 1981–2019 25 km [38]
Soil Moisture ESA-CCI Combined v05.2 1981–2019 25 km [39–41]

VOD SMOS IC v2 2010–2019 25 km [17,42,43]

NDVI MODIS MOD13C2 &
MYD13C2 v6 2010–2019 250 m [44]

Climate Class Köppen-Geiger 1986–2010 ~150 m [45]
Land Cover Class ESA-CCI v2.1.1 2019 300 m [46]
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Figure 1. The spatial variation of climate and land use conditions over the studied area. Different panels represent spatial
variation of monthly total precipitation (A), average temperature (B), average soil moisture (C), average VOD (D), average
NDVI (E), climate classes (F), and land cover classes (G), respectively.

2.2. Drought Indices
2.2.1. Standardized Precipitation Index

Standardized Precipitation Index (SPI) can be calculated for any location based on
the long-term precipitation data. The SPI index, proposed by McKee et al. (1993) [47], can
be calculated by fitting long-term precipitation data into a probabilistic distribution and
changing its shape to a normal distribution. The length of the precipitation time series and
the nature of the probabilistic distributions play an important role in the calculation of
SPI [48]. The ability to calculate the SPI drought index at different time scales (e.g., 1, 6, 12,
and 24) can be considered as one of the advantages of this index [49]. In this study, among
different SPI time scales, the SPI-12 is selected as the meteorological drought indicator due
to its capability in accurate detection of drought durations [50]. The precipitation datasets
used in the calculation of SPI-12 are obtained from ERA5 global reanalysis datasets [38]
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between years 1981 and 2019, while the gamma distribution is used to calculate the proba-
bility density function (PDF) of 12-month accumulated precipitation datasets. From here
on SPI will be used to refer to SPI-12 for brevity. The PDF of accumulated precipitation
records based on the gamma distribution can be calculated as follows:

f(x) =
1

βαΓ(α)
xα−1e

−x
β , (1)

where x is the accumulated precipitation amounts, α and β are the shape and scale param-
eters, respectively, and Γ(α) is the gamma cross function, which can be obtained as follows:

Γ(α) =
∫ ∞

0
yα−1e−ydy, (2)

There are different methods available to estimate the shape and scale parameters of
gamma distribution (i.e., α and β respectively). In this study, the estimation of gamma
distribution parameters and calculation of SPI drought index values are performed by
using SPEI package [51] in the R environment [52].

2.2.2. Normalized Difference Vegetation Index

The NDVI is a simple and practical index that has substantial sensitivity to vegetation
dynamics. The NDVI values for the dense vegetation cover are close to one, while stones
and bare soils are usually associated with values close to zero. The NDVI index can be
calculated based on the following equation [53,54]:

NDVI = (RNIR − RRED)/(RNIR + RRED), (3)

where RNIR and RRED are reflectance values at the near infra-red and the red band of the
electromagnetic spectrum centered at 645 nm and 858 nm, respectively. Given that the
seasonality component of variables often dominates the total variability of NDVI and is
not associated with drought, the anomaly of NDVI time series is often used in drought
monitoring and famine analysis. In this study, the NDVI anomalies are calculated by
removing long-time monthly average values as follows:

ZNDVIi,j =
NDVIi,j − µNDVIi

σNDVIi

, (4)

where ZNDVIi,j is the anomaly of NDVI for month i and year j, NDVIi,j is the NDVI amount
for the considered month i and year j, µNDVIi is the long-time average of NDVI values of
month i, and σNDVIi is the long-term standard deviation of NDVI values of month i. The
monthly NDVI values in this study are acquired from averaging Moderate Resolution
Imaging Spectroradiometer (MODIS), MOD13C2, and MYD13C2 version 6 products [44]
of the monthly scales between years 2010 and 2019, and 0.25◦ × 0.25◦ spatial resolution to
be consistent with calculated SPI values and obtained VOD observations.

2.2.3. Vegetation Optical Depth

The VOD is a dimensionless variable that parametrizes the attenuation of the soil
radiation by the vegetation canopy. The VOD observations, which are directly linked to the
vegetation water content, are sensitive to the living biomass and woody content of canopy
cover. There are multiple studies that recently showed the VOD derived from microwave
observations can be used as an effective tool to monitor crops [18,55,56].

Currently, VOD is being retrieved from the C-, X-, Ku-, and L-band microwave obser-
vations of different radiometers since the year 1987 [56–60]. The radiometric nature of VOD
retrievals, in comparison to other VIs that are usually derived from reflectances of visible
and infra-red bands of optical sensors, has brought several advantages and drawbacks to
this VI. Many studies have mentioned that VOD observations are less disposed to problems
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related to the presence of water vapor and clouds in the atmosphere [18]. On the other
hand, the coarse resolution of radiometers and their sensitivity to the presence of radio
frequency interference (RFI) and water bodies in the foot print of sensors are the main
drawbacks of VOD observations that are revealed in different studies [61].

In this study, the monthly VOD time series are obtained at 0.25◦ × 0.25◦ resolution by
monthly averaging the daily SMOS-IC L-band VOD retrievals (version 2 of the SMOS-IC
dataset [17,42,43]) between years 2010 and 2019, at both ascending and descending orders.
These daily VOD retrievals are initially filtered according to the RFI values (considering RFI
probability threshold of 10% [62]) and the soil temperature using zero ◦C daily temperature
values threshold of European Centre for Medium-Range Weather Forecasts (ECMWF) daily
temperature values. Later, the filtered ascending and descending VOD observations are
merged by using a simple averaging algorithm, and as a final step, a 30-day moving average
smoothing filter is passed over the merged VOD time series to reduce the high-frequency
noise of VOD retrievals.

The monthly VOD values are later converted to monthly anomalies by using the same
approach used in the calculation of monthly NDVI anomalies as follows:

ZVODi,j =
VODi,j − µVODi

σVODi

, (5)

where ZVODi,j is the anomaly of VOD for month i and year j, VODi,j is the VOD amount
for the considered month i and year j, µVODi is the long-time average of VOD values of
month i and σVODi is the long-term standard deviation of VOD values of month i. For more
detailed information about VOD observations and SMOS L-band retrieval algorithms used
in the generation of daily VOD time series, refer to the study of Frappart et al. [18].

2.3. Statistical Analysis of Vegetation Cover Responses to Meteorological Droughts

In order to compare the response of vegetation cover to meteorological droughts,
the average value of ZNDVI and ZVOD during dry and wet periods are compared for
their significance using a t-test. For this purpose, initially, the dry and wet periods are
determined for the study area (with 0.25◦ × 0.25◦ resolution), using SPI time series and
considering the criteria that a drought event should have, i.e., having at least a three-month
duration and an SPI time series that falls below −1 once within a dry period [63].

As a second step, the anomaly time series of NDVI and VOD VIs (i.e., calculated
using Equations (4) and (5) for NVDI and VOD, respectively) during dry and wet periods
(defined using SPI time series) are extracted separately to create two paired NDVI and
VOD anomalies for dry and wet conditions. Later, the average values of these paired values
are compared between dry and wet periods using the t-test significance test. Here, the
difference between the means of the VI during the dry and the wet periods are calculated
so that greater differences between these two mean values imply greater sensitivity of
the VI to the dry and the wet periods. Accordingly, this sensitivity of VI to drought and
wetness is measured via p-value obtained from the t-test; lower p-values (i.e., probability of
non-occurrence, or probability of finding significant difference just by chance while the
null-hypothesis that there is no real difference is true) imply higher sensitivity and vice
versa (i.e., higher p-values imply lower sensitivity). This analysis is performed pixel-wise
through which a separate p-value is obtained for NDVI and VOD over each pixel.

For all pixels that VI values are available over them, the VI anomaly times series are
shifted from zero to six months forward (with reference to SPI time series) to explore the
time lag inherent between the drought (i.e., SPI) and the vegetation conditions (i.e., VIs).
As a result of this comparison, the time lag that provides the least p-value is considered as
the response time of VIs to drought events.

Later, p-values of NDVI and VOD over each pixel are compared. Accordingly, each
pixel is assigned to one of four labels—VOD (VOD p-values are smaller than NDVI p-
values), NDVI (NDVI p-values are smaller than VOD p-values), Both (if p-values of NDVI
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and VOD are the same, where p-values are rounded to have two significant decimals), and
Non (p-values of NDVI and VOD are both not significant and higher than 0.05).

The spatial distribution of p-values is investigated so that the differences between the
average p-values for each climate and land cover class are highlighted. Similarly, average
p-values for the monthly average of total precipitation, temperature, soil moisture, NDVI,
and VOD are also calculated. The interactions between climate and land use characteristics
of identical pixels (pixels with the same VI class) and the significance level of difference
between the average value of VOD and NDVI are explored to find the most suitable VI for
monitoring agricultural drought events over different climate and land use conditions of
the studied area. Here, it is worth noting that all of above-mentioned statistical analyses
are performed using stats package in R environment [52].

3. Results
3.1. The Time Lag of Vegetation Cover Response to Meteorological Drought

The time lag of vegetation cover response to meteorological drought is investigated
by applying different lag times (one to six months) to the VIs anomalies and analyzing
their corresponding significance level (i.e., non-occurrence probability) of differences in
the average value of VOD and NDVI VIs anomalies during wet and dry periods. The
spatial pattern of the time lag between the emergence of meteorological droughts and the
appearance of their impacts on vegetation covers (i.e., Figure 2A,B) shows that in over 12%
and 18% of the studied area from VOD and NDVI point of view, the vegetation covers
respond to meteorological droughts within a month.

Moreover, a comparison of the response time of vegetation covers to the emergence
and termination of meteorological droughts (Figure 2A,C for VOD and Figure 2B,D for
NDVI) shows that, on average, there is a monotonic relationship between the response
time of VOD and NDVI VIs to the meteorological drought events (i.e., when NDVI shows
a higher lag time for the response of vegetation covers to meteorological droughts, VOD
also shows a high lag time and vice versa); there are also regions in which the response
time of VIs differ from each other (e.g., Iberian Peninsula and other regions around the
Mediterranean Sea).

On the other hand, the comparison of the time lag between the termination of mete-
orological droughts and the disappearing of their impacts from vegetation cover shows
that in over 11% and 18% of the studied area, the impacts of droughts on vegetation covers
disappears without any lag time after termination of meteorological drought events, while
on the contrary, there are some regions (14% and 12% percent of the studied area from
VOD and NDVI point of view, respectively) in which the impacts of drought events remain
for longer durations on vegetation cover (i.e., more than a month), after the termination of
meteorological droughts (e.g., southern parts of the studied area).

3.2. The Significance Level of Vegetation Cover Response and Meteorological Drought Relationships

The significance level of vegetation cover response to the meteorological drought
is explored through analyzing the non-occurrence probability of significant difference
between the average value of anomalies of VIs (i.e., VOD and NDVI) during dry and
wet periods, following the methodology introduced in Section 2.3. Figure 3 represents
the spatial distribution of the assigned VI class (Figure 3C) to each pixel based on the
significance level of their response to the meteorological droughts (Figure 3A,B).

The spatial variations of non-occurrence probability of significant difference in VIs
anomalies during dry and wet periods show that VOD and NDVI have a significant
response (with 0.05 non-occurrence probability) to the meteorological droughts in over
50% and 55% of the studied area, respectively, while there are also regions that none of
VIs respond to meteorological droughts (e.g., regions with higher latitudes and colder
temperature amounts).
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Figure 2. The time lag between emergence ((A,C) for VOD and NDVI respectively) and termination ((B,D) for VOD and
NDVI respectively) of agricultural droughts with respect to meteorological droughts from VOD and NDVI vegetation
indices (Vis) point of view.

The variation of the assigned VOD and NDVI classes to the pixels, based on their non-
occurrence probabilities, as the most sensitive agricultural drought indicators (Figure 3C)
shows that, except regions over higher latitudes with cold temperature and the regions that
are excluded from the analysis due to their high RFI probability [64] (e.g., Turkey), most of
the studied area is covered either with VOD, NDVI, or both of them. Overall, in over 22%
of the studied area, the VOD anomalies, and in over 35% of the studied area, the NDVI
anomalies respond with higher significant level (with lesser non-occurrence probability)
to the meteorological drought events with respect to each other (e.g., France, and UK for
VOD and Turkey and some other regions with Mediterranean climate for NDVI shown
in Figure 3C), while there are regions (8% of the studied area) that both VOD and NDVI
anomalies respond at the same significant level (with equal non-occurrence probability) to
the meteorological drought events.
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Figure 3. The non-occurrence probabilities of significant difference between the average values of VOD (A) and NDVI (B)
VIs anomalies during dry and wet periods. (C) represents the assigned VI based on the non-occurrence probabilities of
VOD and NDVI VIs.

3.3. Impact of Climate and Land Use Variabilities on Agriculture Drought and
Vegetation Indices Interactions

The impact of different climate and land use conditions on the significance level
of vegetation cover response to the meteorological droughts are investigated through
analyzing of spatial variation of different climate and land-use variables (i.e., total monthly
precipitation, average temperature, average soil moisture, average VOD, and average
NDVI) over pixels in which anomalies of VOD and NDVI VIs exposed to have significantly
different average values during dry and wet periods (Figure 4A–E). Moreover, the coverage
percentage of the pixels with an identical climate or land use class by each VI (either VOD,
NDVI, or both) is calculated to determine the performance of each VI in the identification
of agricultural droughts over different climate and land use classes (Figure 4F,G).
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Figure 4. The variation of monthly averages of climatic variables including total precipitation, temperature, soil moisture,
VOD, and NDVI ((A–E), respectively) over pixels with identical VIs. (F,G) show the coverage percentage of each climate
and land cover class, respectively, by a specific VI (VOD, NDVI, or both). The median and mean values of continuous
datasets in (A–E) are shown with black lines and dark-colored points, respectively.

Based on the spatial variation of climatic variables over the pixels where anomalies
of VOD and NDVI VIs exposed to have different average values during dry and wet
periods, those pixels in which NDVI is selected as agricultural drought indicator over them,
have a broader range of climate and land-use variability in comparison to those pixels
that are assigned with VOD label. For example, 50% of the total monthly precipitation
amounts (between 0.25 and 0.75 quantiles) varies between 56 and 71 mm per month over
regions that VOD performs better than NDVI, while the 50% variation of total monthly
precipitation over the regions that NDVI performs better than VOD is changing between
24 and 61 mm per month (Figure 4A). This less variability is also visible when the 50% of
average NDVI values of the pixels are considered (0.50 to 0.64 variation for VOD vs. 0.15
to 0.58 variation for NDVI in Figure 4E), which implies that the agricultural drought can be
captured through VOD over specific climate and land use conditions, while NDVI can be
used as agricultural drought indicator in different climate and land use conditions.

Moreover, based on the same analysis, VOD can detect agricultural droughts over
pixels with higher precipitation (Figure 4A) in comparison to NDVI (i.e., the mean value of



Remote Sens. 2021, 13, 1251 11 of 16

monthly precipitation over pixels in which VOD and NDVI VIs have significant average
values during dry and wet periods are 62 and 45 mm per month, respectively). The same
is also visible over the variation of soil moisture (Figure 4C), where VOD can capture
agricultural droughts over pixels with lesser average soil moisture (with average soil
moisture of 25%), in comparison to NDVI that can capture agricultural droughts better
over pixels with average soil moisture of 21%.

Moreover, the variation of average VOD and NDVI of pixels in which anomalies of
VOD and NDVI VIs perform better than each other in capturing agricultural droughts
(Figure 4D,E, respectively) show that VOD can capture agricultural droughts better than
NDVI over denser vegetated regions (i.e., the average NDVI values over the regions that
VOD performs better than NDVI is 0.55, while the average NDVI value of the pixels that
NDVI performs better is 0.39). This is also visible over VOD variations in which the average
VOD values for the pixels that VOD performs better than NDVI in the determination of
agricultural drought are 0.26, while the average VOD value of pixels that NDVI performs
better than VOD in agricultural drought determination is 0.19, supporting previous studies
that also shown the reduced saturation of VOD over the regions with higher vegetation
contents (e.g., forests) [22,37].

On the other hand, the variation of the average temperature values of pixels with
assigned VIs of VOD or NDVI demonstrates that VOD performs better than NDVI over the
colder regions (i.e., regions with an average temperature of 9 ◦C) in capturing agricultural
droughts, while NDVI performs better in slightly warmer pixels with the average tem-
perature value of 12 ◦C. Although the temperature variation is not that much among the
pixels with different VI assigned to them, the climate type variation of pixels with assigned
VIs can also be seen from the coverage percentages of different VIs over the pixels with
different identical climate and land use classes (Figure 4F); where the majority of pixels
with hot climate classes (i.e., Bsh, Bsk, BWh, and Bwk) are covered by NDVI with the
average percentage of 82%, and pixels over regions with Oceanic climate class (i.e., Cfb),
are mostly (more than 60%) covered by VOD VI (i.e., the coverage percentages in the sixth
column of Figure 4F).

Likewise, the performance of VOD and NDVI VIs in capturing agricultural droughts
over different land-use classes (Figure 4G), show that the VOD is most effective in capturing
agricultural droughts over croplands and forested areas (particularly over dense forests
that are mainly covered by evergreen trees). On the other hand, the coverage percentages
of NDVI over different land use classes, show that over bare lands and those regions with
sparse vegetation covers (e.g., Maghreb, and southern Mediterranean countries in Africa)
NDVI is the dominant VI with 82% and 85% coverage percentage, respectively.

4. Discussion

The pixel-wise comparison of regions that VOD and NDVI or both of them responded
to drought events significantly demonstrates that with the combined use of VOD and
NDVI VIs, it is possible to monitor agricultural droughts over 64% of the pixels. On the
other hand, the same analysis shows that while over the 42% of pixels, both VOD and
NDVI VIs provide a significant response varying at significance levels (p-value varying
between zero and 0.05), over 8% of the pixels, only VOD, and over 14% of the pixels,
only NDVI provides a significant response to drought events. These results imply the
added value of VIs derived from different sources to each other and the contribution of the
proposed approach in the expansion of areas that agricultural droughts can be monitored
over them. In addition, it is worth noting that the analyses associated with the identification
of pixels for which NDVI or VOD perform better than each other over them are performed
at 0.25◦ × 0.25◦ spatial resolution, where VOD anomalies, despite their coarse resolution,
provide reasonable solutions compared to monthly NDVI values that are obtained by
averaging NDVI values at 250-m resolution.

The analysis of the spatial distribution of time lag between the emergence of meteoro-
logical drought and response of vegetation covers to it shows that the late response times
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(i.e., time lags more than two months) are mostly associated with tree cover land use types
(particularly forests consisting evergreen trees), while there is also a positive correlation
between the response time of vegetated covers to the agricultural droughts and the density
of their green leaves. The late response time of trees to drought events is mostly because
of the root system of trees that allows them to have access to more stable water resources
and meanwhile supports them by nutrient uptakes during drought events [65,66]. These
findings are consistent with previous studies that showed similar results in different case
studies that vegetation covers of forests may respond to meteorological droughts with a
time lag and also remain for a longer period after their termination from a meteorological
point of view [67,68].

The variation of climate variables such as precipitation over those pixels with identical
VI as agricultural drought indicator (Figure 4) also demonstrates that VOD VI is mostly
superior over wet regions and NDVI VI over dry regions with bare land or sparse vegetation
covers. The reason for this might arise from the fact that over wet regions with a high
amount of average monthly precipitation rates, the number of cloudy days is more than
in other regions. The presence of clouds in the atmosphere does not allow optical sensors
to retrieve observations ideally, while the nature of VOD observation and its radar-based
retrieval method, help this VI to measure vegetation attenuation during cloudy days
as well.

On the other hand, the comparison of behaviors of VOD and NDVI VIs in terms of
their response time to meteorological droughts show that although there is a monotonic
relationship between their response time, on average, over those pixels where NDVI re-
sponses to meteorological drought with five or six months of lag time, VOD responses with
shorter lag time (i.e., four months), which implies the superiority of VOD VI in capturing
drought impacts on vegetation covers of regions with higher leaf area and photosynthesis
activity because the continuous development of photosynthesis activity over these regions
leads NDVI values to remain in higher amounts even when the vegetation water content
decreases as a result of drought events [26,69]. These results also demonstrate the added
value of VOD to NDVI in earlier detection of damaged vegetated areas by agricultural
droughts and the potential of the proposed approach in the development of early drought
warning systems.

Moreover, the variation of monthly average NDVI values of pixels with identical
vegetation (VOD or NDVI) supports this idea that NDVI is more effective in capturing
agricultural droughts over regions with lower monthly average NDVI values (e.g., bare
lands and sparsely vegetated areas), while VOD can be useful in agricultural drought
identification over regions with higher monthly average NDVI values (Figure 4E). This
can be related to the challenges linked with the saturation of NDVI at densely vegetated
conditions where NDVI does not respond to leaf area expansion and remain the same at
different vegetation condition levels. This implies that the VOD can significantly contribute
to drought monitoring over dense vegetation covers such as evergreen forests and also
reducing climate extreme risks through its advantage in earlier response time to meteoro-
logical droughts in comparison to NDVI (i.e., the response time difference of NDVI and
VOD illustrated Section 3.1 and in Figure 3). Finally, the results related to the performances
of VIs over croplands show that, as expected, both NDVI and VOD do not respond to
meteorological drought over irrigated lands. However, results related to the coverage
percentage of pixels with rainfed cropland covers show that both VOD and NDVI VIs
anomalies have significantly different average values during dry and wet periods over
them, and hence, they can be used as a handy tool in crop yield estimation studies. These
findings support prior studies that combined optical and microwave VIs observations
through machine learning algorithms and used their lag as an indicator for crop yield
information [35] and suggest the existence of opportunity in better estimation of crop yields
and improved monitoring of biomass accumulation at farm scale through synergistic use
of high-resolution radar Sentinel-1 and optical Sentinel-2 imagery observations [35,56].
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5. Conclusions

This study aimed to analyze the response of two VIs of MODIS NDVI and SMOS
VOD to meteorological droughts through statistical comparison of average values of their
anomalies during dry and wet periods derived by using a meteorological drought index
(SPI-12). To this end, the response time of NDVI and VOD VIs to meteorological droughts
(i.e., the time lag between emergence and termination of droughts after meteorological
presence) are compared to each other.

Based on the significance level of the differences between the average values of NDVI
and VOD anomalies during dry and wet periods, for each pixel (at 0.25◦ × 0.25◦ resolution)
an index (either NDVI, VOD, or both) is assigned as an agricultural drought indicator.
Moreover, to inspect the impact of land cover and climate conditions on the performance
of VIs in capturing agricultural drought index, the climate and land use characteristics of
pixels with identical assigned VI are analyzed and their interactions are explored.

Overall, results suggest that NDVI and VOD VIs can detect agricultural droughts as a
response to meteorological droughts with different significance levels based on land use
and climate cover conditions. While over pixels located in tree-covered areas (e.g., forests)
VOD is more sensitive to meteorological droughts, over areas with sparse vegetation or bare
land covers, NDVI can capture agricultural droughts more significantly. Moreover, results
related to the spatial patterns of response times of VOD and NDVI anomalies demonstrate
that although the NDVI and VOD VIs have very similar response time patterns, there
are some regions where VOD and NDVI VIs may respond earlier than each other to
meteorological droughts (e.g., the relative earlier response of VOD and NDVI anomalies to
meteorological droughts over forests and bare lands, respectively).

Based on these findings, it can be concluded that there is not a single VI that can
significantly capture agricultural droughts over all different land use covers and climate
class conditions, and hence, it is necessary to monitor agricultural droughts over different
land use covers and climate classes with a specific VI or combination of them to develop
early warning systems for agricultural droughts and avoid losses associated with them.
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