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Abstract: Present environmental issues force the research to explore radically new concepts in
sustainable and renewable energy production. In the present work, a functional fluid consisting of a
stable colloidal suspension of maghemite magnetic nanoparticles in water was characterized from the
points of view of thermoelectrical and optical properties, to evaluate its potential for direct electricity
generation from thermoelectric effect enabled by the absorption of sunlight. These nanoparticles
were found to be an excellent solar radiation absorber and simultaneously a thermoelectric power-
output enhancer with only a very small volume fraction when the fluid was heated from the top.
These findings demonstrate the investigated nanofluid’s high promise as a heat transfer fluid for co-
generating heat and power in brand new hybrid flat-plate solar thermal collectors where top-heating
geometry is imposed.

Keywords: Seebeck effect; direct absorption solar collectors; nanofluids; concentrating solar power;
maghemite; thermoelectricity

1. Introduction

In the current pursuit to improve energy conversion, production, and storage effi-
ciency of renewable technologies, hybridization (i.e., combining different energy produc-
tion technologies in a single system) is considered a promising approach. The advantage is
even more relevant if the hybridized energy sources are all renewable and are brought to
their highest efficiency by minimizing every energy loss channel in energy transfer and
conversion stages. In the case of solar energy, such hybridization efforts are often made
by combining photovoltaics (PV) (e.g., silicon, organic cells, etc.), solar thermal collectors
(STC), photochemical synthesis, and other renewable energy technologies. For example, the
hybridization of PV cells, arguably the most exploited form of solar energy-harvesting tech-
nology, with windmills and batteries as well as thermionic and thermoelectric generators,
is widely studied.

Thermoelectricity (TE) describes materials’ intrinsic ability to convert heat into elec-
tricity and vice versa. A material’s TE energy conversion capacity is expressed in terms
of the Seebeck coefficient: Se = −∆V/∆T where ∆T is the applied temperature difference
across its body and ∆V is the resulting electric potential difference generated in response.
Alternatively, the conversion efficiency of a given TE material is expressed by a dimensionless
parameter named “figure of merit” ZT, which combines three transport properties, i.e., the
electrical conductivity σ, the thermal conductivity κ, and Se: ZT = (σSe2/κ)•T. Today, solid-
state, semiconductor-based thermoelectric generators (TEG) dominate the TE-technology
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landscape. Due to their low efficiency and the use of rare and toxic elements, however, the
application potential of TEGs as a stand-alone renewable energy technology is often said
to be bleak [1]. On the other hand, TEGs are showing promising results as a secondary
waste-heat recovery tool from a primary energy harvester, such as photovoltaics and solar
thermal collectors. Several integration concepts of TEGs in hybrid solar harvesters in
combination with the PV [2] and the STCs [3] have been tested since the 1950s [4–6]. In
these systems, the commercially available TE modules (p- and n-type semiconductor alloys
such as SiGe and BiTe or perovskites with the Se coefficient in the order of ~100 µV/K and
the ZT values of 0.5~1) are used, providing device efficiency improvements in the range
of 1~5% [7].

In the case of STC, hybridization with a TEG module is particularly advantageous as
it enables the co-generation of ‘heat’ and ‘electricity.’ Conventional, low-mid temperature,
solar thermal collectors consist of a dark surface devoted to sunlight absorption and to
heat exchange with a thermal fluid. These systems are known to suffer from efficiency
limitations due to the thermal resistance at the absorber–fluid interface. An improvement
was proposed in so-called direct-absorption solar collector (DASC) scheme, whose core is a
dark fluid working both as a volumetric light absorber and a heat exchanger. The DASC
idea dates back to 1975 [8], using India ink dissolved in water, which, however, was not
suitable for practical application due to thermal- and light-induced degradations. Thus,
DASCs were almost abandoned for many years, until the development of nanotechnology,
which allowed the production of new nanoparticle-laden fluids (nanofluids) with superior
stability properties [9–15]. Stable nanofluids containing magnetic nanoparticles (often
called ferrofluids) have recently gained increased interest in different application fields,
such as electrical and thermal engineering [16–18], medicine and biology [19,20], and sens-
ing and optical devices [21,22]. Recently, a ferrofluid containing Fe3O4 nanoparticles was
tested in a linear parabolic solar collector as a DASC fluid [23]. The authors obtained an effi-
ciency increase with respect to the conventional collector architecture, exploiting both direct
sunlight absorption by the ferrofluid and its magnetic-field-enhanced thermal conductivity.

In parallel, large thermoelectric effects were reported in liquid electrolytes including
ferrofluids [24–27]. In general, the Se coefficient values of liquid electrolytes are in the range
of 1~10 mV/K, an order of magnitude higher than that of semiconductor counterparts.
Among multiple TE phenomena occurring in liquid electrolytes, the most robust is that of
thermogalvanic effects, i.e., the temperature-dependent electrochemical reactions between
the dissolved redox-couple molecules and the electrodes. In the case of charged colloidal
suspensions, such as ferrofluids, the thermoelectric diffusion effect of large molecules and
particles can be tuned to further boost the Se coefficient with only a small particle concentra-
tion [28]. The best-performing liquid-thermoelectric generator today is reported to produce
maximum power output of 12 W/m2 with ferro/ferricyanide redox salts dissolved in water
with ∆T of ~80 K (without nanoparticles’ inclusions) [29]. The limiting factors of liquid
TEGs’ operation are their poor electrical conductivity and the small operation temperature
window, both of which are much smaller than those of semiconductor-based TEGs. To this
end, the current research trends focus on the use of ionic liquids to increase both the con-
ductivity and the operational temperature limit [30], the synthesis of novel redox-couples
and electrolytes with ever higher Seebeck coefficient [31], and the nanostructuration of
electrodes to increase their active surface area [32].

Combined, a flat-plate, solar-thermal collector with a very large, heated surface of-
fers an ideal application opportunity for these multifunctional ferrofluids to co-generate
heat (through an efficient sunlight absorption) and electricity (through thermoelectric
conversion). To assess such co-generation feasibility, here we report the first experimental
investigation on the thermoelectric and the optical properties of stable aqueous ferrofluids
containing maghemite nanoparticles.
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2. Concepts
2.1. Basic Concepts on the Thermoelectric Energy Conversion in Liquid Electrolytes and Colloidal
Suspensions: ‘Thermocell’

A simple thermo-electrochemical cell, or a thermocell for short, considered here was
filled with a solution composed of a liquid electrolyte, redox couple salts, and, in the
case of nanofluids such as ferrofluids, charged (magnetic) nanoparticles. The electric
neutrality of the solution was maintained by the presence of free counter-ions in the
electrolyte. The two ends of the thermocell were sealed hermetically with conducting
electrodes that exchanged electrons with the redox couple to generate electricity. When
a temperature gradient was applied across the cell, several thermoelectric phenomena
took place, producing a net electric potential difference between the two electrodes. The
physical and electrochemical mechanisms behind such phenomena in liquids are quite
different from the Seebeck effect in solids. These include the thermogalvanic effect of
redox species, the thermodiffusion of ionic species, and the thermo-electrostatic effects
(e.g., temperature-dependent formation of electronic double layer or adsorption of charged
particles) at the electrode–liquid interfaces [24,33].

2.1.1. Thermogalvanic Effect

The thermogalvanic effect, the most dominant of the three effects, describes the
electrochemical reaction potential of dissolved redox species. The oxidant and reductant,
denoted here as A and B, exchange n-electrons as

A + ne↔ B (1)

The n-electrons are either given to or taken from the electrodes, generating an electrical
current from the thermocell. The temperature dependence of the redox reaction potential
creates a voltage difference (∆V) across the thermocell when a temperature gradient is
applied between two electrodes. This temperature dependence is related to the reaction
entropy difference, ∆Src.

− ∆V
∆T

= −∆Src

e
= SeTG (2)

The ∆Src is composed of the standard reaction entropy of a given redox couple and the
Nernst term, which is a function of temperature, redox molecules’ concentrations, and the
activity coefficient. The last depends strongly on the ionic strength of the surrounding
solution [34]. The most widely studied type of thermocells is that containing aqueous
potassium ferro/ferricyanide redox solutions, presenting Se values (SeTG, subscript TG for
thermogalvanic) between 1 and 2 mV/K. The highest (published) Se coefficient was found
in thermocells containing cobalt-based redox couples dissolved in ionic liquids, showing
SeTG > 2 mV/K over a wide temperature range extending well above 100 ◦C [30].

2.1.2. Thermoelectro-Diffusion Effect

In thermocells containing large-sized, charged species such as colloidal particles and
macro-ions or molecules the TE potential production in liquids is further coupled to their
movement. It is closely related to the thermodiffusion of charged species, also known as
the Soret effect, which describes the concentration (Φ) gradient induced by a temperature
gradient. The particle diffusion inside a thermocell is a long and slow process during
which the thermoelectro-diffusion-induced electric potential evolves from the initial state
(immediately after the application of a temperature and before the concentration gradient
is created) to the steady state, i.e., when all the thermodiffusion of all species has reached
the Soret equilibrium. The corresponding Seebeck coefficients, Seini

TED and Sest
TED, are [35]:

Seini
TED = ∑i

tiŜi
ξie

, Sest
TED ≈ 0 (3)



Nanomaterials 2021, 11, 1031 4 of 18

where ti, ξI, and Ŝi denote the Hittorf number, effective dynamic charge, and the Eastman
entropy of transfer of the ith charged species (particles, ions, molecules, etc.). In the context
of colloidal solutions, Ŝi describes the interaction between the particle surface and its
surrounding liquid (see [36,37] for the exact definition of Ŝ as employed here). The Hittorf
number (see, for example, [38]) is the fractional ionic conductivity of a given charged specie,
σi, with respect to the total conductivity σtot, i.e.,

ti =
σi

σtot
=

ziξie2niDi

∑i ziξie2niDi
(4)

where zi, ni, and Di are the valence charge (or static effective charge), number concentration,
and the diffusion coefficient. The Seini

TED stemming from the redox species and other
electrolyte ions is quite small in comparison to the thermogalvanic term, SeTG, and thus
it is customary to ignore this term. On the contrary, in a thermocell containing charged
colloidal particles with large ξI and Ŝi values, both TED and TG terms contribute to the
total Se coefficient, i.e.,

Seini = SeTG + Seini
TED = −∆Src

e
+ ∑i

tiŜi
ξie

(5)

Once the Soret equilibrium is reached, the thermoelectro-diffusion contribution to the
Se coefficient (measurable at the electrodes) disappears due to the rearrangement of the
charged species, screening the electrodes from any internal electric field in the bulk of the
solution [35,39] and thus

Sest = SeTG = −∆Src

e
Note that in the present work where a thermal gradient spanned a length of ~ cm

of our experimental thermocell, the Soret equilibrium of nanoparticles was reached after
tens of hours (50–80 h), much longer than a typical experimental time scale. Therefore, all
experimental Se values presented hereafter correspond to Seini

TED.

3. Experimental
3.1. Sample Preparation and Characterization

The ferrofluids studied here were composed of maghemite (γ-Fe2O3) nanoparticles
(NPs) coated with a statistical co-polymer made of equimolar acrylic and maleic acid
monomers (PAAMA), of average molecular weight 3000 g/mol, dispersed in water. These
coatings gave large structural charges to the nanoparticles (20 elementary charges/nm2)
and ensured the ferrofluid’s colloidal stability. The PAAMA remained strongly bound to the
surface without any equilibrium with free PAAMA in solution [40]. The sample ferrofluids
were synthesized initially from an acidic aqueous ferrofluid (HNO3, pH =1.8, with a NP
volume fraction ϕ = 2% vol.) obtained via the ‘Massart’ method, followed by size sorting
when required [41,42]. Two acidic FFs (hereafter denoted FF1, used for thermoelectric
investigation, and FF2, for the optical measurements) had different size distributions. In
FF1, the log-normal distribution parameters were d0 = 7.2 nm and σ = 0.17 (from the room
temperature magnetization measurements [43]), whereas in FF2, d0 = 6.0 nm and σ = 0.43
(determined by SAXS). The size sorting was crucial for the thermoelectric data analysis
because of the Se coefficient’s dependence on the thermodiffusive property of charged
nanoparticles (Equation (4)) and, thus, on their average diffusion coefficient, D. The latter,
on its turn, depended on the NP size. The optical absorption spectrum will depend both on
the nanoparticle concentration (volume fraction) and, in principle, on the size distribution
as well. However, as discussed in Section 4.3, the dependence was much stronger on the
concentration and, thus, no further sorting step was involved.

The PAAMA ligand coating on the nanoparticle surface was then introduced via three
successive steps according to the “precipitation-redispersion procedure”, as described
in [44,45]. The resulting ferrofluid consisted of negatively charged γ-Fe2O3 nanoparticles
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coated with PAAMA (13.2± 1.9 monomers of acrylic/maleic acid per nm2 [40]), resulting in
the structural charge of −3300 e. The electrical neutrality was ensured by ammonium ions
(counter-ions). The final pH was around 9.2. After dilution with water (18 MΩ), the volume
fractions of nanoparticles were 0.54% vol. and ~0.05% vol. for FF1 and FF2, respectively.

3.2. Thermoelectric and Electrical Characterizations

The Seebeck coefficient (Se), the power-output (P), and the AC ionic conductivity (σ)
of FF1 were investigated as a function of NP volume fraction (Φ, between 0 and 0.5% vol.,
and temperature, using a homemade cylindrical thermocell) [25,28,35]. The sample liquid
volume was ~170 µL (6 mm in diameter and 6 mm in height, cf., Supplementary Materials
Section S4), which was hermetically sealed at the top and bottom by Pt electrodes (thin disk,
99.99% purity, AlfaAesar, Haverhill, MA, USA) pressed against the cell body by copper
blocks. Before each measurement, the electrode surface was cleaned with concentrated
HCl (Sigma-Aldrich, St. Louis, MO, USA, 37%wt.) and washed by ultrasonication in
deionized water. As a redox couple, ferri/ferrocyanide (Fe(CN)6

−3/Fe(CN)6
−4) pair was

used, introduced in the form of (K3Fe(CN)6 (Sigma Aldrich, 99,98% purity) and K4Fe(CN)6
(Sigma Aldrich, 99,95% purity). The redox concentration was 3 mM each for Se coefficient
and AC conductivity measurements, while both 3 mM and 400 mM were used in the
power-output measurements (see Results section for explanation).

The AC ionic conductivity measurements were performed in isothermal conditions
(at Tmean = 25, 35 and 45 ◦C) using a precision LCR meter (HP 4284A) at 100 kHz, at
which the out-of-phase component of the impedance became null. The Se coefficient was
determined from the open-circuit voltage ∆V between the top and bottom electrodes in
non-isothermal conditions (Tmean = 25, 35, and 45 ◦C with ∆T = 10 K between the two
electrodes), measured using a high-impedance electrometer (Keithley 6514, 1014 Ω input
resistance, Keithley, Solon, OH, USA). The total Se coefficient was then calculated from a
simple relation: Se = −∆V/∆T in the open-circuit condition. The thermoelectric power-
output measurements were carried out with a ∆T of 30 K (20–50 ◦C, Tmean = 35 ◦C) in a
closed-circuit configuration, i.e., the thermocell was connected in parallel to a variable-
range discharge resistor (10 Ω to 10 MΩ). More detailed measured schemes are given in
the Supplementary Materials Section S4. For the Se measurements, the thermocell was
always heated from the top in order to avoid the natural convection within the fluid. For
the power measurements, both heating directions (bottom and top heating) were used to
examine the effect of convection on the thermocell’s power output.

3.3. Optical Characterization

The optical transmittance of sample was measured using a double-beam, UV-VIS
spectrophotometer (PerkinElmer Lambda900, PerkinElmer Waltham, MA, USA), holding
the sample in a variable length cell [46,47]. Once obtained, the spectral extinction coefficient
µ(λ) from transmittance measurements, the extinction fraction (EF), of the incident sunlight
I(λ) [48] as a function of the light propagation path length × within the nanofluid was
calculated as [13,14]:

EF(x) = 1−
∫ λMAX

λmin
I(λ)∆e−µ(λ)xdλ∫ λMAX

λmin
I(λ)dλ

(6)

where the considered integration boundaries (λmin, λMAX) were 300 and 2500 nm.

4. Results and Discussion
4.1. Ionic Conductivity and Determination of Effective Dynamic Charge

The ionic conductivity dependency on the NP volume fraction (Φ) in FF1 examined at
25 ◦C, 35 ◦C, and 45 ◦C is shown in Figure 1. The σ(Φ) increased with the addition of NPs
at all examined temperatures. The conductivity of the base fluid (no NPs but with 3 mM
each of redox salts) at 35 ◦C was determined to be σ(0) = 0.312 S/m, corresponding to the
thermocell’s ohmic resistance of ~700 Ω.



Nanomaterials 2021, 11, 1031 6 of 18

Nanomaterials 2021, 11, x FOR PEER REVIEW 6 of 19 
 

 

mM each of redox salts) at 35 °C was determined to be σ(0) = 0.312 S/m, corresponding to 
the thermocell’s ohmic resistance of ~700 Ω. 

 
Figure 1. Ionic conductivity (σ) of FF1 as a function of the NP volume fraction Φ. The conductivity 
at Φ = 0, i.e., the contribution from free ions and redox couple ions was subtracted, showing only 
the contributions from the NPs and the counter-ions surrounding the negatively charged particles 
(for electro-neutrality). 

Within the low concentration range explored, the conductivity was found to be 
approximately a linear function of NP volume fraction. In the case of negligibly small 
inter-particle interactions (see Supplementary Materials for justifications), the increase, 
Δσ(φ) = σ(φ) −  σ(0), was due to the diffusion of charged NPs and the surrounding 
counter-ions, and it can be expressed as: Δ𝜎(Φ) = ஽ಿು.௘మ.(కబ)మ.஍௩ಿು.௞ಳ.் + ஽೎೔.௘మ.௭೎೔మ .|కబ|.஍௩ಿು.௞ಳ.்    (7)

where ξo is the NP’s dynamic charge (at infinite dilution limit), vNP is the individual 
nanoparticle volume, and Dci and zci are the diffusion coefficient and the valence of 
number of the counter-ions (in this case, NH4+). Using zci = +1 and Dci = 1.96 × 10−9 m2/s at 
25 °C [49], ξ0 = −280 was deduced as the NP’s average dynamic charge. We note that this 
value is an order of magnitude lower than the bespoke structural charge number due to 
the large number of counter-ions condensing on the particle surface. 

4.2. Thermoelectric Properties 
4.2.1. Seebeck Coefficient 

The initial Seebeck coefficient of FF1 was measured as a function of Φ (in the presence 
of 3 mM of the redox couple ferri/ferrocyanide) at average temperatures of 25 °C, 35 °C, 
and 45 °C with a constant temperature difference of ∆T = 10 K between the hot and cold 
electrodes. The measurements were stable and highly reproducible over several weeks. In 
the absence of nanoparticles, Seini(0) was approximately 1.7 mV/K, in agreement with 
typically reported range of values, 1–1.8 mV/K for Fe(CN)6−3/Fe(CN)6−4 redox couple in 
aqueous media with different ionic strengths [32,50–56]. 

The normalized 𝑆𝑒௜௡௜ as a function of NP concentration at the cell mean temperature 
Tmean = 25 °C, 35 °C, and 45 °C is shown in Figure 2. 𝑆𝑒௜௡௜(Φ) behaved similarly at all three 
temperatures, i.e., the addition of NPs resulted in a slight reduction of the Seini coefficient 
by approximately 4% at Φ = 0.5% vol. 
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at Φ = 0, i.e., the contribution from free ions and redox couple ions was subtracted, showing only the
contributions from the NPs and the counter-ions surrounding the negatively charged particles (for
electro-neutrality).

Within the low concentration range explored, the conductivity was found to be ap-
proximately a linear function of NP volume fraction. In the case of negligibly small
inter-particle interactions (see Supplementary Materials for justifications), the increase,
∆σ(ϕ) = σ(ϕ) − σ(0), was due to the diffusion of charged NPs and the surrounding counter-
ions, and it can be expressed as:

∆σ(Φ) =
DNP·e2·(ξ0)

2·Φ
vNP·kB·T

+
Dci·e2.z2

ci·|ξ0|·Φ
vNP·kB·T

(7)

where ξ0 is the NP’s dynamic charge (at infinite dilution limit), vXNP is the individual
nanoparticle volume, and Dci and zci are the diffusion coefficient and the valence of number
of the counter-ions (in this case, NH4

+). Using zci = +1 and Dci = 1.96 × 10−9 m2/s at
25 ◦C [49], ξ0 = −280 was deduced as the NP’s average dynamic charge. We note that this
value is an order of magnitude lower than the bespoke structural charge number due to
the large number of counter-ions condensing on the particle surface.

4.2. Thermoelectric Properties
4.2.1. Seebeck Coefficient

The initial Seebeck coefficient of FF1 was measured as a function of Φ (in the presence
of 3 mM of the redox couple ferri/ferrocyanide) at average temperatures of 25 ◦C, 35 ◦C,
and 45 ◦C with a constant temperature difference of ∆T = 10 K between the hot and cold
electrodes. The measurements were stable and highly reproducible over several weeks.
In the absence of nanoparticles, Seini(0) was approximately 1.7 mV/K, in agreement with
typically reported range of values, 1–1.8 mV/K for Fe(CN)6

−3/Fe(CN)6
−4 redox couple in

aqueous media with different ionic strengths [32,50–56].
The normalized Seini as a function of NP concentration at the cell mean temperature

Tmean = 25 ◦C, 35 ◦C, and 45 ◦C is shown in Figure 2. Seini(Φ) behaved similarly at all three
temperatures, i.e., the addition of NPs resulted in a slight reduction of the Seini coefficient
by approximately 4% at Φ = 0.5% vol.

Considering that the variation of the redox reaction entropy term, ∆Src, in Equation (5)
to be negligible (∆Src change is induced by the change in the activity coefficient of the redox
couple species between the two electrodes due to the addition of nanoparticles and their
surrounding counter-ions. We have calculated this effect using tabulated activity coefficient
data [49] to be less than 1 µV/K), the dependence of Seini (Φ) stems from the thermoelectro-
diffusion of charged species (NPs and their surrounding counter-ions) whose concentration
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varies with Φ. Using the effective dynamic charge number (ξNP = −280, see Section 4.1)
and the diffusion coefficient (DNP = 1.8 × 10−11 m2/s, see Supplementary Materials), we
calculated the nanoparticles’ Eastman entropy of transfer to be ŜNP = 76 ± 17 meV/K. This
value was five times larger than that found for ionically stabilized maghemite nanoparticles
(7.6 nm in diameter) in water, ŜNP = 14 meV/K [28], reflecting the effect of large coating
molecules on the particle surface.
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mean cell temperature of 25 ◦C, 35 ◦C, and 45 ◦C (Tmean = (Thot + Tcold)/2). The 3 mM each of
ferro/ferricyanide redox couple was present. The ∆T = 10 K was used for all measurements. The
theoretical curve was produced using Equations (4) and (5) with DNP = 1.80 × 10−11 m2/s (see
Supplementary Materials).

4.2.2. Power Output
Low Redox Concentration, No-Convection Regime

The effect of NP addition on the thermocell’s electrical power production was studied
at Φ = 0 and 0.5% vol., first with 3 mM of ferro/ferricyanide redox couple in the “hot over
cold” configuration, i.e., no natural convection. Tmean = 35 ◦C and ∆T = 30 K were used
throughout the power measurements.

The thermocell voltage (Vcell) vs. current–density (J) curves are depicted in Figure 3,
along with the cell’s power-output density (P). The Vcell was at its highest in the open-circuit
configuration (J = 0). As the variable resistance load value (Rload) connected in parallel to
the cell (closed-circuit configuration, see Supplementary Materials for more detail) was
reduced, Vcell diminished, while the corresponding current, Vcell/Rload, increased. The
Vcell-J dependency was almost linear. Thus, one can determine the experimental internal
resistances (Ri) of the thermocell from the slope value accordingly: dVcell/dJ = Ri·A, where
A is the electrode surface area. Ri was reduced from 34 ± 1 kΩ at Φ = 0% by a factor of
2.6 to 12.9 ± 0.1 kΩ at Φ = 0.5%, nearly the maximum power output density Pmax = J. V
increased proportionally (see red curves in Figure 3).

To understand the mechanisms leading to the observed increase in Pmax due to the
inclusion of NPs, we considered different constituents of the thermocell’s internal resistance,
i.e., the ohmic resistance of the fluid, RO, the mass transfer resistance, RMT, and the charge
transfer resistance, RCT (Table 1). The latter was less than 1 Ω and was safely neglected. RO
of the FF1 sample was obtained via AC ionic conductivity measurements. At the mean cell
temperature of 35 ◦C, the RO values were 700 and 300 Ω at Φ = 0 and 0.5% vol., respectively
(cf., Section 4.1), nearly two orders of magnitude smaller than the measured Ri. These
considerations indicate that thermocell’s internal resistance was dominated by RMT, whose
theoretically expected value corresponding to 3 mM each of ferro/ferri-cyanide redox-
couple salt ions (dissolved K+ ions included) was ~27 kΩ (see Supplementary Materials
Section S5), in the same order of magnitude as the observed value of Ri (Φ = 0). As the
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redox couple concentration was kept constant in both measurements, the inclusion of
NPs served to somehow accelerate the mass transfer process of the redox species in the
“hot-over-cold” configuration (no-convection regime). The possible explanations for this
apparent mass-transfer acceleration are discussed later in the section.
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Figure 3. Current density voltage (left y-axis) and output power–density curves (right y-axis) of FF1
sample with 3 mM each of redox salts at 0% vol. (open symbols) and 0.5% vol. (solid symbols). The
measurements were conducted at Tmean = 35 ◦C with T = 30 K, heated from the top.

Table 1. Comparison of different contributions to the measured internal resistance, Ri(exp), of
thermocell under various experimental conditions. The ohmic resistance, RO, values were determined
via AC conductivity measurements while the mass transfer resistance, RMT, values were theoretically
calculated. The charge transfer resistance, RCT, was taken from literature (see text). Note that RMT

cannot be defined in the cold-over-hot configuration due to the presence of convection.

Φ Ri (Ω) (exp) RO (Ω) (exp) RMT (Ω) (calc) RCT (Ω) [57]

3 mM redox—Hot over cold configuration

0 34,000 ± 1000 700 ~27,000 <<1

0.5% vol. 12,900± 1000 300 ~27,000 <<1
400 mM redox—Hot-over-cold configuration

0 438 ± 6 9.75 ± 0.5 ~200 <<1

0.5% vol. 219 ± 5 9.75 ± 0.5 ~200 <<1
400 mM redox—Cold-over-hot configuration

0 23 ± 1 9.75 ± 0.5 - <<1

0.5% vol. 23 ± 1 9.75 ± 0.5 - <<1

High Redox Couple Concentration, No-Convection Regime

Intrigued and encouraged by the significant decrease in the internal resistance (and
the resulting increase in the thermocell power output) described above, we examined
the thermocell power output using 0.4 M each of ferro/ferricyanide redox couple, with
and without NPs. The ohmic resistance of solutions with and without magnetic NPs at
T = 40 ◦C was RO = 9.75± 0.5 Ω for both, which is two orders of magnitude lower than that
obtained with 3 mM redox salt concentration reported above. In such highly conducting
electrolytes, the influence of NPs and their surrounding counter-ions is negligible on the
ohmic resistance.

The power-output measurements were first performed in “hot-over-cold” (no convec-
tion) configurations at Tmean = 40 ◦C and ∆T = 40 K. The internal resistance values Ri(Φ)
deduced from the J-V curves (Figure 4) were Ri (0) = 438± 6 Ω and Ri (0.5%) = 219 ± 5 Ω.
Two observations were made. First, these values were much smaller than that obtained
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with 3 mM each of redox couple salts, but were still larger than the RO by a factor of ~50 (see
above), attesting to the dominance of the mass transfer resistance (RMT) in the thermocell’s
total Ri even at such a high redox concentration. Second, the presence of NPs again caused
a marked reduction of Ri (and RMT) by a factor of 2. The resulting increase in the maximum
power output was from Pmax(0) = 55 mW/m2 to Pmax(Φ = 0.5%) = 110 mW/m2 (Figure 4),
similar to the behavior observed in the ferrofluids with low redox concentration, while the
overall intensity of the power output was nearly two orders of magnitude larger, reflecting
the high redox salt concentration.
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Figure 4. Comparison of voltage-current (circular symbols, left y axis) and power density-current
(diamond symbols, right y axis) characteristics between Φ = 0 and 0.5% vol. in aqueous ferrofluid
with 400 mM redox couple. Hot-over-cold configuration.

The origin of the observed RMT reduction, i.e., the accelerated diffusion of the redox
ions in the presence of nanoparticles was not clear. A useful insight was found in the Grätzel
solar cells where an increase in the electrical current output was found upon the addition
of nano-sized objects such as carbon nanotubes. For example, Chang and co-authors [58]
demonstrated that by adding 0.5%wt. of multi-wall carbon nanotubes (MWCNT) to an
iodide-based Grätzel solar cell can lead to a 3-fold increase in the short-circuit current
and, thus, the power output of the solar cell. Vahlman and co-authors [59] also reported
a similar phenomenon in a Grätzel cell containing an ionic liquid (I−/I3− redox couple)
mixed with black carbon, and demonstrated how the classical liquid diffusion models failed
to reproduce the observed current/power increase. In thermogalvanic cells, Salazar and
co-authors showed that the mixing of MWCNTs up to 0.6%wt. in ionic liquids (EMI-TFSI
and PMI-I (1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI)
and 1-propyl-3-methyl imidazolium iodide (PMI-I)) significantly increased the electrical
conductivity of the cell, but reduced the Se coefficient [60,61]. The overall power output
of the cell was determined by the trade-off between the current gain and the voltage loss
(Se coefficient), both of which depend on the ionic liquid and the redox-couple types. For
EMI-TFSI with Co2+/Co3+ redox couple, the loss in Se exceeded the current gain and,
thus, the MWCNT addition resulted in an overall decrease of Pmax. Conversely, in the
PMI-I system with iodine-redox couple, the current gain prevailed, leading to a net Pmax
increase of about 30% at 0.1%wt. concentration of MWCNT, qualitatively analogous to the
power increase/Se reduction observed in this study. The authors proposed several rational
explanations including a formation of percolated networks of MWCNTs, the interfacial
polarization of nanotubes, and the dissociation of ion pairs (of the ionic liquid components).
Unfortunately, these mechanisms were not directly applicable to the present study due to
some intrinsic differences in the nature of liquid systems investigated, namely, conducting
MWCNTs vs. insulating γ-Fe2O3 NPs and ionic liquids (pure salts) vs. dilute electrolytes in
water. An alternative hypothesis here was that of the convective motion generation linked
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to the thermophilic diffusion (thermodiffusion of particles toward the hot region) [62] and
the electrostatic adsorption [63,64] of magnetic NPs. Both effects contributed to creating a
higher NP concentration near the top (hot) electrode compared to the rest of the thermocell
volume. The difference in the density of nanoparticles (ρNP = 4.88 g/cm3) and of water
(ρH2O = 1 g/cm3) can cause the FF density in the top layer to be much greater, sufficient
for inducing a natural convection-like fluid movement despite its local temperature being
higher than the liquid volume below, as illustrated in Figure 5.
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Figure 5. Schematic image of a proposed mechanism creating a convection motion of ferrofluid
inside a thermocell. Colored arrows describe different forces experienced by the nanoparticles and
the ferrofluid. Blue: thermo-electro diffusion (Soret effect of charged colloidal particles). Green:
electrostatic attraction. Orange/Blue: gravitational force acting on a dense layer of ferrofluid.

The order of magnitude of the concentration increase in the top (hot) FF layer needed
to induce such a natural convection motion could be estimated. Assuming that the thermo-
physical properties of the fluid were unaffected by the inclusion of nanoparticles at these
small concentrations, the relative density difference resulting from ∆T of 10 K is:

∆ρH2O

ρH2O
= 10. β = −3.86× 10−3 (8)

where β is the isothermal expansion coefficient of water. This density decrease in water can
be easily overcome by a small and positive increase in NP concentration ∆Φ to possibly
induce convective movement of in the fluid.

∆Φ =

(
1− ρNP

ρH2O
·
((

ρNP − ρH2O
)
·ρH2O

∆ρH2O
+ 1

))−1

∼= 0.02 % vol. (9)

The estimated value of the NP concentration increase was quite plausible considering
the average nanoparticle concentrations of 0.5% used here. In order to test the hypothesis,
it will be instructive to measure the thermal transfer coefficient, h, of the thermocell in both
heat configurations from which one can determine the Nusselt number, Nu = hL/κ where
κ is the thermal conductivity of the fluid and L is the cell length. The Nu dependency on
the nanoparticle concentration will then reveal if the latter indeed enhanced convective
motion in nanofluids, as it was demonstrated by Joubert et al. [65] in a ferrofluid similar to
ours (SDS-coated Fe2O3 nanoparticles (15–20 nm in diameter) in water).



Nanomaterials 2021, 11, 1031 11 of 18

High Redox Couple Concentration, Convective Regime

Lastly, we examined the thermocell’s power output in a “cold-over-hot” configuration
to intentionally induce convection (Figure 6). Fluid motions (convection, forced flows) are
known to enhance the mass transfer rate of the redox couples (i.e., reduce RTM) and, thus,
have a positive impact on the power output [66].
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Figure 6. Voltage-current (circle symbols, left y axis) and power density-current (diamond symbols,
right y axis) curve comparison between Φ = 0 and 0.5% vol. in aqueous ferrofluid with 400 mM redox
couple. Cold-over-hot configuration.

As expected, the internal resistance/power output was found to decrease/increase
considerably (by a factor of 10) to Ri = 23 ± 1Ω and Pmax = 900 mW/m2 compared to the
“hot-over-cold” configuration. Ri is now in the same order of magnitude of the fluid’s RO,
confirming the benefit of the fluid motion on the redox transport in liquid thermoelectric
cells [66]. The effect of the NP inclusion, on the other hand, became insignificant against the
convective motion of the fluids, i.e., (i) the convection-induced reduction in RMT overrode
all other effects and/or (ii) the non-uniform spatial distribution of NPs inside the fluid
volume as described in the previous section was destroyed by convection.

Combined, one can conclude that the use of magnetic NPs (or any charged colloidal
particles, in general) in thermocells becomes advantageous where the “hot-over-cold”
configuration is imposed, such as the flat-plate solar collectors. As an extension of this idea,
one can consider parabolic trough-type or linear Fresnel-type solar thermal collector to
heat a dark nanofluid from the bottom [67] for enhancing the power output via convection,
although, in this case, the electrode surface area will become inevitably small.

Lastly, one needs to consider the long-term stability of the ferrofluids. Without the
presence of redox salts, the colloidal stability of PAAMA-coated maghemite nanoparticles
in aqueous media is verified over several years’ time. The introduction of ferri/ferrocyanide
redox couple can disturb such stability. Furthermore, ferricyanide and ferrocyanide com-
plexes become unstable over time and precipitate as coordination polymers related to
Prussian Blue (ferric hexacyanoferrate) (see, for example, [68] and references therein). Any
change in the nanofluid composition due to undesired chemical reactions between its ionic
species results in the change of thermoelectric voltage and power-output behavior. For
this reason, we can be sure that such reactions did not take place or remained insignificant
(undetectable) over the duration of the measurements described in the present work, i.e.,
for several weeks. The long-term stability of both redox-couple salts and the colloidal
stability of nanoparticles will be addressed in further studies.

4.3. Optical Properties

Figure 7 shows the experimental spectral extinction coefficient of the ferrofluid FF2
with and without the redox couple.
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The extinction coefficient of a colloidal suspension includes both the optical scattering
and the optical absorption contribution. Following the notation in Ref. [69], the extinction
and scattering efficiencies are given by:

Qext = 4xIm
{
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where m is the complex relative refractive index

m =
np + ikp

n f + ik f
(12)

defined in terms of the real (np, nf) and imaginary parts (kp, kf) of the complex refractive
indexes of particles and fluid, respectively, and x is the particle size parameter:

x =
2πn f a

λ
(13)

with a being the particle radius and λ the light wavelength in vacuum. In the Rayleigh
regime |m|x<<1, the expression in the square bracket in Equation (10) is approximately
unity. The extinction efficiency thus becomes:

Qext = 4xIm
{

m2 − 1
m2 + 2

}
+

8
3

x4Re

{(
m2 − 1
m2 + 2

)2}
(14)

The relative contribution of the scattering within the overall light extinction phe-
nomenon in the colloid is quantitatively evaluated by defining the scattering albedo as the
ratio between the scattering and the extinction efficiencies [69]:

ω =
Qsca

Qext
(15)

Maghemite (γ-Fe2O3) is one of the most important iron oxide polymorphs, with
intermediate characteristics between hematite (α-Fe2O3) and magnetite (Fe3O4) [70]. Un-
fortunately, the complex refractive index of maghemite is not available in the literature.
Therefore, to give an estimation of the scattering albedo, we considered both hematite
and magnetite [71]. The refractive index of water was taken from [72]. Figure 8 shows
the spectral scattering albedo, calculated from Equation (15), considering homogeneous
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spheres of 6-nm diameter and the 0.05% vol concentration. It is worth noticing that the
actual size distribution of FF2 (and FF1, used for thermoelectrical characterization) was
far from monodisperse, but the calculations confirmed the extremely weaker dependence
of optical properties on the nanoparticle size and size distribution with respect to that on
the concentration, which represents, therefore, the most important parameter here. For
both the reference iron oxides and in the whole investigated spectral range, the scattering
contribution results were extremely negligible andω showed a maximum value of 0.0032
for magnetite and 0.0017 for hematite. For this reason, in the rest of this paper, we will refer
to extinction and absorption as equivalent words.
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The extinction efficiency is connected to the extinction coefficient by the relationship [69]:

αext = ρN ·Qext · πa2 (16)

where ρN is the number of nanoparticles per unit volume. Figure 9 compares the ex-
perimental extinction coefficient for the maghemite ferrofluid without redox couple and
the extinction coefficient calculated for aqueous suspensions of hematite and magnetite
nanoparticles at the same concentration. Obviously, as expected, none of the calculated
curves reproduced the experimental maghemite one, but hematite was nearer, giving an
indirect validation of the previously described scattering estimation, as well as of the choice
to approximate the samples as pure optical absorbers.
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Looking back at Figure 7, it is possible to see that the ferrofluid was characterized, even
at the investigated extremely low nanoparticle concentration, by a very intense absorption
for visible wavelengths, where the water base fluid had no absorption bands. The addition
of the redox couple further increased absorption by creating at least two broad secondary
peaks on the maghemite UV rise front (see the enlargement in Figure 7b). The absorption
contribution of nanoparticles and redox couple became negligible after 600 nm. The peaks
in the infrared in Figure 7a (centered at around 1500 and 2000, and the incomplete one
around 2500 nm) were due to water.

The sunlight extinction fraction, calculated according to Equation (6), is shown
in Figure 10 for ferrofluids and water. Sunlight was absorbed by 90% after a 2.62-cm
propagation path in the sample with the redox couple, while the pure ferrofluid needed
4.10 cm for the same level of sunlight absorption. For comparison, water reached about
48% only after a path as long as 10 cm.
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As a further comment on Figure 10, it is worth observing that ferrofluid absorption
can be easily increased, and the path length giving a desired level of sunlight absorption
correspondingly shortened, by increasing the concentration of nanoparticles and/or redox
couple [73], allowing us to tailor optical properties according to the geometry of the system
where the ferrofluid is employed.

It has to be considered that the presence of nanoparticles and ions in the base fluid
also affected the spatial distribution, S(x), of the stored energy inside the nanofluid volume
as a function of the light path length, x, which is given by the expression:

S(x) =

∫ λMAX
λmin

I(λ)∆µ(λ)∆e−µ(λ)xdλ∫ λMAX
λmin

I(λ)dλ
(17)

(refer to Equation (6) for the meaning of symbols).
Plots of the calculated stored power distributions along the light propagation direction

are reported in Figure 11. Distributions refer to a single-side, irradiated fluid, as in the case
of the thickness direction in a flat-plate collector. From Figure 11 it is possible to see that the
absorption of ferrofluids was peaked in the first millimeters, where the visible part of the
input light was absorbed (Figure 7), while inner layers were responsible for the absorption
of the infrared part of the spectrum.
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5. Conclusions

In this study, we investigated the thermoelectric and the optical absorption properties
of dilute aqueous ferrofluids made with γ-Fe2O3 magnetic nanoparticles coated by PAAMA
molecules. It was found that the inclusion of 0.5% vol. of magnetic NPs accelerates the
mass transfer rate of the redox couples within the thermocell when heated from the top,
resulting in a 2~3-fold increase of the cell’s power output. The observed enhancement
in the mass-transfer rate is suspected to stem from the thermodiffusion (Soret effect) of
magnetic NPs, which merits further experimental and theoretical investigations. When the
thermocell was heated from below, however, the presence of NPs had little or no effect on
its power output, due to the convection becoming the main driving source of mass transfer
within the fluid. Therefore, the use of dilute ferrofluids can be advantageous for increasing
the thermocell’s efficiency when the device operation imposes the liquid to be heated from
the top.

Investigated ferrofluids showed advantageous optical absorption bands in the UV-
visible wavelength range, appealing for sunlight absorption. The overall level of optical
absorption and its spatial distribution within the nanofluid volume were fully tailorable,
acting on the concentration of both magnetic nanoparticles and redox couple ions, allowing
the optimization of future sunlight-enabled thermocell geometries.

Together, flat-plate solar thermal collectors, with their large absorption area and
‘hot-over-cold’ heating scheme, are particularly suited for exploiting the optical and ther-
moelectrical properties of dilute ferrofluids. While we do not yet grasp the mechanism
leading to the observed thermoelectric power output increase, additional research in this
direction may lead to further improvement toward a new and promising STC concept for
the co-generator of heat via volumetric radiation absorption and electricity via thermoelec-
tric generation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11041031/s1. Figure S1: (a) Acrylic acid and (b) maleic acid. Figure S2: (a) Homemade
thermoelectric cell (also used for AC conductivity measurements). (b) Schematic view of the ther-
mocell operation. 1© Platinum electrode in contact with the ferrofluid. 2© Copper blocks used to
hermetically seal the thermocell and to serve as electric and thermal connections to the electrometer
and temperature controller, respectively. 3© Peltier heater/cooler for temperature control. 4© Variable
range resistance load for power-output measurements. 5© Manual switch. Open circuit = Seebeck
coefficient measurements. Closed circuit = power-output measurements.

https://www.mdpi.com/article/10.3390/nano11041031/s1
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