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The zeta-regularized product of odious numbers
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Abstract

What is the product of all odious integers, i.e., of all integers whose binary expansion contains
an odd number of 1’s? Or more precisely, how to define a product of these integers which is not
infinite, but still has a “reasonable” definition? We will answer this question by proving that
this product is equal to π1/4

√

2ϕe−γ , where γ and ϕ are respectively the Euler-Mascheroni and
the Flajolet-Martin constants.

— Dedicated to Joseph Kung

1 Introduction

Extending or generalizing “simple” notions is a basic activity in mathematics. This involves trying
to give some sense to an a priori meaningless formula, like

√
−1, 1/0,

∑

n≥1 n, etc. Among these
attempts is the question of “assigning a reasonable value” to an infinite product of increasing
positive real numbers. This question arises for example when trying to define “determinants”
for operators on infinite-dimensional vector spaces. One possible approach is to define “zeta-
regularization” (see the definition in Section 2 below). The literature on the subject is vast, going
from theoretical aspects to explicit computations in mathematics but also in physics (see, e.g.,
[10, 23]): we will —of course— not give a complete view of the existing references, but rather
restrict to a few ones to allude to general contexts where these infinite products take place. Our
purpose is modest: to give the value of an infinite arithmetic product (namely the product of all
odious integers, i.e., of all those integers whose binary expansion contains an odd number of 1’s,
see, e.g., [19])

1× 2× 4× 7× 8× 11× 13× 14× 16× 19× 21× 22× 25 × 26 × 28 × 31 × 32 × . . .

2 Definitions. First properties. Examples

2.1 Definitions

The remark that

log

n
∏

i=1

λi = −
(

d

ds

n
∑

i=1

1

(λi)s

)

s=0
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suggests a way of defining the infinite product of a sequence (λi)i≥1 of positive numbers (see,
e.g., [20, 22]) by means of zeta-regularization: suppose that the Dirichlet series ζΛ(s) :=

∑

i 1/λ
s
i

converges when the real part of s is large enough, that it has a meromorphic continuation to the
whole complex plane, and that it has no pole at 0, then the zeta-regularized product of the λi’s is
defined by

∞
∏∐

i=1

λi := e−ζ′Λ(0)

(this definition clearly coincides with the usual product when the sequence of λi’s is finite). If ζΛ
has as pole at 0, there is a slight generalization of the definition above (see [12, 16], also see [13]):

∞
∏∐

i=1

λi := e
−Res

s=0

ζΛ(s)

s2

where Res
s=0

g(s) stands for the residue at 0 of the function g. To put some general deep context

about this definition, in particular about infinite determinants, the reader can consult [6, 17, 24].

2.2 First properties

The following equalities hold

∗ For all N ≥ 1,

∞
∏∐

i=1

λi =

N
∏

i=1

λi

(

∞
∏∐

i=N+1

λi

)

.

∗ For a > 0,
∞
∏∐

i=1

(aλi) =

(

∞
∏∐

i=1

λi

)

aζλ(0)

∗ If A and B form a partition of the positive integers, then

∞
∏∐

i=1

λi =
∏∐

i∈A

λi

∏∐

i∈B

λi.

2.3 Examples

One can find several examples in the literature, (taken, e.g., from [13, 15, 16, 20, 25] or deduced
from properties in Section 2.2):
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∏∐

n≥0

(n+ x) =

√
2π

Γ(x)
(for x > 0; Lerch formula [∗])

∏∐

n≥1

n =
√
2π (Lerch formula for x = 1), hence, e.g.,

∏∐

n≥1

(2n) =
√
π, and

∏∐

n≥1

(2n + 1) =
√
2

∏∐

n≥0

(n2 + 1) = eπ − e−π (general Lerch formula [∗])
∏∐

n≥0

(n2 − n+ 1) = eπ
√

3
2 + e−π

√
3

2 [∗]
∏∐

n≥0

(n4 + 1) = 2
(

cosh(π
√
2)− cos(π

√
2)
)

[∗]
∏∐

n≥1

nn = e−ζ′(−1) = Ae−1/12 (A = 1.2824271 . . . is the Glaisher-Kinkelin constant [∗∗])
∏∐

n≥0

an = a−1/12 (for a > 1, [∗ ∗ ∗])
∏∐

n∈Sq

n = 2π (where Sq is the set of squarefree positive integers; compare with
∏∐

n≥1

n2 = 2π)

[∗] The original formula proved by Lerch (cited in [15, p. 941–942]) reads

d

ds





∑

n≥0

1

(n+ x)s





s=0

= log
Γ(x)√
2π

·

Actually Lerch proved (cited in [15, Equality (2), p. 942]) the general formula
∏∐

n≥0

((n+ x)2 + y2) =
2π

Γ(x+ iy)Γ(x− iy)

which of course implies the classical Lerch formula. This general Lerch formula was generalized in
[15] where ((n+ x)2 + y2) is replaced with ((n + x)m + ym).

[∗∗] Recall that the Glaisher-Kinkelin constant A = 1.2824271 . . . can be defined in several ways
(see, e.g., [11] and the references therein):

A = lim
n→∞

11 × 22 × 33 × ...× nn

nn2+n/2+1/12
en

2/4 = e
1
12

−ζ′(−1) = (2π)
1
12 e

γ
12

−
ζ′(2)
2π2 =



2πeγ
∏

p prime

p
1

p2−1





1/12

.

[***] As indicated in [16] one may recall that formally
∑

n≥1

n = ζ(−1) = −1/12.

Another example of zeta-regularized product is given by the Fibonacci numbers (Fn)n≥1 in [14]
where

∏∐∞
n=1 Fn is computed in terms of the Fibonacci factorial constant and the golden ratio or

in terms of the derivative of the Jacobi theta function of the first kind and the golden ratio. Of
course the result needs the study of the Dirichlet series

∑

1/F s
n: other similar Dirichlet series or

zeta-regularized products are studied in [5] and [7].

Up to generalizing the notion of zeta-regularized product (“super-regularization”), one has ([18],
also see [21]):

∏∐

p prime

p = 4π2.
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3 The zeta-regularized product of odious numbers

In what follows, we let O denote the set of odious positive integers, i.e., of positive integers whose
sum of binary digits is odd, and E the set of evil numbers, i.e., of positive integers whose sum
of binary digits is even. We let a(n) denote the characteristic function of odious numbers (i.e.,
a(n) = 1 if the sum of binary digits of n is odd, and a(n) = 0 if it is even) and εn = (−1)a(n) (note
that εn = 1 − 2a(n)). Clearly εn is equal to +1 if the sum of the binary digits of n is even, and
to −1 if the sum is odd; in other words (εn)n≥1 is (up to its first term) the famous Thue-Morse
sequence on the alphabet {−1,+1} (see, e.g., [4]).

Theorem 3.1 We have with the notation above, with Q =
∏

n≥1

(

2n

2n+ 1

)εn

,

∏∐

n∈O

= (2π)1/4Q−1/2

∏∐

n∈E

= (2π)1/4Q1/2

Also Q =
2−1/2eγ

ϕ
where ϕ is the Flajolet-Martin constant [9].

Proof. For ℜs > 1 we have

ζO(s) =
∑

n∈O

1

ns
=
∑

n≥1

a(n)

ns
=
∑

n≥1

1− εn
2ns

=
1

2
ζ(s)− 1

2
g(s)

where ζ is the Riemann zeta function and g(s) :=
∑

n≥1

εn
ns

·

But, by [2, Theorem 1.2] with q = 2 (also see [9, Lemma 1]) g can be analytically continued to the
whole complex plane, and it satisfies, for all s ∈ C,

g(s) = −1 +
∑

k≥1

(−1)k+1

(

s+ k − 1

k

)

g(s+ k)

2s+k
· (1)

This implies that g(0) = −1 and

g(s)− g(0)

s
=
∑

k≥1

(−1)k+1 (s+ 1)(s + 2) . . . (s+ k − 1)

k!

g(s + k)

2s+k

hence, by letting s tend to 0:

g′(0) =
∑

k≥1

(−1)k+1 g(k)

k2k
·

On the other hand, mimicking a computation in [2, p. 534], one has

∑

k≥1

(−1)k+1 g(k)

k2k
=
∑

k≥1

(−1)k+1

k2k

∑

n≥1

εn
nk

=
∑

n≥1

εn
∑

k≥1

(−1)k+1

k2knk
=
∑

n≥1

εn log

(

1 +
1

2n

)

= − logQ
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where Q :=
∏

n≥1

(

2n

2n+ 1

)εn

. So that g′(0) = − logQ. We thus obtain

ζ ′O(0) =
1

2
ζ ′(0) − 1

2
g′(0) = −1

4
log(2π) +

1

2
logQ

which finally yields
∏∐

n∈O

n = e
1
4
log(2π)− 1

2
logQ = (2π)1/4Q−1/2.

Now
∏∐

n∈O

n
∏∐

n∈E

n =
∏∐

n≥1

n =
√
2π

which gives
∏∐

n∈E

n = (2π)1/4Q1/2.

It remains to recall that the Flajolet-Martin constant ϕ [9] is equal to

ϕ := 2−1/2eγ
2

3

∏

n≥1

(

(4n+ 1)(4n + 2)

4n(4n + 3)

)εn

= 0.77351 . . .

and thus ([8, Section 6.8.1], also see [1])

ϕ :=
2−1/2eγ

Q
hence Q =

2−1/2eγ

ϕ
·

Remark 3.2 Instead of considering the odious and evil numbers, one might have considered –in a
rather non-natural way– the shifted odious and evil numbers, namely the sets OS := {n+1, n ∈ O}
and ES := {n+ 1, n ∈ E}. Then ∏∐n∈OS

n = exp(−ζ ′OS
(0)). But, with the notation of the proof of

Theorem 3.1, and using that ε0 = 1,

ζOS
(s) =

∑

n∈O

1

(n+ 1)s
=
∑

n≥1

a(n)

(n+ 1)s
=

1

2

∑

n≥1

1− εn
(n+ 1)s

=
1

2

∑

n≥0

1− εn
(n+ 1)s

=
1

2
ζ(s)− 1

2
f(s)

where f(s) =
∑

n≥0

εn
(n+ 1)s

. It was proved in [2] that this function f can be analytically continued to

the whole complex plane, and that f ′(0) = log 2
2 . Hence ζ ′OS

(0) = −1
4(log(2π) + log 2) = −1

4 log 4π.
This gives finally

∏∐

n∈OS

n = 21/2π1/4 and hence
∏∐

n∈ES

n = π1/4.

4 Beyond odious and evil

The main tool used in the computation of the zeta-regularized product of odious or of evil numbers
above is the “infinite functional equation” (1). A multidimensional analog of this equation exists
for “automatic” sequences [3]. We could expect a similar result in the general case of a zeta-
regularized product of integers having an automatic characteristic function. What makes things
more complicated in the general case is that the involved zeta function occurs as a component
of a vector of Dirichlet series satisfying an infinite functional equation, but that the zeta function
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itself does not necessarily satisfy such an equation. Furthermore this vector is meromorphic but not
necessarily holomorphic on C (in particular 0 might be a pole). As suggested by the referee, looking
at the subcase given by the parity of block-counting sequences could well be the right generalization
of the Thue-Morse case. Trying to follow this suggestion, we only arrived at a partial result for, e.g.,
the Golay-Shapiro (also called Rudin-Shapiro) sequence where, instead of considering the parity of
the number of 1’s in the binary expansions of integers for the Thue-Morse sequence, one considers
the number of 11’s in the binary expansions of integers. We hope to revisit these questions in the
near future.

Acknowledgments We thank M. Marcus for having detected misprints in the first version of this
paper. We also thank J.-Y. Yao, B. Saffari, and the referee for their constructive remarks.
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