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Background: Neuroimaging shows considerable promise in generating sensitive and

objective outcome measures for therapeutic trials across a range of neurodegenerative

conditions. For volumetric measures the current gold standard is manual delineation,

which is unfeasible for samples sizes required for large clinical trials.

Methods: Using a cohort of early Huntington’s disease (HD) patients (n = 46) and

controls (n = 35), we compared the performance of four automated segmentation

tools (FIRST, FreeSurfer, STEPS, MALP-EM) with manual delineation for generating

cross-sectional caudate volume, a region known to be vulnerable in HD. We then

examined the effect of each of these baseline regions on the ability to detect change

over 15 months using the established longitudinal Caudate Boundary Shift Integral

(cBSI) method, an automated longitudinal pipeline requiring a baseline caudate region

as an input.

Results: All tools, except Freesurfer, generated significantly smaller caudate volumes

than the manually derived regions. Jaccard indices showed poorer levels of overlap

between each automated segmentation and manual delineation in the HD patients

compared with controls. Nevertheless, each method was able to demonstrate significant

group differences in volume (p < 0.001). STEPS performed best qualitatively as well

as quantitively in the baseline analysis. Caudate atrophy measures generated by the

cBSI using automated baseline regions were largely consistent with those derived from a

manually segmented baseline, with STEPS providing the most robust cBSI values across

both control and HD groups.

Conclusions: Atrophy measures from the cBSI were relatively robust to differences

in baseline segmentation technique, suggesting that fully automated pipelines could be

used to generate outcome measures for clinical trials.
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INTRODUCTION

Huntington’s disease (HD) is a devastating autosomal dominant
neurodegenerative disorder caused by an expansion of
CAG (cytosine-adenine-guanine) trinucleotide repeat in
the huntingtin gene (HTT, located on chromosome 4p16.3),
encoding for huntingtin protein (1). HD patients typically have
CAG repeats of >39, leading to full disease penetrance
and a triad of symptoms including motor impairment,
cognitive decline and psychiatric features. The mutated
huntingtin protein has toxic properties causing neuronal
dysfunction and death, with the medium spiny neurons in
the striatum being particularly sensitive to this pathology (2).
The hallmark of HD neuropathology is neurodegeneration in
the caudate and putamen which becomes widespread as the
disease progresses and has been demonstrated in numerous
post-mortem studies (3).

Clinical trials in HD are focussed on designing and delivering
disease-modifying drugs targeting mutated HTT RNA and DNA
early in the disease or even prior to symptom onset (pre-HD)
(4–8). Structural MRI has the ability to detect significant caudate
atrophy and other atrophic changes in gene positive participants
in vivo even a decade prior to symptom onset (9–12), and thus
currently appears to be a promising outcome measure for clinical
trials to assess efficacy of new drug therapies, when functional
measures may lack sensitivity (13–16).

Currently, manual delineation is the gold standard for caudate
segmentation on T1-weighted MRI imaging and has been
performed in large HD observational studies (9, 10) to examine
volume loss with disease progression. Manually delineating the
caudate or region of interest (ROI) can achieve highly accurate
volumetric outputs and considered close to “ground truth.”
However, this process is labor-intensive requiring anatomical
expertise, training and a priori information about the structure
of interest, thus limiting its feasibility in large longitudinal
studies with imaging data at multiple time points and in clinical
trials. There are also challenges surrounding inter- and intra-
rater reliability, including rater drift. There is clearly a need for
alternative automated segmentation tools to aid or, potentially
substitute, manual delineation in subcortical segmentation.
Automated tools offer the advantage of being less time
consuming, with the addition of being more flexible allowing
multiple subcortical structures to be segmented simultaneously.
However, the reliability and accuracy of new tools need to
be examined in clinical cohorts, as many of these tools have
been developed with healthy controls/atlases and not designed
for highly variable brains structures including atrophied brains.
Additionally, their application to imaging data across scanning
platforms need to be validated as data may be affected by image
quality differences (contrast, signal-to-noise ratio etc.).

Several studies have previously used automated segmentation
procedures to assess caudate atrophy in both gene-positive
participants not yet manifesting symptoms (pre-HD) and
symptomatic HD cohorts cross-sectionally (17, 18) and
longitudinally (11, 12, 19–21); few studies have cross-sectionally
compared different automated tools with manual delineation
of the caudate (22–25), but none have assessed the impact of

baseline segmentation algorithm on longitudinal measures
of change.

The aim of the current study was therefore to apply four
different automated tools to the same imaging data from a
cohort of controls and early HD participants and compare this
with manually delineated caudates at baseline. Additionally,
we investigated the Boundary Shift Integral (BSI) (26) a
technique previously utilized in HD to measure longitudinal
volumetric change in the caudate (cBSI) (27). The cBSI is a
semi-automated technique, requiring a baseline caudate region
per subject as an input. Currently this baseline region is
generated by manual delineation. We compared the cBSI
measure of change generated by manual caudate region with
that produced by our four automated tools to determine how
variability in baseline segmentation impacts this measure of
change. This could potentially inform future use of automated
segmentation tools and application in longitudinal datasets
assessing caudate atrophy.

MATERIALS AND METHODS

Participants
Participants were recruited from four sites (London, Leiden, Paris
and Ulm) of the observational 3T MRI neuroimaging Work
Package 2 (WP2) PADDINGTON study (Pharmacodynamic
Approaches to Demonstration of Disease-modification in
Huntington’s Disease by SEN0014196). Participants attended
MRI scanning and clinical visits which included motor, cognitive
and neuropsychiatric testing at baseline, 6 and 15 months from
2011 to 2013. Inclusion criteria have been published previously
(28). Briefly, early HD participants (with CAG≥ 39) were within
stage 1 of the disease as defined by UHDRS Total Functional
Capacity (TFC) ≥11. Disease burden (a measure of disease
progression) can be calculated from age and CAG repeat length
(29). Controls were spouses, partners or gene negative siblings.
Participants were between 18 and 65 years of age, free from
major psychiatric and concomitant neurological disorders and
not participating in a clinical drug trial and able to tolerate and
safely undergo MRI. The study was approved by the local ethics
committees and written informed consent was obtained from
each participant.

For the current study a subset of the 3T MRI baseline imaging
data from 35 controls and 46 early HD participants were included
for analysis retrospectively as they had passed initial quality
control (i.e., no gross MRI artifacts) and were processed using
automated caudate segmentation tools. Imaging data for the
same participants were obtained at 15 months post baseline for
the longitudinal analysis.

Data Acquisition
3T MRI data was acquired based on protocols standardized
for multi-site use (10). High-resolution three-dimensional T1-
weighted structural scans were acquired on a Phillips Achieva
(Leiden) and three Siemens scanners: Tim trio (London), Verio
(Paris), Allegra (Ulm). In brief, for T1-weighted scans three-
dimensional magnetization-prepared rapid gradient echo (MP-
RAGE) protocols were used to acquire contiguous sagittal slices

Frontiers in Neurology | www.frontiersin.org 2 April 2021 | Volume 12 | Article 616272

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Mansoor et al. Automated Caudate Segmentation in HD

with 1mm (London, Paris, Leiden) and 1.1mm (Ulm) slice
thickness, with no inter-slice gap, giving full brain coverage. The
Philips parameters were TR= 7.7ms, TE=3.5ms, FOV= 24 cm,
matrix size =224 × 224,164. For Siemens scanners TR=229ms,
TE 2.2ms (2.81 for Ulm), FOV=28 cm, Matrix=256 × 256, 208.
Quality checks of imaging data was undertaken by UCL Institute
of Neurology, London (UK), to ensure compliance with relevant
acquisition protocols, minimal artifacts (e.g., movement) and
sufficient tissue contrast for analysis. Rescans were undertaken
where necessary.

Data Analysis
T1-weighted baseline scans were processed using five different
segmentation methods using standardized procedures:

• Manual delineation as part of the PADDINGTON standard
operating procedure (SOP) using in-house MIDAS (Medical
information Display and Analysis System) software, as
described previously (26, 27).

• FSL FIRST version 5.0.9 (FMRIB Integrated Registration and
Segmentation Tool, available as part of FSL software) (30),
with FSL BET performed prior to FIRST

• FreeSurfer version 5.3.0 (31).
• STEPS (Similarity and Truth Estimation for Propagated

Segmentations), based on the STAPLE algorithm (32).
• MALP-EM version 1.2 (Multi Atlas Label Propagation with

Expectation Maximization-Based Refinement) (33).

The baseline regions from each of these five segmentation
methods were also used to produce estimates of the caudate
BSI (cBSI). This uses the change in voxel intensity between two
MRI scans from the same participant to infer volume change
in boundaries of a defined region of interest (ROI); following
baseline caudate segmentation, the ROI is expanded by two
voxels which is then used to register the baseline imaging data
to the repeat scan by rigid alignment. This ROI encompasses
the shift of the caudate boundary between the two imaging time
points. We generated the caudate atrophy value by using the
three-dimensional integral of the boundary shift (in terms of
voxel intensities) within this ROI as previously described (27).
Different cBSI values were generated due to differences in defined
caudate regions as segmented by the five different segmentation
tools. Positive cBSI values represent inward boundary shift
and hence tissue loss. Negative cBSI values represent outward
boundary shift and thus tissue gain, likely to result from shifting
tissue in response to local tissue atrophy. Image processing was
performed blinded to disease status.

Quality Control
Visual assessment and quality control (QC) of baseline caudate
segmentations from the four automated tools was performed
by overlaying ROIs on their original T1-weighted images
and viewing them simultaneously in MIDAS. This enabled
comparison of automated tools, the boundaries of segmented
regions and the visible caudate boundaries on the T1 scans.
Quality control was carried out blinded to disease status
and study site. Scans were visually assessed in axial and
sagittal planes, slice by slice, to characterize and qualitatively

establish segmentation patterns, commonminor errors and gross
segmentation failures for each tool.

Quality control was repeated in a similar fashion for the cBSI
overlays. Biologically implausible segmentations or gross failures
were considered on visual assessment if segmentations did not
include regions of caudate as defined by known anatomical
boundaries (by the lateral ventricle medially, and the internal
capsule (IC) laterally in the axial plane). Scans with minor
errors, including irregular segmentation borders or outlines,
lone voxels and/or visible under-/overestimations of caudate, but
where the majority of segmented region was still within caudate
boundaries, was classified as “pass” and included in the baseline
and longitudinal analysis. In the current study no adjustments
were made to any of the automated processing stages, nor was
there any manual intervention or editing of the ROI following
completed automated segmentation; this was to assess the default
capability and reliability of the automated tools and to avoid any
bias inadvertently introduced with manual intervention.

Statistical Analysis
Quantitative analysis was carried out using STATA version
15 and IBM SPSS. For the baseline imaging data, segmented
caudate volumes (in mm3) were extracted. The cBSI was
used to assess volume change over time and normalized cBSI
values were generated by dividing the cBSI values by the
participants’ own baseline caudate volume to account for between
participant variability in baseline volumes. Summary statistics
including means, ranges, standard deviations and boxplots
were produced for each method. For group comparisons of
volumetrics, cBSI and normalized cBSI, independent t-tests and
effect sizes (Cohen’s d) were calculated. To compare automated
with manually derived values, paired t-tests and Wilcoxon
signed rank test were used. Pearson’s correlation coefficients,
Pitman’s test of variance and Bland-Altman plots were generated
to evaluate correlation, agreement and scatter ranges. For the
Bland-Altman plots, the limits of agreement were the mean
difference ± 1.96 × standard deviation (SD) of difference (34).
To determine the potential effects of study site on volume
outputs, a generalized linear model was generated with site,
disease status and interaction of these effects as predictors for
the dependent variable i.e., the volume measures obtained from
each method. Post-hoc pairwise comparisons test of estimated
marginal means using Bonferroni method was performed for
statistically significant results.

Similarity and accuracy between baseline manual and
automated segmented ROIs were also assessed using Jaccard
Similarity Coefficient/Index (35) given as a ratio, where a value
close to 1 implies greater spatial overlap and better accuracy
between two methods. This was calculated as below (Function
1) using the manual ROI (A) and automated ROI (B), after
transformation into MNI space, to generate intersection (A ∩ B)

and union (A ∪ B) values.
Further independent t-test, Mann-Whitney U test and effect

sizes (Cohen’s d) were employed to assess the differences in
overlap measurements in controls and HD participants for each
tool. The level of significance for the statistical analysis was set to
p < 0.05, and results are reported with 95% CI.
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TABLE 1 | Participant demographics.

Controls Early HD subjects

Number 35 46

Age mean ± SD (range) 51.03 ± 8.8 (28–66) 49 ± 9.6 (26–67)

Gender: M/F 15/20 (−1) 16 (−2)/30

Site:

Leiden/London/Paris/Ulm

9/10/8 (−1)/8 12/14/8/12 (−2)

CAG repeat mean ± SD,

(range)

NA 43.3 ± 2.79 (39–54)

Disease burden mean ± SD

(range)

NA 371.59 ± 89.04 (226–559)

CAG, cytosine-adenine-guanine; HD, Huntington’s disease; NA, Not applicable.

One female control subject from Paris and 2 male HD subjects from Ulm were excluded

after quality control of segmentations (gross failure was identified, and segmentations

deemed biologically implausible). These were not included in the quantitative volumetric

analysis. Final sample was therefore n = 78.

Function 1: The Jaccard Index was calculated by dividing the
intersection by union size.

J (A,B) =
|A ∩ B|

|A ∪ B|
=

|A ∩ B|

|A| + |B| − |A ∩ B|

RESULTS

Demographics
Participant demographics are outlined in Table 1. Groups were
well balanced and there were no significant differences
in age between the early HD and the control group
(t=0.9170, p=0.3621).

Qualitative Assessment
Based on visual assessment of baseline segmented caudate
overlaid on T1-weighted images, tools performed differently;
the greatest differences were seen around the medial (between
caudate and CSF/ventricle) and lateral (between caudate and
IC) boundaries in the axial plane. Typical variation in tool
performance with manually delineated caudate reference scan
can be found in Supplementary Figure 1.

Software performance and segmentation patterns are
described in Supplementary Table 1 and visual assessment
with over-and underestimations of caudate volume and cBSI
overlays are shown in Supplementary Figures 2–4. STEPS
performed best visually, with the appearance of segmented
regions looking the most similar to the manually segmented
reference regions. MALP-EM was the worst-performing due
to frequent underestimations of caudate boundaries on the
T1-weighted image. FIRST and FreeSurfer appeared similar;
FreeSurfer frequently had crude “boxed” borders, performed less
well around curvatures and included non-caudate voxels. It was
also noted that scans acquired at the Ulm site had more outliers,
and qualitatively scans from this site appeared more noisy,
although SNR was not quantified. Similar observations were
made on the overlaid cBSI data, with the additional observation

that MALP-EM, which often visually underestimated caudate
volume, also displayed a reduced cBSI.

Of the 81 participants whose data underwent QC of the
automated segmentations, three baseline scans had gross failures
(Supplementary Figure 5); this included two HD participants
from the Ulm site segmented by FIRST, and one control
participant from Paris segmented byMALP-EM. Volume outputs
from these segmentations were unreliable as they did not
represent the underlying caudate structure visualized on T1-
weighted image. The final number of participants for the baseline
volumetric and longitudinal analysis was therefore 34 controls
and 44 HD participants.

CROSS-SECTIONAL QUANTITATIVE
ANALYSIS OF THE BASELINE IMAGING
DATA

Raw Caudate Volumetrics
Mean caudate volumes were extracted for controls and early HD
patients for each method (Table 2). For all methods the mean
caudate volumes were significantly higher in controls compared
to early HD participants, p < 0.001 (Figure 1). All methods
also found an association between smaller caudate volumes and
greater disease burden in HD participants p < 0.05.

Comparison of Volumetric Outputs by
Software
The difference between the mean manual and automated caudate
volumes were significant (p < 0.05) using FIRST, STEPS and
MALP-EM in both HD participants and controls. While these
automated tools underestimated caudate volume, no statistically
significant difference in caudate volume outputs between
manual and FreeSurfer were found in either HD participants
(p=0.619) or controls (p=0.536) (Supplementary Table 2). A
strong positive correlation between manual and automated
volume outputs (with the exception of MALP-EM in controls,
with only a moderate correlation, r=0.376) was demonstrated.
Higher Pearson correlation coefficients between manual and
automated volumes were found in HD participants compared
to controls. A bias for greater volume underestimation in
larger caudates was detected for FIRST (HD group only) on
Pitman’s variance ratio test and illustrated on Bland-Altman
plots; there was no evidence of bias for the other automated tools
(Supplementary Figure 6).

Effect of Site
Volume outputs from scans performed at the Ulm site appeared
to have more outliers compared to the other sites (Figure 2).
There was no statistically significant effect of site on manual,
FIRST and STEPS volume measures (Supplementary Table 3).
Whilst site was found to have a statistically significant effect on
FreeSurfer volume measures (p=0.033), the post hoc pairwise
comparisons test was non-significant. Site was also a statistically
significant main effect on MALP-EM volumes, with the post hoc
pairwise comparison test demonstrating significant differences
between volume measures obtained at the Ulm study site and
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TABLE 2 | Raw caudate volume and effect sizes (Cohen’s d) for all techniques (manual and automated tools).

Method Raw volume mean ± SD mm3 (range) Mean diff. mm3 (Control-HD) (95% CI) p-value Cohen’s d (95% CI)

Controls (n = 34) HD (n = 44)

Manual 7674 ± 842 (6123–10080) 5168 ± 1025 (3436–8643) 2506 (2074–2938) <0.001 2.639 (2.021–3.247)

FIRST 6779 ± 782 (5205–8451) 4715 ± 794 (3197–7130) 2064 (1706–2423) <0.001 2.616 (2.001–3.222)

FreeSurfer 7618 ± 933 (6131–9549) 5137 ± 1024 (3314–8464) 2481 (2033–2929) <0.001 2.517 (1.913–3.112)

STEPS 7306 ± 821 (5975–8689) 4826 ± 1007 (3189–7946) 2480 (2057–2904) <0.001 2.664 (2.044–3.275)

MALP-EM 6666 ± 1075 (4406–8664) 4374 ± 1111 (2232–6530) 2291 (1793–2790) <0.001 2.091 (1.530–2.644)

Mean diff, mean difference; CI, confidence Interval; SD, standard deviation; dof, degrees of freedom.

FIGURE 1 | Boxplots showing caudate volumes separated by group for each

segmentation tool including manual segmentation. Boxes show first quartile,

median and third quartile with whiskers representing the smallest and largest

volumes. Dots represent outliers. Independent t-tests for each method

demonstrated significant volume differences at 95% CI between the two

groups, all p < 0.0001.

the other three sites (all p < 0.05) (Supplementary Table 4). The
interaction between disease state and site was not a statistically
significant effect on volume measures.

Similarity Measures
The Jaccard Indices indicated variable degree of similarity or
overlap between manually segmented ROIs with each of the
automated segmentations (Supplementary Table 5). Automated
segmentations had greater degree of overlaps with manual ROIs
in the control group compared to in HD participants, all p
< 0.05. Effect sizes show that the largest overlap differences
between controls and HD participants were with FreeSurfer
segmented regions. STEPS achieved the highest level of overlap
with manually segmented ROIs in both controls (0.813 ± 0.028)
and HD participants (0.778 ± 0.038). STEPS also reached the
highest level of overlap with a Jaccard Index of 0.855 (in both
controls andHDparticipants), followed by FIRST, FreeSurfer and
MALP-EM (Figure 3).

LONGITUDINAL ANALYSIS

cBSI and Normalized cBSI
The cBSI and normalized cBSI were significantly greater in HD
participants compared to controls using all tools (all p < 0.05)
(Table 3), demonstrating greater atrophy in HD participants
over the 15-month interval. In the control group, all automated
cBSI and normalized cBSI values did not significantly differ
when compared to manual delineation with the exception of
FIRST which reported significantly greater normalized cBSI
values than those obtained with manual delineation (p=0.016).
In the HD participants, FreeSurfer generated significantly smaller
cBSI values (p=0.021) and normalized cBSI values (p=0.036)
compared to manual delineation. There was no statistically
significant difference between the MALP-EM cBSI values and
those derived manually (p=0.169), however the difference
became significant when cBSI was normalized to volume
(p=0.001). STEPS demonstrated no significant differences
in cBSI and normalized cBSI when compared to manual
method in either controls or HD participants. Higher Pearson
correlation coefficients were found in control participants
(Supplementary Table 6). No significant bias was detected on
Bland-Altman plots (Supplementary Figure 7).

DISCUSSION

In this retrospective method comparison study, we assessed four
automated segmentation tools with manual delineated caudate
in early HD participants and controls across four sites. The
aim was to identify tools that could reliably segment caudate
regions (using default settings without manual intervention)
and potentially substitute manual delineation in future clinical
trials with large imaging datasets to track disease progression.
We characterized the segmentation outputs qualitatively and
quantitatively and examined volume outputs, overlap measures,
cBSI and normalized cBSI to establish which tools produced
the most similar results to that of manual delineation. Although
we have demonstrated that automated segmentation techniques
can be used as reliable alternatives to manual delineation,
performance can vary depending on the specific tool used, factors
related to study site and disease status.

The study highlights the importance of visual QC
of segmented imaging data. We found that FreeSurfer
demonstrated similar qualitative performance to that previously
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FIGURE 2 | Boxplot demonstrating caudate volume outputs by disease state (HD=1, Controls=0) and site. Boxes show first quartile, median and third quartile with

whiskers represent the smallest and largest volumes. Dots represent outliers. More outliers were found at the Ulm site.

FIGURE 3 | Boxplot demonstrating Jaccard Indices (as a ratio) for each

automated method ROI with manual ROI. Boxes show first quartile, median

and third quartile with whiskers represent the smallest and largest volumes.

Dots represent outliers. STEPS segmented ROIs had larger overlaps with

manually segmented ROI in both controls and HD subjects (closest to 1).

reported in a much smaller pre-HD cohort (23). Whilst MALP-
EM has demonstrated good visual accuracy for cortical gray
matter segmentation in HD patients (36), MALP-EM and STEPS
are relatively unexplored tools in subcortical segmentation. To
our knowledge we are the first to report on caudate segmentation
patterns and errors by these tools in a pathological cohort and
compare this to manual delineation. While not all users of
automated tools undertake QC of segmentations, we detected
three failed segmentations which were excluded from the

quantitative analysis. Although this was a small number of
exclusions, in rare neurodegenerative disorders like HD or in
studies with small sample sizes, this could still be significant; the
effect of visual QC using FreeSurfer in cortical segmentations
have shown to improve reliability and accuracy of segmented
imaging data, leading to a substantial decrease in the number
of participants needed to be enrolled in a study to detect
significant group differences or compensate for increased
variance introduced by imaging data not having undergone or
passed visual QC (37).

Additionally, on QC we observed that the imaging data
obtained from the four study sites differed in quality, despite
having employed similar sequence parameters; It is unclear
why the T1 weighted MRI images differed in terms of
contrast (between gray and white matter structures) and
noise, particularly from the Ulm Site. It was felt that despite
standardization of acquisition parameters as far as possible,
inevitably there are differences between scanner manufacturers
(Siemens and Philips) employed at the different sites. The
majority of outliers were found in the Ulm HD- group and
this may mirror the qualitative findings. There may also have
been underlying greater variance in the caudate volumes in the
HD participants at this site, as outliers were seen across all
methods including manual volumes. These observations were
reflected in our generalized linear model, where site had a
global effect onMALP-EM volumemeasure outputs; significantly
smaller caudate volumes were obtained from imaging data at
Ulm compared to the other sites using MALP-EM. Whilst site
appeared to have a global effect on FreeSurfer volume outputs,
the post hoc pairwise comparison test was not significant; this
may be due to a combination of a weaker significant global effect
observed with FreeSurfer and lack of statistical power due to
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TABLE 3 | Group comparisons of cBSI and normalized cBSI outputs by baseline caudate segmentation method.

cBSI (SD), mm3 Normalized cBSI (SD)

Baseline caudate

segmentation

method

Controls HD Mean diff.

(control-HD) mm3

(95% CI)

Cohen’s d (95%

CI)

Controls HD Mean diff.

(control-HD) mm3

(95% CI)

Cohen’s d (95%

CI)

Manual 76.819

(112.470)

193.140

(131.804)

−116.320

(−172.613 to −60.028)

p < 0.001

−0.949

(−1.409 to −0.465)

0.009

(0.014)

0.040

(0.027)

−0.031

(−0.042 to −0.020)

p < 0.001

−1.340

(−1.832 to −0.841)

FIRST 79.840

(114.564)

194.695

(121.447)

−114.855

(−168.745 to −60.960)

p < 0.001

−0.961

(−1.440 to −0.493)

0.011

(0.016)

0.043

(0.028)

−0.032

(−0.043 to −0.021)

p < 0.001

−1.343

(−1.835 to −0.844)

FreeSurfer 73.518

(139.581)

172.295

(135.279)

−98.776

(−161.155 to −36.340)

p=0.002

−0.720

(−1.180 to −0.256)

0.009

(0.017)

0.035

(0.029)

−0.026

(−0.037 to −0.015)

p < 0.001

−1.049

(−1.524 to −0.569)

STEPS 78.442

(106.883)

201.298

(124.537)

−122.856

(−176.156 to −69.557)

p < 0.001

−1.048

(−1.523 to −0.568)

0.010

(0.014)

0.045

(0.030)

−0.034

(−0.045 to −0.023)

p < 0.001

−1.396

(−1.892 to −0.893)

MALP-EM 64.936

(119.037)

208.824

(128.769)

−143.888

(−200.570 to −87.206)

p < 0.001

−1.154

(−1.635 to −0668)

0.010

(0.017)

0.052

(0.034)

−0.043

(−0.056 to −0.030)

p < 0.001

−1.522

(−2.026 to −0.999)

cBSI, caudate Boundary Shift Integral (a measure of longitudinal caudate atrophy); Mean diff, mean difference; CI, confidence Interval; SD, standard deviation.

small sample size. Whilst there will be challenges with multi-site
MR data in terms of across- scanner variation and image quality,
with possible impact on performance of automated tools, it is felt
that the inclusion of multi-center data allows for overall larger
sample size (which is of particular importance in rare diseases
such as HD) and increased generalisability of the results. Overall,
these findings may also indicate that some tools are more data
driven, and that their performance is dependent on the quality
of the input imaging data, which is predominately determined
by scanner used, sequence parameters etc. QC of imaging data
is therefore not only essential to determine the reliability of
tools to segment anatomically accurate regions for inclusion in
a quantitative analysis, but also crucial in deciding what tool to
employ in an imaging study given the quality of imaging data to
be analyzed and suitability for the specific tool.

A comparison of baseline volumetrics demonstrated that all
automated tools could establish group separation in this subset
of early HD participants and controls, with HD participants
having significantly smaller caudate volumes. Longitudinally, the
cBSI and normalized cBSI values showed significant increased
caudate atrophy rates in HD participants compared to controls.
Both these findings reflect well-known disease characteristics
(11, 18–20, 38). Automated tools (FIRST, STEPS and MALP-
EM) generated significantly smaller caudate volumes than those
derived manually which is consistent with previous reports
using other tools such as BRAINS (12), but in contrast to
an automated ABV (atlas based volumetry using a binary
caudate mask derived from the LONI probabilistic brain atlas)
tool that systematically derived larger volumes (24). Whilst
FreeSurfer volumes were most similar to those derived manually,
the overlap analysis was more in keeping with the qualitative
findings, where higher Jaccard Indices were found between
manual and STEPS segmented ROIs in both groups. Although
FreeSurfer performed well in the simple volumetric comparison,

the slightly poorer overlaps between FreeSurfer and manually
segmented ROIs demonstrate that reporting volumetric outputs
only, when attempting to validate and assess the utility of tools,
is inadequate since these measures do not necessarily reflect
spatial agreement between two segmented ROIs. Previous Dice
similarity coefficient (DSC) reported by Khan et al. for FreeSurfer
and manually segmented caudate in pre-HD was 0.77 (right)
and 0.80 (left) (23). The Jaccard Index is closely related to DSC
(where DSC=2J/1+J) (39), thus calculated mean FreeSurfer DSC
in the current study (0.831 for controls and 0.790 in early HD)
demonstrate similar levels of overlap potentially across the HD
disease spectrum.

Longitudinally the cBSI and normalized cBSI values were
greater in HD participants compared to controls, reflecting
the expected increased caudate atrophy rates in HD subjects
exceeding the effects of normal aging (18). Hobbs et al. have
previously reported increased between-subject variability in
caudate volume in HD compared to controls (40), and to
account for this, we normalized cBSI to baseline caudate volumes.
In the current study, the normalized cBSI measures also led
to complete group separation across all segmentation tools,
demonstrating that this may be a reliable way to calculate
caudate volume change while also accounting for the between-
subject variability in baseline caudate volumes. STEPS, which
had underestimated baseline volumetrics, was the only tool
unaffected by this normalization however, demonstrating no
statistically significant difference with manually derived cBSI
or the normalized cBSI measures. The findings could indicate
that either the baseline volumetric inaccuracy was not large
enough to impact on the subsequent cBSI calculations, or that
the baseline caudate volume itself does not greatly affect the
cBSI. This seems plausible considering that despite FreeSurfer
producing the most similar baseline volumetric outputs to those
derived manually, it generated smaller cBSI measures than
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manually derived measures, becoming significant in the HD
group. Automated tools that are unable to generate accurate
volume change measures over time would not be reliable in
clinical trials assessing treatment effects.

As with the overlap analysis, where all techniques
demonstrated greater overlaps in controls compared to HD
participants, suggesting that automated tools may be less
accurate in atrophied brains, this may also be the case for cBSI
measures; from the longitudinal analysis we observed that tools,
such as MALP-EM, overestimated normalized cBSI in HD
participants but not controls. Some automated tools may be less
accurate in generating reliable measures in atrophied brains,
both at baseline and longitudinally where atrophic changes
occur at an increased rate. However, this would perhaps not
impact on their utility in future pre-HD studies, as this group
is expected to be more “similar” to normal controls with less
extreme subcortical atrophy, compared to that observed in the
early HD participants in the current study, but this would need
further validation. Studies would also need to assess whether
tools would be sensitive to smaller atrophic changes than those
observed here with participants in stage 1 of the disease and with
imaging data at 15 months from baseline.

A limitation is that more tools could have been assessed, but
we included two widely used tools (FIRST and FreeSurfer) along
with two unexplored tools (STEPS, MALP-EM) not previously
validated in subcortical caudate segmentation in HD. Although
STEPS performed well in the current study, a major limitation
to its use and application in other clinical cohorts is that it
is not currently freely available. Greater consistency between
scans that were deemed as a “pass” could also have been
established; MALP-EM segmentations for instance, frequently
underestimated caudate volume, but passed quality control as
segmented ROIs were still considered to be within anatomical
boundaries. By including these in the volumetric analysis it was
not unexpected that the mean volumes appeared smaller for
MALP-EM. The types of segmentation errors seen with MALP-
EM (including “holes”) were not present with any of the other
tools, thus excluding a number of scans with these errors would
have wrongfully represented MALP-EM’s ability to accurately
carry out segmentations in this cohort. This would also have
impacted on the purpose of the study, which was to assess default
performance of segmentation tools. Additionally, raw caudate
volumes reported for each tool were not normalized for total
intracranial volume (TIV). This may have impacted on group
comparisons, but this was not the main focus of the study.

CONCLUSION

The study has implications for future HD studies, but results
can be extended to other neurodegenerative or pathological
cohorts where using automated segmentation tools are becoming
essential for large cohorts. Imaging markers that can be
sensitively measured to distinguish pathological cohorts from
controls are vital for study design development. Equally
important is the employment of validated tools that can
accurately and reliably detect and longitudinally track disease

progression, enabling assessment of treatment effects in clinical
trials. When evaluating which automated tool to use, it will be
important to establish how tools have been validated; reporting
only raw baseline automated volumetric output comparisons
with manually derived volumetrics cannot reliably validate the
accuracy of the automated tool. Similarly, the cohort of which
the tool has been validated in will be important; as demonstrated
in the current study, all tools had poorer overlaps with manually
segmented regions in HD participants compared to controls,
presumably due to the inability of tools to fully cope with
abnormal brain configuration and atrophy.

Ultimately, the best tools would output similar volumes as
manually delineated outputs, demonstrate close overlaps (using
similarity measures such as Jaccard Index or DSC) with manually
segmented ROIs and demonstrate reliable measures of volume
change over time. In the current study FreeSurfer demonstrated
similar volume outputs but had slightly poorer overlaps and
significantly different cBSI measures in the HD group. MALP-
EM segmentations were generally poor and FIRST performed
less well on baseline and longitudinal measures and would
therefore be considered less reliable in the assessment of caudate
volume cross -sectionally and longitudinally in this cohort.
STEPS was qualitatively the most accurate demonstrating the
greatest overlaps, and the significantly smaller cross-sectionally
derived volume outputs did not seem to impact on its ability to
generate reliable cBSImeasures longitudinally. This indicates that
when measuring volume change over time, using a tool such as
STEPS that have demonstrated better measures of similarity with
manual delineation may be more appropriate, keeping in mind
that absolute volumes may be systematically underestimated.
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