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Allogeneic hematopoietic cell 
transplantation with cord blood 
versus mismatched unrelated donor 
with post‑transplant cyclophosphamide 
in acute myeloid leukemia
Bhagirathbhai Dholaria1*  , Myriam Labopin2, Jaime Sanz3, Annalisa Ruggeri4, Jan Cornelissen5, 
Hélène Labussière‑Wallet6, Didier Blaise7, Edouard Forcade8, Patrice Chevallier9, Anna Grassi10, 
Ludmila Zubarovskaya11, Jürgen Kuball12, Patrice Ceballos13, Fabio Ciceri14, Frederic Baron15, Bipin N. Savani1, 
Arnon Nagler16,17 and Mohamad Mohty2,18 

Abstract 

Background:  Allogeneic hematopoietic cell transplantation (allo-HCT) using a mismatched unrelated donor 
(MMUD) and cord blood transplantation (CBT) are valid alternatives for patients without a fully human leukocyte 
antigen (HLA)-matched donor. Here, we compared the allo-HCT outcomes of CBT versus single-allele-mismatched 
MMUD allo-HCT with post-transplant cyclophosphamide (PTCy) in acute myeloid leukemia.

Methods:  Patients who underwent a first CBT without PTCy (N = 902) or allo-HCT from a (HLA 9/10) MMUD with 
PTCy (N = 280) were included in the study. A multivariate regression analysis was performed for the whole population. 
A matched-pair analysis was carried out by propensity score-based 1:1 matching of patients (177 pairs) with known 
cytogenetic risk.

Results:  The incidence of grade II–IV and grade III–IV acute graft-versus-host disease (GVHD) at 6 months was 36% 
versus 32% (p = 0.07) and 15% versus 11% (p = 0.16) for CBT and MMUD cohorts, respectively. CBT was associated with 
a higher incidence of graft failure (11% vs. 4%, p < 0.01) and higher 2-year non-relapse mortality (NRM) (30% vs. 16%, 
p < 0.01) compared to MMUD. In the multivariate analysis, CBT was associated with a higher risk of, NRM (HR = 2.09, 
95% CI 1.46–2.99, p < 0.0001), and relapse (HR = 1.35, 95% CI 1–1.83, p = 0.05), which resulted in worse leukemia-free 
survival (LFS) (HR = 1.68, 95% CI 1.34–2.12, p < 0.0001), overall survival (OS) (HR = 1.7, 95% CI 1.33–2.17, p < 0.0001), 
and GVHD-free, relapse-free survival (GRFS) (HR = 1.49, 95% CI 1.21–1.83, p < 0.0001) compared to MMUD. The risk of 
grade II–IV acute GVHD (p = 0.052) and chronic GVHD (p = 0.69) did not differ significantly between the cohorts. These 
results were confirmed in a matched-pair analysis.

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

*Correspondence:  Bhagirathbhai.R.Dholaria@vumc.org
1 Department of Hematology‑Oncology, Vanderbilt University Medical 
Center, 220 Pierce Ave, 777 Preston Research Building, Nashville, TN 
37232, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-2371-3655
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13045-021-01086-2&domain=pdf


Page 2 of 11Dholaria et al. J Hematol Oncol           (2021) 14:76 

Introduction
Allogeneic hematopoietic cell transplantation (allo-
HCT) is commonly offered to patients with acute mye-
loid leukemia (AML) as a curative treatment modality. 
The degree of human leukocyte antigen (HLA) match-
ing between recipient and donor has long been consid-
ered an important factor impacting allo-HCT outcomes. 
A higher degree of HLA allele and/or antigen mis-
match leads to a higher risk of graft-versus-host disease 
(GVHD) and non-relapse mortality (NRM); hence, an 
8/8 HLA-matched related or unrelated donor is preferred 
over an HLA-mismatched donor. Most patients from 
ethnic minority groups do not have a fully HLA-matched 
(HLA-A, B, C, DRB1 loci match) unrelated donor [1]. 
The donor options for patients without a fully HLA-
matched donor are haploidentical-related (haplo) donor, 
mismatched unrelated donor (MMUD), or umbilical cord 
blood transplantation (CBT).

CBT using HLA-mismatched single or double cord 
blood units has shown good leukemia-free survival (LFS) 
and overall survival (OS) in patients with AML [2–5]. In 
registry-based studies, the incidence and severity of acute 
and chronic GVHD have been lower with mismatched 
CBT compared to what has previously been reported in 
recipients of fully or partially HLA-matched related or 
unrelated donor marrow transplantation [6–9]. Across 
these studies, CBT was associated with relatively higher 
NRM driven by delayed engraftment and immune recon-
stitution, resulting in comparable LFS and OS compared 
to 8/8 or 7/8 HLA-matched unrelated donor transplan-
tation [10]. Although increasing HLA disparity among 
patients receiving CBT is associated with a higher risk of 
GVHD [11], the incidence is still lower than with unre-
lated donor with a similar degree of HLA disparity. Many 
advances have been made in peri-transplant immu-
nomodulation to overcome the HLA barrier between the 
recipient and donor. The use of post-transplant cyclo-
phosphamide (PTCy) pioneered by the group at Johns 
Hopkins was originally developed in patients receiving 
allo-HCT from a haplo donor and bone marrow (BM) 
graft [12, 13]. PTCy reduces the risk of GVHD by induc-
ing alloreactive T cell dysfunction and promoting graft 
tolerance [14]. Over the past decade, PTCy has been rap-
idly incorporated across the donor types and stem cell 
graft sources with GVHD and relapse incidence rates 

comparable to historical calcineurin inhibitor (CNI)-
based GVHD prophylaxis regimens [15–21]. Reduced 
GVHD-related NRM has been reported with MMUD in 
the setting of PTCy compared to historical antithymocyte 
globulin (ATG)-based transplantation [18, 22, 23]. A pro-
spective phase II study by the National Marrow Donor 
Program/Be The Match (NMDP/BTM) showed that out-
comes using 4–7/8 MMUD in the setting of PTCy were 
similar to those obtained using a haplo donor [24].

A comparison of the two available alternative donor 
sources, CBT and single-allele MMUD, in the setting 
of PTCy has not been described so far. In this study, we 
compared the allo-HCT outcomes of CBT versus 9/10 
MMUD with PTCy in patients with AML.

Methods
Study design and data collection
This was a retrospective multicenter analysis using the 
dataset of the Acute Leukemia Working Party (ALWP) 
of the European Society for Blood and Marrow Trans-
plantation (EBMT) registry. The EBMT is a voluntary 
working group of more than 600 transplant centers that 
are required to report all consecutive stem cell trans-
plantations and follow-ups once a year. Audits are rou-
tinely performed to determine the accuracy of the data. 
The eligibility criteria for this analysis included adult 
patients ≥ 18  years of age with AML who underwent a 
first allo-HCT using CBT or MMUD with PTCy between 
2010 and 2019. The MMUD was defined as an unrelated 
donor with single HLA-allele mismatch at one of the fol-
lowing HLA loci A, B, C, DRB1, or DQB1. CBT using 
single or double cord blood units without PTCy were 
included in the analysis. The exclusion criteria were allo-
HCT from any other donor source; a previous history of 
allo-HCT; use of ex  vivo graft manipulation; or lack of 
information on HLA matching or GVHD prophylaxis. 
We also excluded six patients with a pre-transplant dis-
ease status of third complete remission found only in the 
MMUD group. Data collected included recipient and 
donor characteristics [age, gender, and cytomegalovi-
rus (CMV) serostatus], baseline Karnofsky performance 
status (KPS), disease features and status at transplant, 
year of transplant, type of conditioning regimen, stem 
cell source, GVHD prophylaxis regimen, and the use of 
in vivo T cell depletion (TCD). The conditioning regimen 

Conclusions:  CBT was associated with lower LFS, OS, and GRFS due to higher NRM, compared to MMUD allo-HCT 
with PTCy. In the absence of a fully matched donor, 9/10 MMUD with PTCy may be preferred over CBT.

Keywords:  Mismatched donor, Cord blood transplantation, Cord blood unit, Acute leukemia, Acute myeloid 
leukemia, Toxicity, Graft-versus-host disease, Disease relapse, Allogeneic hematopoietic cell transplantation, Peripheral 
blood stem cell, Bone marrow, Post-transplant cyclophosphamide, Human leukocyte antigen
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was defined based on the reports from individual trans-
plant centers as per previously established EBMT cri-
teria [25]. In addition to PTCy in the MMUD cohort, 
other immunosuppressive drugs were used as per insti-
tutional protocols. All patients received 50  mg/kg × 2 
doses (either Day + 3 and + 4 or day + 3 and + 5). There 
was heterogeneity in schedule other immunosuppres-
sive drugs based on institutional practice [26]. Grading 
of acute GVHD was performed using established criteria 
[27]. Chronic GVHD was classified as limited or exten-
sive according to published criteria [28]. A modified 
GVHD-free, relapse-free survival (GRFS) was defined as 
previously described [29]. For this study, all necessary 
data were collected according to the EBMT guidelines, 
using the EBMT minimum essential data forms. The list 
of institutions reporting data included in this study is 
provided in Additional file 1: Table S1.

Ethics approval and consent to participate
The study was approved by the scientific board of the 
ALWP of the EBMT. The study protocol was approved by 
each site and complied with country-specific regulatory 
requirements. All patients gave informed consent to use 
their personal information for research purposes. The 
study was conducted as per the Declaration of Helsinki 
and Good Clinical Practice guidelines.

Statistical analysis
The study endpoints were OS, LFS, relapse incidence 
(RI), NRM, engraftment, acute and chronic GVHD inci-
dence, and GRFS. All endpoints were measured from the 
time of transplantation. OS was defined as time to death 
from any cause. LFS was defined as survival with no evi-
dence of relapse or progression. We used modified GRFS 
criteria, and GRFS events were defined as the first event 
among grade III–IV acute GVHD, extensive chronic 
GVHD, relapse, and death from any cause [29, 30].

Patient-, disease-, and transplant-related characteris-
tics were compared between the two donor groups (CBT 
vs. MMUD) using the Mann–Whitney test for numeri-
cal variables, and the Chi-square or Fisher’s exact test 
for categorical variables. The probabilities of OS, LFS, 
and GRFS were calculated using the Kaplan–Meier 
(KM) estimate. The RI and NRM were calculated using 
cumulative incidence curves in a competing risk setting, 
death in remission being treated as a competing event for 
relapse. The median follow-up duration was calculated 
using the reverse KM method where the event is being 
alive, and death is censored. Death was considered as a 
competing event for engraftment. To estimate the CI of 
acute or chronic GVHD, relapse and death were consid-
ered as competing events. Univariate analyses were car-
ried out using the log-rank test for LFS and OS, while 

Gray’s test was used for CI. Multivariate analyses were 
performed with the Cox proportional hazards regres-
sion models. In the final Cox model, variables differing 
significantly between the two groups or potential risk 
factors were included. We did not adjust for the variable 
related to selection of donor, donor sex, donor CMV sta-
tus, and TCD. To test for a center effect, we introduced a 
random effect or ‘frailty’ for each center into the model 
[31]. A matched-pair analysis was conducted using data 
only from patients with information on cytogenetics to 
better understand the association between donor source 
and allo-HCT outcomes. The propensity score was based 
on recipient age, recipient gender, cytogenetics, disease 
status before transplant, conditioning intensity, and KPS 
at transplantation. Exact matching for cytogenetics, dis-
ease status and recipient gender and nearest neighbor for 
KPS and conditioning were used. Caliper width was 0.20. 
Patients well matched with standardized mean difference 
estimates of less than 5% for all parameters were included 
in the propensity score. Exact matching for cytogenetics, 
disease status, and recipient gender, and nearest neigh-
bor for KPS and conditioning were used. Caliper width 
was 0.20 of the standard deviation of the logit of the 
estimated propensity score. All p values were two-sided 
with a type 1 error rate fixed at 0.05. Statistical analyses 
were performed with SPSS 24.0 (SPSS Inc, Chicago, IL, 
USA) and R 4.0.3 [R Core Team (2020). R: A language 
and environment for statistical computing. R Foundation 
for Statistical Computing, Vienna, Austria. URL https://​
www.R-​proje​ct.​org/].

Data sharing statement
Please contact the EBMT for the raw data used for this 
study (www.​ebmt.​org).

Results
Patient, transplant, and disease characteristics
Baseline patient, transplant, and disease characteris-
tics between the study cohorts are shown in Table  1. A 
total of 902 patients in the CBT and 280 patients in the 
MMUD cohort met the study inclusion criteria. The 
median follow-up duration from allo-HCT was longer 
for the recipients of CBT compared to MMUD (46.8 
vs. 19.1 months, p < 0.01). As the adoption of PTCy was 
relatively recent, the median year of transplant for the 
MMUD cohort was 2017, whereas it was 2013 for CBT 
recipients. The proportion of allele mismatches was 38% 
for HLA-A, 20% for HLA-B, 19% for HLA-C, 8% for 
HLA-DRB1, and 15% for HLA-DQB1 locus in MMUD 
cohort. Baseline KPS, hematopoietic cell transplantation 
comorbidity index (HCT-CI), and recipient age were not 
statistically different between the study cohorts.

https://www.R-project.org/
https://www.R-project.org/
http://www.ebmt.org
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Table 1  Baseline patient, disease, and transplant characteristics

MMUD (N = 280) CBT (N = 902) p value

Follow-up (reverse KM, months)

Median (IQR) 19.1 (11.4–36.7) 46.8 (22.6–72.6) < 0.001

Patient age (years)

Median (min–max) [IQR] 52.1 (18.2–75.6) [39.9–61.2] 50.5 (18.1–73.2) [38.4–60.3] 0.087

Year transplant

Median (min–max) [IQR] 2017 (2010–2019) 2013 (2010–2019) < 0.001

Cytogenetics risk groupa

Good risk 18 (6.4%) 50 (5.5%) 0.001

Intermediate risk 148 (52.9%) 366 (40.6%)

Adverse risk 40 (14.3%) 144 (16%)

Unknown risk 74 (26.4%) 342 (37.9%)

Disease status at transplantation

CR1 179 (63.9%) 522 (57.9%) 0.023

CR2 + 49 (17.5%) 230 (25.5%)

Advanced 52 (18.6%) 150 (16.6%)

Patient gender

Male 163 (58.2%) 430 (47.7%) 0.002

Donor gender

Male 187 (68.2%) 421 (50%) < 0.001

Missing 6 60

Female donor to male recipient

35 (12.7%) 194 (22.2%) < 0.001

Missing 5 29

HCT-CI

0 125 (59%) 294 (57.3%) 0.073

1 or 2 32 (15.1%) 112 (21.8%)

≥ 3 55 (25.9%) 107 (20.9%)

Missing 68 389

KPS score

≥ 90 76 (27.1%) 210 (23.3%) 0.19

Patient CMV serostatus: positive

Positive 201 (73.6%) 587 (66.9%) 0.036

Missing 7 24

Donor CMV serostatus: positive

Positive 127 (45.8%) 260 (35.2%) 0.002

Missing 3 163

Graft source

BM—19 (6.8%) Single unit—408 (45.2%)

PBSC—261 (93.2%) Double unit—494 (54.8%)

Conditioning regimen intensity

MAC 141 (50.4%) 416 (46.1%) 0.21

RIC 139 (49.6%) 486 (53.9%)

Type of conditioning regimen

BuCy 14 (5%) 23 (2.5%) < 0.001

BuFlu 116 (41.4%) 14 (1.6%)

TBF 45 (16.1%) 263 (29.2%)

TBI-based 38 (13.6%) 522 (57.9%)

Other 67 (23.9%) 80 (8.9%)
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The majority (93%) of MMUD transplants were per-
formed using mobilized peripheral blood stem cell 
(PBSC) grafts and 55% of CBT were performed with com-
bined two cord units. Information about graft composi-
tion was available in a subset of patients. In CBT cohort, 
the median total nucleated cell dose was 0.37 × 106 cells/
kg [interquartile range (IQR) 0.24–0.50] and CD34 
cell dose was 0.11 × 106  cells/kg (IQR 0.06–0.19). In 
MMUD cohort, the median total nucleated cell dose was 
7.7 × 106  cells/kg (IQR 5.32–10.01) and CD34 cell dose 
was 6.0 × 106 cells/kg (IQR 4.5–7.9). More patients in the 
CBT cohort received in  vivo TCD using ATG or alem-
tuzumab, compared to MMUD (in addition to PTCy) 
(40% vs. 26%, p < 0.01). More details on in vivo TCD are 
provided in Additional file 1: Table S2. Cyclosporin with 
mycophenolate mofetil (MMF) was the common GVHD 
prophylaxis regimen in both cohorts (71% in CBT and 
40% in MMUD). Myeloablative conditioning (MAC) was 
used in nearly half of transplants (46% in CBT and 50% in 
MMUD, p = 0.21). Busulfan plus fludarabine was used in 
41% of MMUD patients, and TBI-based conditioning was 
used in 58% of CBT patients. Information on the graft 
composition (total nucleated cell, CD34 and CD3 cell 
counts) between the study cohorts was not available for 
the majority of the study patients.

Engraftment
The median time to ANC engraftment was 23  days for 
CBT versus 19  days for MMUD (p < 0.001). The cumu-
lative incidence of an absolute neutrophil count (ANC) 
above 500  cells/µL at 30  days after transplantation was 
67% in CBT versus 92% in MMUD (p = 0.001). Cumula-
tive incidence of platelets above 20,000  cells/µL at day 
90 was 77% in CBT versus 91% in MMUD (p = 0.0001). 
Graft failure or loss (including death before engraftment) 

was reported for 95 (10.4%) patients who received CBT 
and 12 (4.4%) patients who received MMUD allo-HCT 
(p = 0.002).

GVHD
The incidence of grade II–IV acute GVHD during the 
first 180  days was 36% in CBT patients compared to 
31.6% in MMUD patients (p = 0.07). The cumulative inci-
dence of grade III–IV acute GVHD did not differ (CBT-
14.7% vs. MMUD-11.4%, p = 0.16) between the cohorts. 
The 2-year incidence of overall (CBT-26.2% vs. MMUD-
31.5%, p = 0.20) and extensive (CBT-11.6% vs. MMUD-
11.6%, p = 0.83) chronic GVHD was similar between 
the study cohorts. In the multivariate analysis (Table 2), 
there was no statistically significant difference in the risk 
of grade II–IV acute GVHD [hazard ratio (HR) = 1.32, 
95% confidence interval (CI): 1.0–1.74, p = 0.052] and 
chronic GVHD (HR = 0.94, 95% CI  0.68–1.30, p = 0.69) 
between CBT versus MMUD. We also ran another mul-
tivariate analysis using three groups: 9/10 MMUD, single 
CBT, and double CBT (Additional file 1: Table S5). Dou-
ble CBT was associated higher risk of grade II–IV acute 
GVHD compared to MMUD. Acute GVHD risk was 
comparable between single CBT versus MMUD.

Relapse, NRM, and survival
There was no statistically significant difference in 2-year 
RI (CBT-27.5% vs. MMUD-23.2%, p = 0.24), but 2-year 
NRM was significantly higher in CBT compared to 
MMUD (CBT-29.7% vs. MMUD-16.3%, p = 0.001). In the 
univariate analysis, 2-year LFS (CBT-42.8% vs. MMUD-
60.5%, p = 0.001), OS (CBT-46.8% vs. MMUD-62.8%, 
p = 0.001), and GRFS (CBT-33.9% vs. MMUD-46.8%, 
p = 0.001) were significantly lower in the recipients 
of CBT compared to MMUD allo-HCT, respectively 

Table 1  (continued)

MMUD (N = 280) CBT (N = 902) p value

GVHD prophylaxisb

csa + mmf 111 (39.6%) 638 (70.7%)

tacro + mmf 51 (18.2%) 22 (2.4%)

csa + mtx 10 (3.6%) 35 (3.9%)

csa 34 (12.1%) 183 (20.3%)

tacro 24 (8.6%) 2 (0.2%)

siro + mmf 14 (5%) 8 (0.9%)

other 36 (12.9%) 14 (1.6%)

CMV cytomegalovirus; GVHD graft-versus-host disease, KPS Karnofsky performance status, HCT-CI hematopoietic cell transplantation comorbidity index, KM 
Kaplan–Meier, IQR interquartile rage, BM bone marrow, PBSC peripheral blood stem cell, MAC myeloablative conditioning, RIC reduced-intensity conditioning, BuCy 
busulfan cyclophosphamide, BuFu busulfan, fludarabine, TBF thiotepa, busulfan, fludarabine, TBI total body irradiation, CSA cyclosporine, mtx methotrexate, mmf 
mycophenolate mofetil, tacro tacrolimus, siro sirolimus
a Per UK MRC criteria
b All MMUD patients received PTCy
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(Additional file  1: Table  S3).In the multivariate analysis 
(Table 2), there was no significant statistical difference in 
RI (HR = 1.35, 95% CI  1.0–1.83, p = 0.05) between CBT 
versus MMUD. CBT was associated with higher risk of 
NRM (HR = 2.09, 95% CI 1.46–2.99, p < 0.0001) com-
pared to MMUD after adjusting for other patient- and 
transplant-related factors. The CBT was associated with 
poorer LFS (HR = 1.68, 95% CI 1.34–2.12 p < 0.0001), 
OS (HR = 1.70, 95% CI 1.33–2.17, p < 0.0001), and GRFS 
(HR = 1.49, 95% CI 1.21–1.83 p = 0.0002) compared to 
MMUD. The use of a reduced-intensity conditioning 
(RIC) regimen was associated with higher RI (HR = 1.27, 
95% CI 0.97–1.64, p = 0.08), lower NRM (HR = 0.60, 
95% CI 0.46–0.80, p < 0.001), and better OS (HR = 0.79, 
95% CI 0.65–0.97, p = 0.02) compared to a MAC regi-
men. Other factors associated with poor OS were older 
age and CR2 or advanced disease status before trans-
plantation as shown in Table  2. MMUD was associated 
with better survival when the Cox model was adjusted 
for TCD and year of transplant (data not shown). In the 
separate Cox analysis (Additional file 1: Table S5), relapse 
risk was lower with double CBT compared to single CBT 
but not significantly different from MMUD. Other HCT 
outcomes were better with 9/10 MMUD with less NRM 
and improved LFS, OS, and GRFS compared to single/
double CBT.

Matched‑pair analysis
Next, we performed a matched-pair analysis of patients 
with complete cytogenetic information (Additional file 1: 
Table S4). A total of 177 pairs (CBT: MMUD = 1:1) were 
selected according to the criteria described in the meth-
ods section. CBT was associated with higher 2-year RI 
(31.5% vs. 17.9%, p = 0.002) and NRM (29.5% vs. 16.7%, 
p = 0.005), resulting in lower LFS (38.9% vs. 65.4%, 
p < 0.001), OS (46% vs. 66.2%, p < 0.001), and GRFS (31% 
vs. 53.5%, p < 0.001) compared to MMUD (Figs. 1, 2). The 
incidence of acute and chronic GVHD was comparable 
between the two cohorts.

Toxicity
A total of 441 (49%) patients in the CBT and 84 (30%) 
patients in the MMUD cohort died during the study 
period (Table 3). Disease relapse was the most common 
cause of death in both cohorts (36% of deaths). More 
patients in the CBT cohort died from infection compared 
to MMUD (30.9% vs. 24.1%). GVHD-related deaths were 
comparable (16.2% vs. 14.5%). There were five (1.2%) 
deaths due to lymphoproliferative disease and three 
(0.7%) deaths due to graft failure in the CBT cohort and 
none in the MMUD cohort due to these complications.

Discussion
Alternative donor transplantation is a life-saving proce-
dure for those patients with AML who lack a fully HLA-
matched donor. Our study showed that allo-HCT using 
a single-allele (HLA-9/10) MMMD with PTCy resulted 
in better LFS, OS, and GRFS compared to CBT. The 
improvement in survival from the use of MMUD was 
likely due to lower NRM compared to CBT in our study 
cohorts. CBT was associated with a higher incidence of 
graft failure- and infection-related deaths.

PTCy has shown the capacity to overcome the HLA 
barrier by rapidly stimulating regulatory T cells (Tregs), 
specifically alloreactive Tregs [14]. Many centers have 
adopted the original Hopkins haplo-BM PTCy proto-
col for MMUD allo-HCT. The retrospective studies of 
MMUD allo-HCT in the setting of PTCy showed a lower 
risk of GVHD and NRM compared to historical ATG or 
alemtuzumab-based MMUD allo-HCT [18, 22, 32–34]. 
Compared to ATG or alemtuzumab, PTCy is associated 
with better immune reconstitution and hence lower risk 
of infection-related NRM [35]. A recent EBMT study 
by Battipaglia et al. showed a lower risk of acute GVHD 
and better LFS and GRFS with PTCy compared to ATG 
in patients who underwent allo-HCT from 9/10 MMUD 
[18]. The NMDP conducted a prospective phase II study 
of MMUD BM transplantation with PTCy. One-year OS 
for the entire cohort was 76%. The survival outcomes 
were comparable to the contemporaneous cohort of 
haplo-HCT from the Center for International Blood and 
Marrow Transplant Research [24]. These results show 
that outcomes of MMUD allo-HCT can be improved sig-
nificantly by incorporation of PTCy.

Partially HLA-matched CBT is used preferentially 
at many centers in the absence of a fully matched 
donor. There are certain advantages of CBT, such as 
rapid availability, increased tolerance to HLA mis-
matches, and lower risk of GVHD compared to HLA-
mismatched marrow or PBSC graft. However, CBT 
is associated with higher NRM secondary to delayed 
engraftment and immune reconstitution compared 
to other donor sources. Although outcomes from the 
centers with CBT expertise are excellent, the number 
of patients undergoing CBT is declining due to prefer-
ential use of haplo donors with PTCy [36]. The Blood 
and Marrow Transplant Clinical Trials Network (BMT 
CTN 1101) prospectively compared double cord trans-
plant versus haplo/PTCy after a RIC regimen. Although 
LFS was comparable between the groups, higher NRM 
associated with CBT resulted in lower OS compared 
to haplo/PTCy [37]. Previous registry-based studies 
have shown comparable survival after CBT versus 7/8 
MMUD with conventional GVHD prophylaxis [3]. Our 
analysis showed superior NRM with MMUD compared 
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to CBT. These results are likely due to faster engraft-
ment, lower infection-related death, and graft failure 
with MMUD compared to CBT. Since MMUD patients 
were transplanted relatively recently compared to CBT, 
improved supportive care over time may have a positive 
impact on NRM. PTCy allows safe early discontinuation 

of immunosuppression after the graft infusion [38], 
which may have resulted in better immune reconsti-
tution compared to CBT. This information was not 
available in our database. The interaction of ATG use 
on the outcomes of CBT versus MMUD PTCy cohort 
is more complex. ATG has shown to impair immune 

Fig. 1  Transplant outcomes between CBT versus 9/10 MMUD with PTCy (matched pairs). NRM non-relapse mortality, RI relapse incidence, LFS 
leukemia-free survival, OS overall survival
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reconstitution, resulting in higher risk of viral infec-
tions and NRM after CBT [39, 40]. In pediatric setting, 
the use of low dose ATG was associated with better T 
cell reconstitution and event-free survival [41]. A poor 
reconstitution of natural killer (NK) cells and conven-
tional T cells after haplo-HCT with PTCy compared to 
HLA-matched allo-HCT has been reported [42], but a 
similar effect in the setting of MMUD with PTCy needs 
to be proven. Compared to PTCy alone, combination of 
low-dose ATG and PTCy appears to delay T cell recon-
stitution but support a quicker reconstitution of some 
NK cells subtypes after haplo PBSC transplantation 
[43]. This combination appears to reduce the risk of 
GVHD without increasing NRM in the setting of haplo 
and unrelated donor PBSC transplantation [44–46]. 
We had a subset of patients (26.4%) who received dual 
in vivo TCD with PTCy and ATG in MMUD cohort, but 

main study outcomes were unchanged when the Cox 
model was adjusted for in vivo TCD (data not shown).

Multiple strategies are under investigation to improve 
the safety and efficacy of CBT. Ex vivo expansion of cord 
blood units [47–49] and co-infusion of haploidentical 
PBSC grafts with cord blood units [50] may allow faster 
engraftment and reduce the risk of graft failure with 
CBT. The single-center retrospective analysis by Milano 
et  al. showed that CBT may offer a better graft-versus-
leukemia (GVL) effect and lower the risk of relapse in 
patients with measurable residual disease (MRD) before 
transplantation compared to unrelated donor transplan-
tation [51]. Unfortunately, information about MRD was 
not available for most patients included in the study. The 
results showed a higher RI with CBT in the matched-pair 
analysis which may suggest an ability of PTCy to induce 
graft tolerance and preserve the GVL effect [14].

This analysis was limited by the retrospective nature of 
the study. Our inability to adjust for unknown or unmeas-
ured factors may have affected the transplantation out-
comes. Heterogeneity in conditioning regimens, GVHD 
prophylaxis, center volume, and supportive therapy may 
have affected the study outcomes. The information on 
National Institute of Health chronic GVHD grading, 
MRD, donor chimerism, graft composition, and recipient 
antibody status against HLA allele mismatch was missing 
in a subset of the included patients. This is the first com-
parative analysis of these two alternative donor sources 
and confirms that outcomes of MMUD transplantation 
may be improved with the incorporation of PTCy.

Conclusion
In this registry-based study, we showed that CBT 
was associated with a higher NRM and lower sur-
vival compared to allo-HCT from 9/10 MMUD with 
PTCy in patients with AML. In the absence of a fully 

Fig. 2  Graft-versus-host disease (GVHD) and GVHD-free, relapse-free survival (GRFS)

Table 3  Major cause of death

Etiology MMUD (N = 84) Cord blood 
transplant 
(N = 441)

Original disease 30 (36.1%) 155 (36%)

Infection 20 (24.1%) 133 (30.9%)

Graft-versus-host disease 12 (14.5%) 70 (16.2%)

Cardiac toxicity 1 (1.2%) 1 (0.2%)

Hemorrhage 1 (1.2%) 10 (2.3%)

Graft failure/rejection 0 (0%) 3 (0.7%)

Veno-occlusive disease 3 (3.6%) 9 (2.1%)

Interstitial pneumonitis 6 (7.2%) 13 (3%)

Lymphoproliferative disorder 0 (0%) 5 (1.2%)

Second malignancy 1 (1.2%) 8 (1.9%)

Multiorgan failure 6 (7.2%) 11 (2.6%)

Other transplant related 3 (3.6%) 11 (2.6%)

Missing cause of death 1 12
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HLA-matched or haplo donor, MMUD with PTCy may 
be preferred over CBT. A prospective study with uniform 
conditioning and TCD is required to validate our results.
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