
HAL Id: hal-03215662
https://hal.sorbonne-universite.fr/hal-03215662v1

Submitted on 3 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

The Use of Translational Modelling and Simulation to
Develop Immunomodulatory Therapy as an Adjunct to

Antibiotic Treatment in the Context of Pneumonia
Robin Michelet, Moreno Ursino, Sandrine Boulet, Sebastian Franck,

Fiordiligie Casilag, Mara Baldry, Jens Rolff, Madelé van Dyk, Sebastian
Wicha, Jean-Claude Sirard, et al.

To cite this version:
Robin Michelet, Moreno Ursino, Sandrine Boulet, Sebastian Franck, Fiordiligie Casilag, et al.. The
Use of Translational Modelling and Simulation to Develop Immunomodulatory Therapy as an Ad-
junct to Antibiotic Treatment in the Context of Pneumonia. Pharmaceutics, 2021, 13 (5), pp.601.
�10.3390/pharmaceutics13050601�. �hal-03215662�

https://hal.sorbonne-universite.fr/hal-03215662v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


pharmaceutics

Article

The Use of Translational Modelling and Simulation to Develop
Immunomodulatory Therapy as an Adjunct to Antibiotic
Treatment in the Context of Pneumonia

Robin Michelet 1,* , Moreno Ursino 2,3 , Sandrine Boulet 3,4 , Sebastian Franck 1,5, Fiordiligie Casilag 6,
Mara Baldry 6, Jens Rolff 7 , Madelé van Dyk 8, Sebastian G. Wicha 5, Jean-Claude Sirard 6 ,
Emmanuelle Comets 9,10 , Sarah Zohar 3,4,† and Charlotte Kloft 1,†

����������
�������

Citation: Michelet, R.; Ursino, M.;

Boulet, S.; Franck, S.; Casilag, F.;

Baldry, M.; Rolff, J.; van Dyk, M.;

Wicha, S.G.; Sirard, J.-C.; et al. The

Use of Translational Modelling and

Simulation to Develop

Immunomodulatory Therapy as an

Adjunct to Antibiotic Treatment in the

Context of Pneumonia. Pharmaceutics

2021, 13, 601. https://doi.org/

10.3390/pharmaceutics13050601

Academic Editor: Victor

Mangas Sanjuán

Received: 28 February 2021

Accepted: 20 April 2021

Published: 22 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Clinical Pharmacy & Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin,
12169 Berlin, Germany; sebastian.franck@fu-berlin.de (S.F.); charlotte.kloft@fu-berlin.de (C.K.)

2 Unit of Clinical Epidemiology, Assistance Publique-Hôpitaux de Paris, CHU Robert Debré, Université de
Paris, Sorbonne Paris-Cité, Inserm U1123 and CIC-EC 1426, F-75019 Paris, France; moreno.ursino@inserm.fr

3 INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, F-75006 Paris, France;
sandrine.boulet@crc.jussieu.fr (S.B.); sarah.zohar@inserm.fr (S.Z.)

4 HeKA, Inria, F-75006 Paris, France
5 Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, 20146 Hamburg, Germany;

sebastian.wicha@uni-hamburg.de
6 CNRS, Inserm, CHU Lille, Institute Pasteur de Lille, U1019-UMR9017-CIIL-Centre for Infection and

Immunity of Lille, Université de Lille, F-59000 Lille, France; fcasilag@gmail.com (F.C.);
mara.baldry@inserm.fr (M.B.); jean-claude.sirard@inserm.fr (J.-C.S.)

7 Department of Evolutionary Biology, Institute of Biology, Freie Universitaet Berlin, 14195 Berlin, Germany;
jens.rolff@fu-berlin.de

8 Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University,
Adelaide 5042, Australia; madele.vandyk@flinders.edu.au

9 INSERM, University Rennes-1, CIC 1414, F-35000 Rennes, France; emmanuelle.comets@inserm.fr
10 INSERM, IAME, Université de Paris, F-75006 Paris, France
* Correspondence: robin.michelet@fu-berlin.de
† These authors contributed equally to this work.

Abstract: The treatment of respiratory tract infections is threatened by the emergence of bacterial
resistance. Immunomodulatory drugs, which enhance airway innate immune defenses, may improve
therapeutic outcome. In this concept paper, we aim to highlight the utility of pharmacometrics and
Bayesian inference in the development of immunomodulatory therapeutic agents as an adjunct to
antibiotics in the context of pneumonia. For this, two case studies of translational modelling and
simulation frameworks are introduced for these types of drugs up to clinical use. First, we evaluate
the pharmacokinetic/pharmacodynamic relationship of an experimental combination of amoxicillin
and a TLR4 agonist, monophosphoryl lipid A, by developing a pharmacometric model accounting
for interaction and potential translation to humans. Capitalizing on this knowledge and associating
clinical trial extrapolation and statistical modelling approaches, we then investigate the TLR5 agonist
flagellin. The resulting workflow combines expert and prior knowledge on the compound with the
in vitro and in vivo data generated during exploratory studies in order to construct high-dimensional
models considering the pharmacokinetics and pharmacodynamics of the compound. This workflow
can be used to refine preclinical experiments, estimate the best doses for human studies, and create
an adaptive knowledge-based design for the next phases of clinical development.

Keywords: pharmacometrics; translational modelling; anti-infective therapy; antibacterial resistance;
innate immunity; pneumonia; dose estimation; PK/PD; Bayesian inference; extrapolation

1. Introduction

Pneumonia is caused by fungal, viral, or bacterial infections of the lung, with the latter
causing the majority of pneumonia infections [1]. Particularly, Streptococcus pneumonia
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accounts for two-thirds of bacterial lung infections [2]. Pneumonia is the most common
lower respiratory tract infection (LRTIs) and the leading infectious cause of death glob-
ally [1,3]. Despite this disease being largely preventable, it has claimed around 2.6 million
lives every year for the past decade, making it the fourth leading cause of death over-
all. While in the past decade the deaths per year have decreased for children (under
5 years old), the opposite is true for the elderly (over 65 years old) [1,3]. Community-
and hospital-acquired bacterial pneumonia (CAP and HAP, respectively) are principal
causes of morbidity, quality-adjusted life year loss, and mortality in the entire population,
with annual incidence rates between 0.1–1% (CAP, [4]) and up to 20% (HAP, [5]), with
even higher incidences associated with ventilator use (VAP, [5]). These bacterial infections
are typically treated with antibiotics, but their effectiveness is declining. Indeed, due
to inappropriate use or dosing of antibiotics, spread of resistant strains, and insufficient
awareness, antimicrobial resistance (AMR) is rapidly rising [6–11]. The World Health
Organization (WHO) calls antibiotic resistance “one of the biggest threats to global health,
food security, and development today” and estimates that bacterial infections due to AMR
will outcompete any cause of death by 2050 [12]. In parallel, new antibiotics are barely
investigated or further developed until market approval. It is thus crucial to develop alter-
native strategies to improve antibacterial treatment [13–15]. To address this, the WHO has
declared the optimized use of antimicrobial medicines as one of the key strategic objectives
as part of tackling this global antibiotic resistance challenge [12]. Additionally, AMR may
be further complicated by the COVID-19 pandemic due to the increase in broad-spectrum
antimicrobial drugs used for COVID-19-related presumptive bacterial infections, despite
the low bacterial co-infections actually observed in COVID-19 patients. For example, it
was observed that 72% of COVID-19-positive hospitalized patients received antibiotics
when only 8% showed bacterial co-infections [16]. This inappropriate or unnecessary use
of antimicrobials largely occurred due to the lack of decision support tools for the clinical
management of COVID-19 and absence of rapid diagnostic tools [17].

Alternative strategies to tackle bacterial infections have steadily been on the rise in
the last decade [18–20] and include phage therapy [21], antimicrobial peptides [22,23],
bacterial monoclonal antibodies [19], combination therapy [24] and immunomodulatory
compounds [25]. While most mentioned alternatives are targeting the pathogen, the latter
capitalizes on the defense systems already present, i.e., the innate immunity of the host.
In this way, many of the challenges regarding AMR are circumvented, as the pathogen is
not targeted directly and is thus not selectively pressured, even though indirect pressure
might still exist [26]. However, overly stimulating the immune system can result in severe
adverse events in the patients, such as systemic inflammatory response, which can lead to
the potentially lethal cytokine release syndrome and cytokine storm syndrome [27]. There-
fore, a good understanding of the interaction between immunomodulatory compounds
and the host is of utmost importance for a successful clinical application of this strategy.
Furthermore, as these compounds are often large molecules that need to be delivered to
the target-site, the development from preclinical to clinical is challenging, and no gold
standard approaches exist to date [19,20,25,26,28]. Here, we aim to provide a framework
that can be applied to tackle this challenging translation.

When developing a compound from the preclinical stage to clinical application, the
choice of a safe starting dose for early phase first-in-man clinical trial needs to be considered.
This dose should be low enough to avoid a high rate of (serious) adverse events while being
efficacious enough and not too low to avoid time-consuming dose escalation studies [29].
In order to extrapolate the dose from preclinical species to humans, several methods exist.
These methods are based on multiple assumptions and, in fields other than oncology, can
be classified in four classes. These classes are (1) the use of the no observable adverse effect
level (NOAEL) from preclinical toxicology studies multiplied by a safety factor [30]; (2)
the pharmacokinetically guided approach (PGA) that uses systemic exposure rather than
dose for the extrapolation from animal to man [31]; (3) the use of NOAEL information from
similar drugs (e.g., same chemical class) that may be already at clinical stage; and (4) the
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comparative approach, where more methods are used and then the results are critically
compared [32]. Once the starting dose is chosen, the full dose panel of the first-in-man
clinical trial must be defined and, usually, algorithmic approaches such as the modified
Fibonacci dose escalation are used [33]. Along with the well-known algorithm designs for
phase I dose escalation clinical trials (i.e., the A + B designs), Bayesian model-based designs
(such as the continual reassessment method [34] and the Bayesian logistic regression
model [35]) have been drawing an increasing amount of attention.

In phase I studies, even if dose-finding and pharmacokinetic/pharmacodynamic
(PK/PD) analyses are carried out in the same trial, they are often conducted and reported
independently in different sections in publications reporting trial results [36]. However, a
recent simulation study showed how integrating PK information into the dose escalation
design could enrich the knowledge of the dose–toxicity relationship, thus facilitating better
dose recommendations for subsequent trials [37]. Recently, new designs that incorporate
PK measurements into the dose escalation process [38] or PK/PD in the final dose–response
curve estimation [39] have been proposed. Therefore, in order to maximize the probability
of clinical success of alternative therapies such as immunomodulation, all available knowl-
edge regarding PK, PD, and toxicology should be modelled and applied as early in the
drug research and development process as possible. In this way, information collected early
on can be used to design further experiments and can be carried forward throughout the
clinical development, strengthening the understanding of the compound and ultimately
allowing appropriate clinical use.

Pharmacometric approaches, which use mathematical models to quantitatively de-
scribe data from different sources, including stochastic models to describe variability
between individuals, animals, or experiments, lend themselves perfectly for the consolida-
tion of knowledge to efficiently translate a compound from the preclinical to the clinical
setting [40–45]. They can be applied for this translation in complex settings, such as
inhalation administration [46–48], oncology [49], antibody–drug conjugates [50], and pe-
diatrics [51]. In order to incorporate the uncertainty regarding all these different sources
of data in the translational process, pharmacometric models can be combined with the
Bayesian approaches [52]. Bayesian statistics provides a mathematical framework to incor-
porate prior knowledge (quantified as prior distributions), and to update them to posterior
knowledge (expressed as a posterior probability distribution), via the likelihood. A recent
study describing a Bayesian meta-analytic approach applied by Zheng et al. suggests
how to use preclinical data to inform the design and prior distributions [53]. Indeed, the
Bayesian approach has also been recognized as a powerful and flexible method in the phar-
macometric field [54,55] and has been applied in sequential preclinical trials [56] to build
informative prior distributions in human PK analysis using preclinical information [57] or
using information from adult clinical studies to design pediatric trials [58].

In this concept paper, we report on how translational modelling and simulation ap-
proaches can effectively be used in the context of the clinical development of immunomod-
ulatory drugs as adjunct to antibiotic therapy. For this, two case studies are presented: the
combination of antibiotics with either the Toll-like receptor (TLR) 4-agonist monophos-
phoryl lipid A (ABIMMUNE) or the TLR5 agonist flagellin (FAIR). Indeed, the TLRs are
attractive targets for stimulation of the innate immune system as they are conserved across
mammals to recognize bacterial threats by binding with different components of the bac-
terial envelope, cell wall, or flagella [26,59]. Binding of one of these compounds to these
receptors leads to a signaling cascade, which, consequently, leads to the production of
pro-inflammatory cytokines, chemokines, and other compounds with antimicrobial prop-
erties [59]. Here, we describe how derivatives of these bacterial compounds can be used
as immunomodulatory drugs and how innovative pharmacometric approaches can aid in
the translation of these compounds to clinical use. We focus on the challenges and lessons
learned in these case studies, identifying which data are necessary for a successful transla-
tion and how these data are best analyzed and applied. To conclude, we present an outlook
on how the developed modelling and simulation framework could be applied for future
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immunomodulatory drug development programs in particular, and drug development
in general.

2. The ABIMMUNE Project

Two projects aiming to develop immunomodulatory drugs as adjunct to antibiotic
drugs in the context of pneumonia are described in this work. In the first one, ABIMMUNE,
the lipopolysaccharide (LPS)-derived compound monophosphoryl lipid A (MPLA) was
used in combination with amoxicillin (AMX) in order to treat mice infected with Strepto-
coccus pneumoniae. This project is described in detail elsewhere [60,61], and the extensive
pharmacometric analysis applied on the data can be found in a companion paper elsewhere
in this issue [62].

An extensive in vivo dataset was generated, investigating multiple levels of murine
data to comprehensively gain information about the efficacy of the combination of AMX
and MPLA. A murine infection model was established with immunocompetent Swiss
and Balb/cJ mice being infected intranasally with S. pneumoniae during anesthesia. Then,
12 h post infection, treatment was initiated with a single dose of AMX via oral gavage or
MPLA intraperitoneally. In total, four study groups were investigated: untreated mice,
treatment with AMX, MPLA, or the combination of both drugs. While a single dose tier
was defined for MPLA, multiple dose tiers of AMX were investigated. Several markers
were assessed with typically one sample per individual mouse in independently performed
studies: AMX serum concentrations over time, bacterial numbers in lung and spleen over
time, survival, change in body weight, mRNA expression of markers of the immune system,
cytokine serum concentrations, histological scores of immune-system-related markers, and
cell recruitment of immune-system-related cells to the lung. To quantitatively analyze the
investigated combination of AMX and MPLA, pharmacometric analysis of the generated
data was performed. Using the collected PK data of AMX and the PD data in terms of
bacterial numbers in the lung and spleen and survival, a pharmacometric PK/PD model
was developed in a sequential modelling approach. First, a PK submodel and a bacterial
disease submodel were linked via an effect compartment submodel and finally extended
to a bacterial disease and treatment model. Additionally, the developed PK/PD model was
linked to survival in a time-to-event (TTE) analysis. The preclinically obtained results were
further investigated to evaluate the validity of potential translational approaches with the
aim of facilitating translation of the disease and treatment model into a clinical setting by
using, for example, allometric scaling [63] and physiological considerations.

The combination of AMX and MPLA displayed higher efficacy than monotherapy of
respective drugs in terms of lower bacterial burden and higher survival. The proposed
pharmacometric bacterial disease and treatment model revealed mechanistic and quantita-
tive insights. In addition to the determined PK interaction between AMX and MPLA, the
stimulating effects of the immune system by MPLA additively reduced bacterial burden
and increased murine survival. Whereas AMX showed an expected short-term effect,
MPLA was able to stimulate the immune system over a longer time. This immunostimula-
tory effect was supported by the pharmacometric modelling approach as well as generated
in vivo data representing the effects of the immune system in terms of, e.g., cytokines. In
addition, the applied surge function described a high hazard for murine death already
within a short time frame of approximately 3 days.

Aiming to translate the preclinical results of the comprehensive pharmacometric
analysis into a clinical setting, PK parameters of the PK submodel were translated based
on basic allometric scaling techniques and compared to values reported in literature. The
extrapolated values were higher and did not accurately match reported human parameters
but were at least plausible and in the same magnitude, which is to be expected from
basic allometric extrapolation approaches. For a subsequent translation of the PD data
in the lung towards humans, an already published human PK submodel for AMX was
chosen as the basis [64]. In this case, certain assumptions and simplifications were made:
Bacteria-specific parameters (e.g., bacterial growth and natural bacterial elimination) and
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PD parameters of the disease and treatment model (such as drug-specific parameters) were
not scaled in contrast to the initial bacterial number in the lung and the transfer of AMX
from serum to the lung. Primarily, the influence of MPLA on bacterial elimination effects
was considered not to be different in humans. Here, a single low dose of AMX would
theoretically be sufficient for bactericidal killing of a susceptible strain. However, due to
large differences in the sensitivity of humans and mice to MPLA [65], this extrapolation
remains difficult, especially for resistant strains, and further clinical development was
thus halted.

3. The FAIR Project

The second project, FAIR, builds on and deepens the learnings from ABIMMUNE
and aims to exploit the immunomodulatory compound flagellin, derived from bacterial
flagellae. In this project, the compound is being developed up until phase 1 human clinical
trials, amalgamating knowledge gained from expert opinion and in vitro and preclinical
experiments along the way. By incorporating a pharmacometric approach early on in
the development process along with a continuous learning modelling under Bayesian
inference, FAIR can capitalize on more knowledge than ABIMMUNE and thus increases
the probability of success of translation to the clinical setting.

As a proof-of-concept, it has been shown that flagellin of which the hypervariable
region is removed can be used to activate TLR5 without triggering an inflammation re-
action [66]. This was further applied in a murine infection model, and evidence for
therapeutic synergy between antibiotics and flagellin in the context of pneumonia was
obtained [67–69]. Based on these data, FAIR continues to generate PK, PD, and toxicology
data in in vitro systems and preclinical species in order to develop flagellin towards clinical
use as an add-on to the standard of care with antibiotics [70]. In order to combine the
different sources of data obtained throughout the project, it was necessary to set up a
comprehensive modelling and simulation framework. Based upon the ABIMMUNE phar-
macometric analysis on the one hand and a dose-finding statistical modelling approach on
the other hand, a decision to incorporate information as early as possible in this framework
seemed the most appropriate. Indeed, in FAIR, prior knowledge from the literature (such
as expert opinion and results from other clinical studies on the same or similar molecules)
is combined with the stepwise newly available in vitro and in vivo data generated by the
consortium to construct, in an iterative way, advanced mathematical models characterizing
the PK/PD of flagellin. The translational aspect of collecting information (“learn”) and
using it for the next step (“predict” and “confirm”) in an iterative way, as well as having the
clinical trial subjects’ benefiting from all of the available information at the inclusion time,
will allow for a better use of available knowledge and the possibility to update/correct any
action in real time. Indeed, at each step, our approach will optimize the next in vitro or
in vivo experimentation. By doing so, not only will all the data be incorporated in the full
model framework approach but they will also make use of the best knowledge gathered
until that point in time. The different PK processes (e.g., absorption, distribution, and
elimination) specific for large protein biologics in the context of nebulization are taken into
account in the various respiratory and body compartments.

The final goal is to propose the best design for human studies (including phase I)
within a clinical trial framework. This implies the use of all available information gathered
during the FAIR project, as well as expert data, under a Bayesian framework in order to
better design prospective clinical trials. Indeed, by using existing information associated
with an optimal dose allocation process during the early phase evaluation of a drug, a
better estimation of the dose–response relationship can be achieved [37]. Moreover, once
the trial is started, information gathered during the trial including primary and secondary
outcomes will be modelled for a better understanding of the dose–response relationship
over time. Furthermore, accounting for possible differences in dose–response relationships
from the different data sources seems conceptually straightforward and allows the creation
of higher dimension models close to the reality [58].
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Ultimately, we propose a novel methodology for improving dose finding in early
phase clinical trials by incorporating data from (i) (pre)clinical trials realized; (ii) external
information, such as expert opinion, patients’ acceptability, and results from other (pre-
)clinical studies on the same or similar molecules; (iii) the PK; and (iv) the PD. The use
of such integrative design will give a more comprehensive picture of drug safety and the
drug mechanism during the dose-finding trial, enabling improved estimation of the best
dose level for further evaluation whilst ensuring the sample size for early phase trials is
kept to a minimum [71,72].

To the best of our knowledge, this full Bayesian PK/PD dose-finding framework
would be the first of its kind and would drastically expand upon the typical independent
working of trial statisticians and pharmacometricians during drug development. In this
way, we will increase accuracy, optimize the dose estimation process, and eventually bring
the most appropriate dose and schedule to phases II and III. The further development and
validation of this framework might be used as a blueprint for other drug development
programs and could aid in the current high failure rate of clinical trials due to inappropriate
dose–response estimation.

4. Discussion
4.1. Lessons Learned from ABIMMUNE and FAIR

The aim of this concept paper was to use two case studies to elucidate the use of
translational modelling and simulation approaches in early drug development, specifically
in the case of immunomodulatory drugs in the context of bacterial pneumonia.

In the first project, ABIMMUNE, pharmacometric modelling was used to quantify a
PK and a PD interaction between the TLR4 agonist MPLA and the antibiotic AMX. Indeed,
by using powerful hierarchical modelling approaches, sparsely sampled murine trials
could be combined into one dataset and exploited in full. In this way, the magnitude of
the bacterial killing effect of the immunomodulator or antibiotic alone, as well as that of
the combination, could be quantified. Furthermore, the pharmacometric PK/PD model
was linked to a TTE model, which could quantify the effects of treatment in the sense of
survival. The translation of these results towards humans is limited, however, as large
differences in immune response to MPLA exist between humans and mice. Furthermore,
no immunocompromised mice were studies as a negative control (no immunostimulation),
and the study design did not fully consider modelling of the data afterwards. A PK
translation of the results was feasible, but for a PD translation, adaptations to this study
design would be necessary, using, e.g., immunocompromised or TLR4-deficient mice,
and quantifying immune response, PK and PD in the same mice for at least some time
points. Furthermore, quantification of MPLA concentrations or the use of different dose
levels was lacking, which made a complete characterization of the immunomodulatory
effect impossible.

In FAIR, many of the aforementioned limitations are taken as lessons learned and thus
overcome. A richer study design involving different preclinical species (both immunocom-
petent and TLR5-deficient) and human-derived in vitro systems are continuously updated
using a modelling and simulation framework. To date, this integrative framework has
maximized the use of all prior knowledge together with the first iteration of experiments
in order to allow a first dose estimation for use in a toxicology trial. Moreover, a Bayesian
framework was proposed, where the different inputs (e.g., results from previous analyses,
literature data, and expert elicitation) are weighted via prior distributions, allowing one to
preserve all prior knowledge and to update it.

Furthermore, flagellin will be quantified in preclinical species, allowing better char-
acterization of immunomodulatory PK apart from the administered antibiotic, which, in
turn, may allow for more accurate PK/PD models and thus higher probability of successful
translation towards humans.

A caveat for a successful application of this paradigm is good interdisciplinary com-
munication. As the modelling and simulation framework is dependent on data generated
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by project partners and, at the same time, provides design input to these studies, a mutual
understanding of the importance of this clear communication is paramount. Indeed, apart
from the scientific complexities arising from this innovative framework, ensuring a good
flow of information between the different sources is one of the main challenges one has
to consider when applying a translational modelling and simulation approach in a drug
development project.

4.2. A Translational Modelling and Simulation Framework for Development of
Immunomodulatory Drugs

Based on the two case studies described in this concept paper, we propose a model-
informed platform, described in Figure 1, which takes into account the specificity of
immunomodulatory drugs and can be used as a blueprint for drug development in this
area. The driving force of the framework is the well-known “learn–predict–confirm”
paradigm [73], where iteratively more complex models are used to weigh, model, and
apply data as they become available. This paradigm should be applied to the standard of
care that is considered, i.e., the PK/PD of the antibiotic that is to be combined with the
immunomodulatory drug, and to the new (immunomodulatory) drug under development.
Based on the built-in Bayesian approaches, the consistency of input data with extrapolated
results can be assessed continuously, which allows early-on detection of, e.g., model
misspecification. At the beginning of a drug development project, a small amount of
information with high uncertainty is available, allowing only for simple pharmacometric
models combined with non-informative priors in a Bayesian inference framework. As these
models are used to design further experiments, confidence in model structure increases as
data become available and priors are updated using posterior distributions of previous
analyses and/or external data. As the project continues, a knowledge database for the
compound is constructed, and a model repository of increasingly more complex models is
created. For example, with more data available, basic allometric scaling approaches can
be complemented by mechanistic models, such as physiologically based pharmacokinetic
models. Bayesian posterior and/or predictive probabilities then aid in applying these
pharmacometric models to obtain starting dose levels for human studies. This continues
into the clinical phase, where all generated knowledge is used to propose a first-in-man
dose, which still persists within the framework and is thus also uncertain and can be
updated as more data become available. Furthermore, models describing the emergence
of AMR as a function of (antibiotic) exposure and infection duration (influenced by the
immunomodulator) could be added to this framework to quantify the impact of a proposed
new combination therapy on the global AMR dynamics [74]. Indeed, by modulating the
immune response, the so-called mutant selection window can be narrowed, and linking the
immunomodulator model to a model describing the PK/PD of antibiotics and a bacterial
growth model with multiple populations, the impact on resistance emergence could be
quantified [75,76].

4.3. Application in the Current Drug Discovery and Development Landscape

Currently, the process of drug discovery and development is still long and expen-
sive, often taking more than ten years and billions of dollars from first lead candidate
to market authorization [77]. The application of modelling and simulation approaches
to this process, i.e., model informed drug discovery and development (MID3), has been
proposed for higher efficiency and probability of success and is currently recommended by
the FDA [78]. Although the application of this framework to small molecules is starting
off in, e.g., oncology [79] and anti-infectives [80–82], there are only few examples that
apply such a framework to large molecules, mostly in the case of monoclonal antibod-
ies [83,84]. Given the many challenges but also large opportunities in the development
of immunomodulatory drugs, it is crucial to optimally use all available information as
early on and efficiently as possible. Furthermore, immunomodulatory drugs are often
following a “hit-and-run” mechanism of action, implying that in an early stage, pharma-
cokinetic information is of lesser importance than dose–response relationships. Innovative
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experimental in vitro systems such as reconstituted human tissues [85] can provide the
first information regarding these relationships at an early stage in the drug development
process, and later on this knowledge can be augmented by preclinical experiments. Using
a flexible modelling and simulation platform then allows pharmacokinetic information
to be incorporated at a later stage, once information about the target site and systemic
exposure becomes available. Our proposed translational modelling and simulation plat-
form, which goes beyond standard MID3 paradigms by incorporating PK/PD models
within a Bayesian framework, could be used to speed up the development of immunomod-
ulatory compounds, crosslinking the preclinical, clinical, and in silico development in a
multidisciplinary information-driven approach.
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Figure 1. The developed translational modelling and simulation platform for integration, exploitation, and modelling of an
immunomodulatory compound’s PK/PD. Starting from the literature and pre-existing datasets, the platform enables the
design of appropriate preclinical experiments and novel data to implement the model in order to perform dose finding
for clinical trials. This process can be iterated multiple times to predict the PK/PD and doses to be used in phase I trials
and beyond. PD: pharmacodynamics; PK: pharmacokinetics; NLME PK/PD: nonlinear mixed effects PK/PD; PBPK/PD:
physiologically based PK/PD.

5. Conclusions

Translational modelling and simulation approaches can be of tremendous support in
the development of immunomodulatory drugs. When combined with a Bayesian inference
framework, different sources of data can be amalgamated while taking into consideration
the uncertainty of each source. In this way, a maximally informed path towards the best
human dose is created, and the probability of clinical success is increased. We proposed a
blueprint for this framework based on real-world projects, which can be used for future
drug research and development programs. More informative priors for drug research and
development programs could be derived from this framework by applying it to a number
of immunostimulatory drugs to extract general drug-independent principles. Additionally,
this framework could be applied to the study of bacterial resistance evolution as the
immunostimulatory drug changes the selective environment, which could result in lower
probability of resistance evolution.
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In order to ensure successful application of pharmacometric approaches in drug
research and development, they should be taken into account as early on as possible,
preferably before the start of the project, and multiple preclinical species with specific char-
acteristics, such as immunocompromised or TLR-deficient animals, should be investigated
to optimally inform the development of the model. Furthermore, continuous communica-
tion between data analysis and data generation groups is paramount to ensure a steady
flow of information and ultimately pave the way towards clinical development. Lastly,
while the approach suggested here was based on the development of immunomodulatory
drugs in the context of pneumonia, it can easily be generalized to other compounds and
therapeutic areas.
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