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Adam Heriban? Sébastien Tixeuil?

?Sorbonne University, CNRS, LIP6, France

Abstract

The vast majority of existing Distributed Computing literature about mobile robotic
swarms considers computability issues: characterizing the set of system hypotheses that
enables problem solvability. By contrast, the focus of this work is to investigate complexity
issues: obtaining quantitative results about a given problem that admits solutions. Our
quantitative measurements rely on a newly developed simulation framework to benchmark
pen and paper designs.

First, we consider the maximum traveled distance when gathering robots at a given
location, not known beforehand (both in the two robots and in the n robots settings) in
the classical OBLOT model, for the FSYNC, SSYNC, and ASYNC schedulers. This
particular metric appears relevant as it correlates closely to what would be real world fuel
consumption. Then, we introduce the possibility of errors in the vision of robots, and assess
the behavior of known rendezvous (aka two robots gathering) and leader election protocols
when sensors are unreliable. We also introduce two new algorithms, one for fuel efficient
convergence, and one for leader election, that operate reliably despite unreliable sensors.

1 Introduction

Since the seminal work of Suzuki and Yamashita [41], much research on cooperative mobile
robots was aimed at identifying the minimal assumptions (in terms of synchrony, sensing capa-
bilities, environment, etc.) under which basic problems can be solved. A recent state of the art
was recently proposed by Flocchini et al. [25].

Robots are modeled as mathematical points in the 2D Euclidean plane and independently
execute their own instance of the same algorithm. In the model we consider, robots are anony-
mous (i.e., they are indistinguishable from each-other), oblivious (i.e., they have no persistent
memory of the past is available), and disoriented (i.e., they do not agree on a common coordinate
system). The robots operate in Look-Compute-Move cycles. In each cycle, a robot "Looks" at
its surroundings and obtains (in its own coordinate system) a snapshot containing the locations
of all robots. Based on this visual information, the robot "Computes" a destination location
(still in its own coordinate system), and then "Moves" towards the computed location. Since the
robots are identical, they all follow the same deterministic algorithm. The algorithm is oblivious
if the computed destination in each cycle depends only on the snapshot obtained in the current
cycle (and not on stored previous snapshots). The snapshots obtained by the robots are not
consistently oriented in any manner (that is, the robots’ local coordinate systems do not share a
common direction nor a common chirality1).

The execution model significantly impacts the ability to solve collaborative tasks. Three
different levels of synchronization have been commonly considered. The strongest model is
the fully-synchronous (FSYNC) model [41], where each phase of each cycle is performed si-
multaneously by all robots. The semi-synchronous (SSYNC) model [41] considers that time

1Chirality denotes the ability to distinguish left from right.
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is discretized into rounds, and that in each round an arbitrary yet non-empty subset of the
robots are active. The robots that are active in a particular round perform exactly one atomic
LOOK-COMPUTE-MOVE cycle in that round. The weakest model is the asynchronous (ASYNC)
model [26, 27], which allows arbitrary delays between the LOOK,COMPUTE and MOVE phases,
and the movement itself may take an arbitrary amount of time. It is assumed that the sched-
uler (seen as an adversary) is fair in the sense that in each execution, every robot is activated
infinitely often.

1.1 Previous works and Motivations

An important shortcoming of the robot model introduced by Suzuki and Yamashita [41] with
respect to real-world implementation of mobile robot algorithms is the assumption that both the
vision sensors and the actuation motors are perfect. More specifically, the model assumes that
robots have an infinite vision range, and can sense the position of other robots relatively to theirs
with infinite accuracy. Robots are also usually able to reach their target with infinite movement
precision (with respect to the angle to the target).

Several attempts have been made to make the OBLOT model more realistic, e.g. by limit-
ing the range of sensors through the limited visibility model [1, 28, 29], by allowing the sensors
to miss other robots [31], by using inaccurate sensors [13, 28, 29, 35, 43], or by discarding the
hypothesis that robots are transparent [32, 34].

However, many attempts are hindered by increased complexity due to manually proving
algorithms in those more complex settings. For instance, to our knowledge, the consequences
of error-prone vision have only been studied through very simple problems: Gathering and
Convergence [13, 28, 29, 35, 43].

To allow more complex problems to be studied considering more realistic settings, it appears
necessary to favor an machine-helped approach.

Formal methods encompass a long-lasting path of research that is meant to overcome errors
of human origin. Unsurprisingly, this mechanized approach to protocol correctness was used in
the context of mobile robots [3, 4, 5, 6, 7, 8, 9, 14, 19, 20, 37, 38, 39, 40].

When robots move freely in a continuous two-dimensional Euclidean space, to the best of
our knowledge, the only formal framework available is Pactole2. Pactole relies on higher-order
logic to certify impossibility results [3, 6, 14], as well as the correctness of algorithms [5, 15]
in the FSYNC and SSYNC models, possibly for an arbitrary number of robots (hence in a
scalable manner). Pactole was recently extended by Balabonski et al. [4] to handle the ASYNC
model, thanks to its modular design. However, in its current form, Pactole lacks automation;
that is, in order to prove a result formally, one still has to write the proof (that is automatically
verified), which requires expertise both in Coq (the language Pactole is based upon) and about
the mathematical and logical arguments one should use to complete the proof.

On the other hand, model checking and its derivatives (automatic program synthesis, pa-
rameterized model checking) hint at more automation once a suitable model has been defined
with the input language of the model checker. In particular, model-checking proved useful to
find bugs (usually in the ASYNC setting) [8, 22, 23] and to formally check the correctness of
published algorithms [8, 19, 20, 38]. Automatic program synthesis [9, 37] was used to obtain
automatically algorithms that are "correct-by-design". However, those approaches are limited
to instances with few robots. Generalizing them to an arbitrary number of robots with simi-
lar models is doubtful as Sangnier et al. [40] proved that safety and reachability problems are
undecidable in the parameterized case with default models. Another limitation of the above
approaches is that they only consider cases where mobile robots evolve in a discrete space (i.e.,
graph). This limitation is due to the model used, that closely matches the original execution

2http://pactole.lri.fr
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model by Suzuki and Yamashita [41]. As a computer can only model a finite set of locations, a
continuous 2D Euclidean space cannot be expressed in this model.

Overall, the only way to obtain automated proofs of correctness in the continuous space
context through model checking is to use a more abstract model [18, 19], which commands
writing additional handwritten theorems to assess its relevance in the original model. Overall,
using formal methods for complex algorithms in realistic settings requires a substantial effort
that may be out of reach when one simply wants to asses the feasibility of an algorithmic design.

Furthermore, these approaches currently only address whether the added constraints enable
the construction of counter-examples for a given task, and, to the best of our knowledge, do not
address the important issue of performance degradation, or, in the cases where counter-examples
do appear, the likelihood of their appearance and their impact.

In fact, an overwhelming majority of the research on mobile robotic swarms has focused
on proving, under a given set of conditions, whether there exists a counter example to a given
solution proposal for a problem. On the other hand, the practical efficiency of a given algo-
rithm (with respect to real-world criteria such as fuel consumption) was rarely studied by the
Distributed Computing community, albeit being of paramount importance to the Robotics com-
munity [2, 45]. Fuel-constrained robots have been considered in the discrete graph context, for
both exploration [24] and distributed package delivery [11], but, to our knowledge, no study
considered the two-dimensional Euclidean space model that was promoted by Suzuki and Ya-
mashita [41]. A possible explanation for this situation is that the more complex the algorithm
(or the system settings), the more difficult it becomes to rigorously find the worst possible exe-
cutions.

We investigate another approach: since our goal is to bridge the gap between theoretical
mobile robots, and actual robotics, we move one step towards robotics and use a very common
tool: simulation. First, robot simulators, such as Gazebo3, are industry standard tools for de-
signing physical robots. Then, simulating mobile robots is not a new idea, and has been tried
since the very beginning of mobile robots [1].

Our goal is to design and implement a practical simulator for networks of mobile robots that
is focused on finding counter-examples and monitoring network behavior, rather than proving
algorithms or providing a visual representation. Our vision is that this tool is especially useful in
the early stages of algorithm design to eliminate obviously wrong paths, and detect anomalies.
It should not be seen as a replacement for formal tools, but as a replacement for researcher
intuition when working on a mobile robot network model or algorithm.

As such, the simulator should be easy to use, understand and modify by any Distributed
Computing researcher in order to include any new algorithm or model. It should also be capable
of monitoring network behavior and output quantitative data points to assess real world per-
formance, according to a given set of metrics, as well as enabling comparison with previously
proven algorithms in a given setting.

We first focus on the known limitations of this approach and highlight the difficulty of
encoding victory and defeat conditions for the computed executions, and how it impacts our
ability to reliably detect counter-examples, as well as the expected consequences of working
in a discretized Euclidean space, such as the impossibility to distinguish Convergence and
Gathering.

1.2 Our Contribution

In this paper, we design and implement a practical simulator for mobile robotic swarms evolving
in a two-dimensional Euclidean space. To circumvent the obvious problem of an infinite number
of initial positions, our simulation framework is based on the Monte Carlo method for choosing
initial configurations [36].

3http://gazebosim.org/
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We first benchmark our simulation framework using a well known problem in the domain:
rendezvous. Rendezvous mandates that two robots gather in finite time at the same location, not
known beforehand. There exists a number of rendezvous solution for various settings, yet our
simulation framework enables fair quantitative comparison. We choose the fuel metric (a.k.a.
total traveled distance) under various system conditions: FSYNC, SSYNC, and ASYNC sched-
ulers with or without rigid motion.

We then assess the impact of inaccurate visibility sensors on two milestone algorithms: the
Center-of-Gravity convergence algorithm [41] for two robots, and the Geoleader election algo-
rithm [10]. It turns out that their behavior is significantly impacted by even small inaccuracies.

To address the shortcoming identified by our simulations in the literature, we design a new
two-color, fuel-efficient, convergence algorithm for the ASYNC scheduler, and an improved
leader election algorithm that is resilient to inaccurate vision. Both proposal are similarly bench-
marked with our simulation framework.

The rest of the paper is organized as follows. Section 2 presents the core technicalities
underlying our simulation framework, and its limitations through the problems of OBLOT
FSYNC Convergence, and Geoleader Election. Section 3 demonstrates how the framework
can be used for the purpose of performance evaluation, while Section 4 show how realistic
error models can be integrated into the entire evaluation process. Section 5 introduces two
new algorithms, one for fuel efficient convergence, and one for leader election with unreliable
sensors. Finally, Section 6 provides concluding remarks.

2 Monte-Carlo Simulation of Mobile Robots

2.1 Overview of the Framework

Our simulation framework is written from scratch using Python 3, ensuring a large compatibility
across executing platforms. Our design goal is to remain as close as possible to the theoretical
model of Suzuki and Yamashita [41], in order to maximize readability and usability by the
mobile robot distributed computing community.

Each mobile entity is thus encapsulated as an instance of the Robot class. In the case of the
basic OBLOT model, robots have the following properties:

• A unique name.

• x and y coordinates in the Euclidean plane.

• A snapshot list of Robots that contains visible Robots.

• A target, which is a 2-tuple of the x and y coordinates of the target destination.

The Robot class also provides three methods:

• The LOOK method uses the network as an input. It creates a list of the visible Robots in
the network and assigns it to snapshot.

• The COMPUTE method uses snapshot to compute and assign target, according to the
algorithm we want to evaluate.

• The MOVE method updates x and y according to target.

This is summarized in figure 1
Because robots are anonymous, name cannot be used for computing purposes, and is simply

a way for the scheduler to reliably monitor the robots in the network. Similarly, robots cannot
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Figure 1 – Robot Class

use x and y directly as they are disoriented. The simulation consists of two parts: an initializ-
ing sequence and a loop. The initializing sequence creates a network list, which contains all
robots, according to simulation parameters. To circumvent the problem of the infinite number
of possible initial positions, our simulation framework is based on the Monte-Carlo method for
choosing initial configurations [36]. So, unless otherwise specified, the initial location of each
robot is chosen uniformly at random within the bounds of the type used to represent positions.
Using the Monte-Carlo method allows us to both minimize biases in the initial parameters, and
arbitrarily increase the precision of the simulation by simply increasing the number of simula-
tions. For each iteration of the main loop, a scheduling function is executed once. In the case
of FSYNC, for each loop iteration, all robots in the network simultaneously perform a LOOK,
then simultaneously perform a COMPUTE, and then simultaneously perform a MOVE. Using dif-
ferent schedulers, such as SSYNC or ASYNC only requires changing the scheduling function:
SSYNC creates a non empty list of robots to be activated for a whole cycle, and ASYNC picks a
single robot to be activated for a single phase. The loop terminates whenever a victory condition
holds, which confirms the algorithm completed its intended task. In the case where an algorithm
may fail, a defeat condition can also be used. For practical reasons, the loop has a maximum
number of iterations. However, reaching this maximum should not be interpreted as either a
failure or a success.

2.2 Scheduling

Modeling the FSYNC scheduler can be trivially done by performing all LOOK operations, then
all COMPUTE operations, then all MOVE operations. For the ASYNC and SSYNC schedulers,
we rely on randomness to test as many executions as possible. To model the SSYNC sched-
uler, for each time step, we chose a non-empty subset of the network uniformly at random and
perform a full cycle.

To model the ASYNC scheduler, we chose one robot uniformly at random and perform its
next operation4. In the case of the ASYNC scheduler, we must also consider what happens
if a robot performs a LOOK operation while another robot is moving. the OBLOT model
usually considers that an adversary can chose the perceived location of the second robot to
be anywhere between its initial position and its destination (on a straight line). Modeling this
behavior could be easily done by changing the perceived coordinates in the LOOK operation
uniformly at random between the location and the target of the perceived robot (on a straight
line). However, existing literature about the ASYNC model shows that the most problematic
scenarios appear when the outdated position perceived for a robot is its initial location. With
our simulation framework, we also observed that always choosing the initial location when

4Note that this model does not explicitly include simultaneous operations: we consider that the output of two
simultaneous events E1 and E2 can be either the output of E1 then E2 or the output of E2 then E1.
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observing a given robot while it is in its MOVE phase yielded the most adversarial results, so,
while our framework is able to simulate both perceptions, we assume this adversarial behavior
in the sequel.

For all schedulers, our simulation framework supports both the rigid and the non-rigid set-
tings. The rigid setting mandates a robot that selected a distinct target in the COMPUTE phase to
always reach it in the MOVE phase. The non-rigid setting partially removes this condition: the
robot may be stopped by the scheduler before it reaches the target, but not before it traverses a
distance of at least δ , for some δ > 0.

2.3 Simulation Conditions

Our framework uses Monte-Carlo simulation for both the initial conditions and the scheduling.
This means we can perform an arbitrarily large number of simulations, which in turn induces an
arbitrarily more precise simulation. Therefore any criterion on either time, number of iterations,
or precision is equivalent. Unless specified otherwise, 4 simulation threads are run in parallel,
for one hour, on a modern quad-core CPU, after which results are merged and analyzed. We use
the PyPy3 JIT compiler instead of the CPython interpreter, for better performance. Results of
the 4 simulations are then compiled and analyzed.

2.4 Comparison with Existing Simulators

We found two noteworthy simulators for mobile robots: Sycamore and JBotSim.
Sycamore is a Java program focused explicitly on mobile robots. However, it appears to

be far more complex to build, use and modify than our proposal. Moreover, the latest version
we could find seems to date back from 2016, and requires versions of Java that are no longer
supported.

JBotSim5 is a Java library for simulating distributed networks in general. While it appears
to be able to simulate OBLOT robots, it is not designed to do so. So, one has to dig into the
intricacies of the simulator to emulate basic mobile robot settings.

We also found a third Java-based simulator, named oblot-sim6. We are, however, unsure of
its provenance and design goals.

All three simulators emphasize real-time visualization of executed algorithms through a
complete graphical interface. Our proposal focuses on extremely simple quantitative simulation.
In its current version, a complete instance of the simulator requires only five separate files for a
total of less than 30KB of code (The sources for JBotSim and Sycamore weigh 3MB and 4.8MB,
respectively). We also believe that using Python instead of Java greatly improves portability and
ease of understanding, which in turns allows researchers to more easily implement and test
unusual settings.

In short, our goal is not to visualize executions in real-time, but to simulate as many execu-
tions as possible to process their outcome.

2.5 Limitations of the Simulation

While the initial approach described in previous sections may seem sound and simple enough
to work with, it results in two distinct problems. As stated previously, our objective with robot
simulation is to reliably provide counter-examples whenever they may occur. This requires
reliably detecting problematic executions, which is difficult for two reasons. First, success and
defeat conditions for most mobile robot algorithms are written in a way that might not be directly
usable in a computer simulation. Then, we show that issues predictably arise due to the nature

5https://jbotsim.io
6https://github.com/werner291/oblot-sim
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of discretized floating point numbers compared to "true" real numbers used in mathematical
models.

Halting the Simulation: Victory and Defeat Conditions: One of the goals of our simulation
framework is to find counter-examples for a given algorithm and setting. To do so, we need to
simulate the evolution of the network until one of two things happen:

• A sufficient condition has been met. This implies that the current execution is successful,
and a new simulation with a different initial configuration should begin. This is called a
victory condition.

• A necessary condition has been violated. This implies that the current execution consti-
tutes a counter-example. This is called a defeat condition.

We illustrate the difficulty of using and defining such conditions in practice through the
example of one of the most fundamental problems in the context of mobile robots: Gathering.

The common victory condition for Gathering is the following, for two robots r1 and r2:

Condition 2.1 (Theoretical Gathering Victory). Gathering is achieved if and only if, for any
pair of robots in the network, the distance between the two robots is eventually always zero.
This can also be written more formally as ∃t0 ∈ R≥0 : ∀t1 ≥ t0,∀(r1,r2)|r1r2|t1 = 0

In the previous condition, |r1r2|t denotes the distance between r1 and r2 at time t in the
current execution.

However, this particular condition would require the ability for the simulator to infinitely
simulate the future of the network, which is obviously impossible. Moreover, the matching
defeat condition is unusable for similar reasons:

@t0 ∈ R≥0 : ∀t1 ≥ t0,∀(r1,r2)|r1r2|t1 = 0

or

∀t0 ∈ R≥0 : ∃t1 ≥ t0,∃(r1,r2)|r1r2|t1 6= 0

We instead define a more practical defeat condition:

Condition 2.2 (Practical Gathering Defeat). ∃(t0, t1)∈ (R≥0)
2 : t1 > t0, inputs(t0)= inputs(t1),∃t ∈

[t0, t1]/∃(r1,r2)|r1r2|t 6= 0

Where inputs(t) is the set of all input parameters relevant to the algorithm. This is different
from the configuration, which would contain all parameters of the network at a given point of
the execution.

This input set is used as a practical way to detect cycles in the execution. For a deterministic
algorithm, if all inputs of the algorithm are identical to a previously encountered set of inputs,
then a cycle has been found.

The input set we use must be chosen such that for two sets S1 and S2, S1(t) = S2(t) =⇒
∀S1(t +1),∃S2(t +1) : S1(t +1) = S2(t +1). In other words, regardless of the scheduling, two
identical sets should not be able to generate different sets.

Theorem 2.1. For two robots executing a deterministic algorithm, if condition 2.2 is true then
condition 2.1 is false.

Proof. For a deterministic algorithm, if condition 2.2 is true, there exists a scheduling start-
ing from the initial configuration that reaches inputs(t0) and inputs(t1). Because inputs(t0) =
inputs(t1), there exists a cycle containing non-gathered configurations. Then the adversary
scheduler can repeat this cycle infinitely, and condition 2.1 is false.

7



Theorem 2.2. If the number of input sets is finite, then for two robots executing a deterministic
algorithm, if condition 2.1 is false, then condition 2.2 is true.

Proof. Any scheduling is infinite. So, if the total number of input sets is finite, then every
scheduling contains at least one cycle. If condition 2.1 is false, then there are no non-gathered
cycles, so there is at least one gathered cycle that must be repeated, and condition 2.2 is true.

One may naively want to use a similar reasoning to define a sufficient victory condition:

Condition 2.3 (Naive Gathering Victory). ∃(t0, t1)∈R2
≥0 : t1 > t0, inputs(t0) = inputs(t1),∀t ∈

[t0, t1],∀(r1,r2)|r1r2|t = 0

However, this condition ignores the fact that the scheduler may be able to not repeat this
cycle by carefully choosing the activation order of the robots. A proper condition that is usable
regardless of the scheduler is the following:

Condition 2.4 (Practical Gathering Victory). ∀(r1,r2)∃t0 ∈ R≥0 : |r1r2|t0 = 0∧∀S,∃t1 > t0 :
inputs(t0) = inputs(t1),∀t ∈ [t0, t1], |r1r2|t = 0

With S a scheduling. In other words, there exists a time after which all robots are stuck in
gathered cycles.

Analyzing configurations and finding cycles in the execution is not an issue for our simula-
tor. The main difficulty lies in our ability to properly model the configuration using the input set.
If the set is too restrictive and omits relevant parameters, then we find cycles that do not actually
exist. Similarly, a set that is not restrictive enough may hide actual cycles. This depends on both
the robot model and the algorithm used to solve the problem.

In the case of Rendezvous or Gathering for two robots, the standard algorithm [41] for the
FSYNC scheduler targets the midpoint between the two robots and is described in algorithm 2.1.

Algorithm 2.1 Basic FSYNC Rendezvous
target[0] = (x + snapshot[0].x)/2
target[1] = (y + snapshot[0].y)/2

In the Euclidean space, the number of configurations appears to be infinite. Because robots
are disoriented, the algorithm uses no information on distance, or coordinate systems, so that
all configurations are identical. Then, the input set is actually empty. This implies that an
algorithm succeeds if and only if the network is gathered after the first activation of both robots.
Otherwise, the defeat condition is immediately true for rigid movement.

For the sake of providing a second example, let us consider that robots are endowed with
weak local multiplicity detection, meaning that they can distinguish a non-gathered configu-
ration from a gathered configuration. This allows us to modify the initial algorithm to algo-
rithm 2.2.

Algorithm 2.2 FSYNC Rendezvous with Multiplicity Detection

if ¬gathered
target[0] = (x + snapshot[0].x)/2
target[1] = (y + snapshot[0].y)/2

In this case, the gathered state is a relevant input parameter, and should be included in
the input set. Now, all gathered configurations are considered identical and all non-gathered
configurations are considered identical. This means that the robots must still gather after the
first activation. However, while this was already considered a cycle with the empty set, if robots
are now gathered, the input set is different and no cycle has yet been reached. The first cycle

8



is reached after the second activation. If the robots remain gathered, then this is a gathered
cycle and should not trigger the defeat condition. However, if for some reason the robots were
to separate after the second activation, this would constitute a non-gathered cycle with the first
input set, and the defeat condition would be triggered.

Using this reasoning, we check our simulator against our two-color ASYNC algorithm [30]
and the two-color SSYNC algorithm from Viglietta [42]. For Heriban two-color, we accurately
find no counter-example, and all executions lead to the victory condition in ASYNC, SSYNC
and FSYNC. For Viglietta two-color, we accurately find no counter-example and all executions
lead to the victory condition in SSYNC and FSYNC, and we find counter-examples that trigger
the defeat condition in ASYNC.

We perform a similar study for a weaker version of Gathering, called Convergence. The
common condition for Convergence is the following:

Condition 2.5 (Theoretical Convergence Victory). Convergence is achieved if and only if,
for any distance ε greater than zero, the distance between any pair of robots is eventually always
smaller than ε .

This can also be written more formally as ∀ε ∈R>0,∃t0 ∈R≥0 : ∀t1≥ t0,∀(r1,r2)|r1r2|t1 ≤ ε

Note that, as we expect, Gathering implies Convergence, but Convergence does not
imply Gathering. In this case, the distance between the two robots is a relevant parameter to
check whether or not the problem is solved. However, since it does not change the behavior of
the algorithm, it is still not part of the input set.

We define the following defeat condition:

Condition 2.6 (Practical Convergence Defeat). ∃(r1,r2) :∃(t0, t1)∈ (R≥0)
2 : t1 > t0∧inputs(t0)=

inputs(t1)∧0 < |r1r2|t0 ≤ |r1r2|t1

Theorem 2.3. For a deterministic algorithm, if condition 2.6 is true, then condition 2.5 is false.

Proof. Similarly to Gathering, this condition implies a cycle where distance does not decrease,
so the adversary scheduler can repeat it infinitely and prevent Convergence.

This does not imply that the distance between the two robots must always be strictly de-
creasing in the general case, as this would neither be a sufficient nor a necessary condition.
Because ε can be infinitely small, we cannot chose the ’right’ ε to properly define a victory
condition.

The Consequences of the Discretized Euclidean Plane: While it is tempting to define a vic-
tory condition similar to that of Gathering, the question of ε remains. Floating point numbers
are obviously incapable of infinite precision. So, because any number greater that zero is a valid
choice, if ε is smaller than the minimum positive number that can be represented in the chosen
floating point precision, it cannot be distinguished from a true zero. This implies that small
enough distances between two robots cannot be distinguished from a gathered state. So, it is
intrinsically impossible to distinguish Convergence from actual Gathering.

Let us modify algorithm 2.1 so that both robot move towards the midpoint, but only move

a distance of
|r1r2|

2
− δ

2
instead of

|r1r2|
2

. In theory, this algorithm does not lead to Rendez-

vous, as robots reach a distance of δ after their first activation. However, if δ is small enough,

the precision of floating point numbers is such that
|r1r2|

2
− δ

2
and
|r1r2|

2
appear identical, and

the distance |r1r2| appears to be zero. This is essentially a Convergence algorithm that is fast
enough to be mistaken for a Rendezvous algorithm. In practice, there is very little that can
be done against this sort of behavior and conditions for Gathering should not be considered
reliable.
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On the other hand, under different circumstances, the discrete nature of the simulation can
instead lead theoretically good executions to fail in practice. Let us consider a network of two
robots r1 and r2 such that r2 does not move, and r1 moves to the midpoint. This should trivially
lead to Convergence. Let us now assume that r1.y = r2.y, and that r1.x and r2.x are such that

r2.x is the smallest float greater than r1.x. This possibly leads to
r1.x+ r2.x

2
= r1.x, so r1 stops

moving and the defeat condition for Convergence is wrongly activated.
We test this by setting r1.y = r2.y = 0, picking r1.x at random in [0,1] and picking r2.x at

random in [2,3] so that r1.x < r2.x.
In the first case, r1 moves to the midpoint and r2 does not move. This results in approxi-

mately 37.5% of one million attempts wrongly failing Convergence.
In the second case, r2 moves to the midpoint and r1 does not move. This results in approxi-

mately 25.0% of one million attempts wrongly failing Convergence.
This asymmetry may be explained by biases in the binary64 approximation. Regardless,

this is a real, hard to predict problem with a non-negligible chance of happening and requires
careful analysis of found counter-examples.

Problems with limited float precision also appear when simulating Geoleader Election.
Geoleader Election is successful if, given a set of robots, each with their own coordinate

system, robots can all deterministically agree on a same robot, called the GEOLEADER.
Geoleader Election is known to be impossible in the general case [21] because of possible

symmetries in the network. In practice, this impossibility is circumvented using randomized al-
gorithms to break such symmetries. Let us consider the state-of-the-art algorithm 2.3 by Canepa
and Gradinariu Potop-Butucaru [10] for three robots.

Algorithm 2.3 Original Leader Election Algorithm by Canepa and Gradinariu Potop-
Butucaru [10] for Three Robots

Compute the angles between two robots
if my_angle is the smallest

Become LEADER
Exit

else if my_angle is not the smallest, but the other two are identical
Become LEADER
Exit

else if All angles are identical

Perform a Bernoulli trial with a probability of winning of p =
1
3

if Trial won
Move perpendicular to the opposite side of the triangle in opposite direction

For this particular algorithm, there are three cases:

1. The common case, where one angle is greater than the two others.

2. A rare case where two angles are identical, and the third one is smaller.

3. The rarest case where all angles are identical. In that case, a Bernoulli trial is required to
degrade to the other cases.

Let us assume a network of three robots, [r1,r2,r3], such that r1 is placed at coordinates
(−0.5,0), and r2 at (0.5,0).

We show where each case appears in figure 2a). The third case occurs if r3 is at (0,±
√

3
2

),
which are noted as points eq1 and eq2. Positions of r3 that lead to the second case are noted as
iso1, iso2, and iso3.
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However, it is not possible, using floating point numbers, to have x such that x2 = 3. It is
then impossible, regardless of the quality of the simulation, to place r3 on eq1 or eq2, despite
being possible in theory.

Similarly, an infinitely large number of points mathematically located on the circular arcs of
the second case cannot be represented properly using floating point numbers.

To test this, each robot is given a new property ’Leader’, which is a string containing the
name of the LEADER robot. We perform the simulation and display the results in figure 2b.

(a) LEADER Depending on the Location of r3.
Red, green and blue represent r1, r2 and r3,

respectively.

(b) Simulation for 3-robot Leader Election with
Perfect Vision Sensors. No isosceles or equilateral

point was found.

As we predicted, the fact that real numbers cannot be properly represented in our discrete,
floating point space prevents the simulator from finding the known counter-example in the case
of 3-robots Leader Election. Furthermore, the three circular arcs on which the second case
occurs have a combined surface theoretically equal to zero. Therefore, they are statistically
impossible to find using our Monte-Carlo simulation.

However, it should be noted that, even in a world of perfect sensors, building an equilateral
triangle would require placing the third robot with physically impossible precision. So, while
this counter-example exists from a mathematical standpoint, it could never occur in a more
realistic setting. So, when considering practical robots, this could be considered a minor issue.

On the contrary, the use of a discretized Euclidean space could be viewed as massive advan-
tage compared to the regular, continuous model, as it makes the inherently unrealistic hypothesis
of robots being able to store and process snapshots of infinite precision. In this approximated
context, snapshots have a known, maximum size, depending on the chosen precision for the
coordinates of other robots.

So, in this context, storing a snapshot for a full cycle becomes a trivial matter, and using
algorithm SyncSim described by Das et al. [16, 17], to simulate an FSYNC scheduling under
an ASYNC scheduler, becomes possible without additional unrealistic hypotheses.

As a result, we believe designing algorithms that properly solve problems in the context of a
discretized Euclidean space should be a priority, as it would allow mobile robots to only need to
function using the FSYNC scheduler, and would remove the unrealistic requirement of infinite
precision. One such algorithm is shown in Section 5.
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3 Fuel Efficiency in the Usual Settings

The overwhelming majority of the mobile robots research has focused on proving, under a given
set of conditions, whether there exists a counter example to a given problem. On the other hand,
the practical efficiency of a given algorithm (with respect to real-world criteria such as fuel
consumption) was rarely studied by the distributed computing community, albeit commanded
by the robotics community [2, 45].

Fuel-constrained robots have been considered in the discrete graph context, for both ex-
ploration [24] and distributed package delivery [11]. However, to our knowledge, no study
considered the two-dimensional Euclidean space model that was promoted by Suzuki and Ya-
mashita [41]. A possible explanation for this situation is that the more complex the algorithm (or
the system setting), the more difficult it becomes to rigorously find the worst possible execution.

3.1 Rendezvous Algorithms

We first quantify the maximum traveled distance and the average traveled distance for several
known Rendezvous algorithms. We consider the Center Of Gravity algorithm [41], the two-
color ASYNC algorithm (Her2) by Heriban et al. [30], the two-color algorithm (Vig2) by Vigli-
etta [42], which is known to solve Rendezvous in SSYNC, and Convergence in ASYNC, the
three-color algorithm (Vig3) by Viglietta [42], the four-color algorithm (Das4) by Das et al. [16,
17]. We also investigate the algorithms assuming unreliable compasses by Izumi et al. [33]:
the SSYNC static-error compass algorithm (Stat SSYNC), which, despite its name, works in
ASYNC, the SSYNC dynamic-error compass algorithm (Dyn SSYNC), which does not work in
ASYNC, and the ASYNC static-error compass algorithm (Dyn ASYNC).

We take advantage of the modularity of our simulator. The Robot class now carries several
new properties: color, the color a robot presently displays ; compass, the type of compass and
error, i.e. ’none’, ’static’ or ’dynamic’ ; compass_error, the maximum error allowed for the
compass ; and compass_offset, the current compass error. The color is changed at the end of
the COMPUTE method. Depending on the value of compass, compass_offset is either chosen
during the initialization, or at the beginning of every LOOK method.

Each algorithm is first carefully analyzed on paper to find the worst possible execution. Sim-
ulations are then run according to the aforementioned protocols. Due to limitations described
in Section 2.5, we actually assess those protocols for a degraded notion of Convergence rather
than Gathering. The distance traveled is expressed relatively to the initial distance between the
two robots. In practice, the first robot is always located at {0,0} and the second robot is placed
at random on the circle of radius 1 centered on {0,0}. Algorithms are tested with no initial
pending moves, as arbitrary pending moves would render fuel efficiency mostly impossible to
reliably monitor.

Results are summed up in Table 1. The red color denotes cases where the simulation was
stuck in non-gathered cycles, and had to be manually unstuck. Details as to why this happened
are provided below.

For scale, running 4 instances of Vig3 for one hour under the ASYNC scheduler resulted in
' 14 million total individual executions.
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(a) Maximum Traveled Distance
Found / Predicted

(b) Average Traveled Distance

Table 1 – Maximum and Average Traveled Distances

While most results match the predictions, our pen and paper analysis missed a worst case
execution for ASYNC Vig3, which was found by the simulator (highlighted in bold in Figure 1).
This highlights the difficulty of manually finding the maximum distance even with simple algo-
rithms and settings. It should be noted that rigid motion yields worst results than non-rigid. This
is normal because increasing the traveled distance relies on picking a target outside of the [r1,r2]
segment, and when this is the case, performing the full motion increases the traveled distance
more than performing it partially. Thus, unless stated otherwise, all further simulations assume
rigid motion.

The difference between SSYNC and ASYNC with respect to efficiency becomes apparent,
as under the ASYNC scheduler, optimal fuel consumption mandates using four colors, while a
simple oblivious algorithm is sufficient in SSYNC.

The algorithms using compasses yield the most interesting results. First, numerous simula-
tions of the SSYNC static algorithm became stuck. These failures are due to the fact that the
sine and cosine operations used in the algorithms tend to sum errors, and there is a possibility
that a robot moves in a way that results in an angle of exactly 0, which actually randomly yields
an angle of either 0− ε or 0+ ε , where ε is a very small positive number. This in turn results
in unsolvable cycles that prevent Convergence. As ε was never larger than 10−9, we chose
to prevent this behavior by slightly enlarging the interval of the condition that should be trig-
gered on an angle of zero to an angle in [−10−6,10−6]. We do the same for all conditions for
consistency. So any condition that should be true for angles in [A,B[ are now true for angles in
[A−10−6,B−10−6[, in [A,B] now in [A−10−6,B+10−6], in ]A,B] now in ]A+10−6,B+10−6]
and in ]A,B[ now in ]A+10−6,B−10−6[.

Interestingly, this new condition only had notable impact on the static error algorithm. In-
deed, these errors could be seen as small dynamic random angle errors. Since the static error
algorithm is not designed to be resilient against dynamic errors, it fails whenever they appear.
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This also demonstrate the resilience of the dynamic error algorithms.

3.2 Convergence For n Robots

Cohen and Peleg [12] proved the Center of Gravity (CoG) algorithm solves Convergence for
n robots under the ASYNC scheduler. We analyze the fuel consumption of the algorithm under
both the SSYNC and ASYNC schedulers. Results for the minimum, maximum, and average
distance traveled are show in table 2. We use the sum of the distances to the CoG in the initial
configuration as a baseline unit of distance, i.e. the distance traveled in FSYNC.

Table 2 – Traveled Distances for CoG

It should be noted that, while previous results are based on at least hundreds of thousands
of simulations, due to the increase in simulation complexity, in ASYNC, for n = 25, only 31
simulations could be computed under an hour. So they were discarded. Similarly, for n = 50,
no simulation could be finished under an hour.

Looking at the results, one element immediately jumps out: for n ≥ 3, the CoG algorithm
wastes movements. This is easy to understand: robots move towards the center of gravity, which
for 3 or more robots is different from the geometric median (a.k.a. the Weber point), which
would actually minimize movement. Our tests seem to indicate that aiming for the median
instead of the CoG can reduce traveled distance by up to 30%. However, it is a known result
that no explicit formula for the geometric median exists. As a result, in practice, when trying to
minimize traveled distance, Convergence for n robots should rely on an approximation of the
geometric median rather than the center of gravity.

4 Analyzing Algorithms in Realistic Settings

In Section 3, the simulation of inaccurate compasses yielded extremely interesting results. To
follow this track, we now focus in this section on the setting where sensors are inaccurate. In
more details, we analyze the Center of Gravity (CoG) algorithm for Rendezvous in this setting,
as well as the Geoleader Election algorithm by Canepa and Gradinariu Potop-Butucaru [10].

4.1 Visibility Sensor Errors

To study the impact of inaccurate sensors, we consider three different models for vision error.
For a robot r1 looking at a robot r2 located in (x,y) in the Cartesian coordinate system centered
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at r1, and located at (r,θ) in the polar coordinate system centered at r1, we define:

• The absolute error model [35] uses a constant value err. A first number Rerr is picked
uniformly at random in [0,err], and a second θerr in [0,2π]. The perceived position of r2
is then (x+Rerrcos(θerr),y+Rerrsin(θerr)).

• The relative error model [13] uses two constants errdist and errangle. Two numbers Rerr

and θerr are picked uniformly at random in [−errdist ,errdist ] and [−errangle,errangle]. The
polar coordinates of r2 are then perceived to be (r+ r ∗Rerr,θ +θerr)

• The absolute-relative error model is similar to relative error, but the perceived polar coor-
dinates are (r+Rerr,θ +θerr)

These error models are depicted in Figure 3.

(a) Absolute error

(b) Relative error

(c) Absolute-relative error

Figure 3 – Types of Errors
The r2 point is the actual location of robot r2. The red hashed area represents possible detected

positions by robot r1.

It should be noted that each model could be used to accurately model errors for different
types of sensors. The absolute error model is interesting because it is simple to compute, re-
quires no change of coordinate system, uses a single parameter, and closely matches the behavior
of robots where the LOOK phase is an abstraction of GPS-type coordinates exchanges [44]. The
two relative models are more complex from a computing perspective, but closely match the use
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of either computer vision or telemetry sensors. Both carry an angular error matched with either
proportional or absolute distance error. Which type of distance error is more appropriate would
depend on the exact type of sensor.

These new error models drive adding three properties to the Robot class:

• LOOK_error_type, a string that defines the type of error and can be either ’none’,
’relative’, ’absolute’, or ’abs-rel’.

• LOOK_distance_error, a float that matches either err or errdist , depending on the type
of error.

• LOOK_angle_error, a float that matches errangle.

Robots then chose the corresponding error (with parameters chosen uniformly at random)
when performing their LOOK operation.

4.2 Convergence for n=2

Convergence with vision error using the CoG algorithm has already been studied by Cohen
and Peleg [13]. The error model they considered is identical to our relative error model. Their
paper states that Convergence with distance error using the CoG algorithm is impossible in the
general case. This is, however, only true for n ≥ 3, which the authors omit to mention. In the
case n = 2, it appears to be theoretically impossible to make the algorithm diverge for a distance
error smaller than a 100%, or err = 1. We can reasonably ignore the case of an error greater
than 100%, as it would allow for a robot to perceive another one directly behind itself.

To our knowledge, no formal result exists regarding the angle error. In theory, the maximum
angle error is π . We simulate Convergence for n = 2 robots using the CoG algorithm for the
relative error model. The error for each robot is chosen uniformly at random at the beginning of
the execution.

We must also consider the now possible case of a diverging algorithm. Since the execution
is random, any setting should eventually converge. However, we must put a reasonable stopping
condition in case the execution is clearly diverging. We chose to activate the defeat condition
if the distance between the two robots becomes ten times larger than the distance in the initial
configuration.

Note that the apparent decrease in maximum and average traveled distance for higher angle
error is most likely due to the increase of diverging executions (fewer executions converge, but
the traveled distance for those is shorter).

It appears clearly that the angular error has a much greater potential for both preventing
Convergence, and making robots waste fuel. Indeed, when the angular error remains below
3π/5, a distance error up to 100% can be tolerated with no performance loss.
To give some perspective, the realistic setting of a 10% vision error with a 1◦ angle error yields
a maximum traveled distance of 1.221 and an average of 1.036, with no divergent executions
out of more than 500 million data points.
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(a) Maximum Traveled Distance (b) Average Traveled Distance

(c) Proportion of Diverging Executions

Figure 4 – Movement and Divergence of the CoG Algorithm for Two Robots with Inaccurate
Visibility Sensors

4.3 Compass Errors

In the particular case of compass based algorithms of Izumi et al. [33], rendezvous is possible
when the compasses are inaccurate. More specifically, the maximum tolerated errors are π

2 , π

4
and π

6 for the static SSYNC, dynamic SSYNC, and dynamic ASYNC algorithms, respectively.
In our simulation we chose static errors, for consistency, with values up to 49π

100 , 24π

100 and 16π

100 ,
to avoid possible edge cases. Results of maximum and average traveled distances for these
algorithms are detailed in Table 3.

We observe that the unreliable compasses are used in a way that makes robots rotate around
each other until they are oriented in such a way that one robot moves while the other stays,
regardless of the error. However, there are no provisions in these algorithms to limit distance
increases during the rotating phases, which explains the results. Detailed observation shows the
distance between the two robots can gradually diverge towards infinity during rotation and then
converge to zero in a single cycle. This also demonstrated a problem for our Convergence
criterion: robots could converge at rather large coordinates such that the coordinates of robots
are in succession, but, since the accuracy of floating point numbers decreases as the number
increase, the distance between the two robots was greater than 10−10. As a result, we modified
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(a) Maximum Traveled Distance

(b) Average Traveled Distance

Table 3 – Maximum and Average Traveled Distances for Rendezvous
with Inaccurate Compasses

the criterion to |r1r2|< max(10−10, |Or1| ∗10−10), with O the point of coordinates {0,0}.

4.4 Geoleader Election

Let us now consider Geoleader Election algorithm 2.3 by Canepa and Gradinariu Potop-
Butucaru [10], for n = 3. Looking at our previous results from Section 2.5, we notice that
the borders between each zone should be an issue for imperfect sensors, as different errors for
different robots may lead to robots electing different LEADER robots.

Figure 5 – Example of Leader Election Failure Due to Imperfect Vision

We demonstrate how this phenomenon can occur in Figure 5 for the case of absolute vision
error. On top is the actual configuration, where angles r̂1r2r3 and r̂2r1r3 are equal7, and angle
r̂1r3r2 is smaller than both, so r3 should be elected. The red circle shows the possible perceived

7Because robots have no chirality, angles cannot reliably be distinguished from their opposite. So, two opposite
angles may always be considered equal.
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position of r3 by r1 and r2 due to vision error. In the bottom left case, we show a possible
perception by r1 where r1 should be elected LEADER, as r̂2r1r3 is now greater than r̂1r2r3. On
the lower right, r2 similarly thinks it should be elected. Now, two different robots consider
themselves LEADER and the election process fails.

We now use the absolute model to simulate Geoleader Election with err = 0.001, for
n = 3. This simulation yields ' 0.1% of errors in total, where two robots compute different
LEADER robots, and is shown in figure 6.

Figure 6 – Simulation for 3-robot Leader Election with Absolute Vision Error
Yellow points represent configurations where the error generates two different LEADER robots.

5 Improved Convergence and Leader Election for Faulty Visibil-
ity Sensors

Following our observations of problematic behaviors in Sections 3 and 4, we provide two new
algorithms: a fuel efficient Convergence algorithm for two robots, and a Geoleader Election
algorithm that is resilient to faulty visibility sensors.

5.1 Fuel Efficient Convergence

We provide a new algorithm (Algorithm 5.1) for the ASYNC Convergence of two robots. Our
algorithm is a simplified version of the two-color algorithm by Viglietta [42], which does not
solve Gathering (while Viglietta’s algorithm does solve Gathering in SSYNC). Our algorithm
however ensures that no target can ever be outside of the segment between the two robots,
ensuring no wasted moves, and that there exists a scheduling such that convergence is eventually
achieved. It is denoted by FEC (Fuel Efficient Convergence, presented in Figure 7). Our
algorithm still uses two colors (BLACK and WHITE), and when observing the other robot’s
color, the observing robot either remains still (the ’Self’ target) or goes to the computed midpoint
between the two robots (the ’Midpoint’ target), possibly switching its color to the opposite one.
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BLACK→Self

WHITE→Midpoint
BLACK→Self

WHITE→Self

Figure 7 – FEC: Fuel Efficient Convergence Algorithm for Two Robots

Algorithm 5.1 FEC: Fuel Efficient Convergence Algorithm for Two Robots

if me.color = WHITE

me.color⇐ BLACK

if other.color = WHITE

me.destination⇐ other.position/2
else if me.color = BLACK

if other.color = BLACK

me.color⇐WHITE

As a sanity check, we ran this algorithm through our simulator for one hour (' 30 million
data points) under a randomized ASYNC scheduler and could not find a single execution where
the traveled distance was greater than the initial distance.

Theorem 5.1. The Fuel Efficient Convergence Algorithm (5.1) guarantees the distance trav-
eled for Convergence is never greater than the initial distance between the two robots under
the ASYNC scheduler, assuming no pending moves in the initial configuration.

Proof. First, we see that to achieve Convergence with an optimal distance, robots should al-
ways be moving towards each other. So, for robots to converge using more than the initial
distance, it is required that, at one point in the execution, one robot moves not towards the other
robot. We note that a network of two disoriented robots can be simplified as a line. In that
sense, the only movement that can increase the maximum Convergence distance is when a
robot moves opposite the other robot. In other words, when robots ’switch sides’. Let us now
prove that no robot can target a robot while it is in its MOVE phase: Only the {WHITE,WHITE

} snapshot can trigger a MOVE phase. Since this transition implies a change of color to BLACK

at the end of the COMPUTE phase, robots that move can only be BLACK. So, if a robot is
moving, it is BLACK and the other robot, regardless of color, cannot start moving because its
snapshot is different from {WHITE,WHITE }. Furthermore, because robots switch to BLACK

after moving, and can only switch to WHITE if the other robot is BLACK, no robot can execute
multiple MOVE in sequence unless the other robot has executed at least a full cycle in between.
So a robot cannot move multiple times while the other has pending moves. We look at what
happens after each robot completes at least one full cycle. We assume r1 performs a LOOK,
and r2 performs k cycles before r1 finishes its MOVE. The distance after r1 finishes its cycle is
presented in table 4.

In the case of simultaneous M2H, the distance can be reduced down to zero, but robots
cannot switch sides. In both other cases where a MOVE happens, the distance is reduced at
most down to half, and robots cannot switch sides. Overall, in no cases can the robots move not
towards one another, so the maximum distance traveled is always the initial distance between
the two robots.

2As explained above, moving a second time requires at least a full cycle from the other robot.
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r1 has a pending STAY r1 has a pending M2H

r2 executes k STAY X
[

X
2
,X−δ

]
r2 executes 1 M2H2

[
X
2
,X−δ

]
[0,X−2δ ]

Table 4 – Distance after a full cycle of r1 and k full cycles of r2 with an initial distance of X

However, while the randomized scheduler we use for the simulator ensures convergence
is always achieved, a rapid analysis of the algorithm shows that this algorithm ensures fuel
efficiency, but does not actually ensures convergence. In fact, a simple SSYNC scheduling can
infinitely prevent robots from moving. This further highlights that simulations and formal proofs
are complementary. We conjecture that Fuel Efficient Convergence is not actually possible for
two colors, and that algorithms using three colors may even yield Fuel Efficient Rendezvous
(not just Convergence).

We also compare the resilience of this algorithm against vision errors with the center of
gravity algorithm as a baseline in Figures 8a and 8b. Our results show that this algorithm is
slightly more resilient to vision errors than CoG.

(a) Maximum Distance Traveled by COG
(top) and FEC (bottom)

(b) Average Distance Traveled by COG (top)
and FEC (bottom)
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5.2 Error Resilient Geoleader Election

The Geoleader Election algorithm by Canepa and Gradinariu Potop-Butucaru [10] was not
designed under the assumption that the visibility sensors could be prone to errors. In this sub-
section, we use this awareness to create a new, error-resilient, version of this algorithm, using
our simulation framework.

Geoleader Election for Four Robots One intuitive way of building a fully resilient algorithm
for Leader Election could be based on robots computing the bounds of the error zone. While
this seems feasible for a 3-robot election, it becomes far less trivial for four robots or more. We
present the results of a leader election for four robots in the appendix.

Proposed Algorithm In section 4, we used the simulation framework to detect failed elections
caused by visibility sensor errors. Since mobile robots are able to run any algorithm during their
COMPUTE phase, then they can also run the simulation framework to do precisely that.

The improved algorithm relies on the knowledge of the vision error model and its upper
bounds to simulate random errors in a robot’s position and snapshot and determine whether
there exists a possibility of the other robots electing different LEADER robots.

Note that absolutely knowing that the election cannot fail (i.e., the election cannot yield two
different LEADER robots for two different robots) would require checking the entire surface of
possible errors, which is not feasible in practice. So, we assume that robots perform a finite
number of trials and decide accordingly.

Each robot internally simulates a position error for each robot in its snapshot within the
known margins, performs a simulated election for each robot in its snapshot, and checks for
discrepancies in the resulting LEADER robots. This is repeated with new random errors for a
given number of tries, similar to a Monte-Carlo approach.

Once a robot believes the election process can succeed, it chooses the LEADER as in the
original algorithm. Otherwise, it picks a random direction and distance, and performs a MOVE

to "scramble" the network. This process repeats until all robots believe the election can succeed.
This process is detailed in Algorithm 5.2.

Algorithm 5.2 Reliable Leader Election algorithm

L = sel f .COMPUTE(′LeaderElection′)
my_network = sel f .snapshot ∪ sel f
counter = 0
while counter < nb_tries do

for r1 in my_network do
rv = r1
Change rv.x and rv.y randomly according to error parameters
rv.snapshot = my_network/{r1}
for r2 in rv.snapshot do

Change r2.x and r2.y randomly according to error parameters
Lv = rv.COMPUTE(′LeaderElection′)
if L 6= Lv

Move randomly
Exit

counter += 1
L is elected LEADER

We now perform simulations using this algorithm. Each point is sorted according to the follow-
ing:
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• If no robot detects a possible error, it is a valid point.

• If at least one robot has detected a possible error, and decided to move as a result, it is a
detected possible error point.

• If no robot moves, but two robots have different LEADER robots, it is an undetected error
point.

We measure the proportion of undetected error and possible error points for nbtries between
0 and 30. Results are presented in Figure 9.

Figure 9 – Performance of the Error-Resilient Election Algorithm
err = 0.001

Note that the number of undetected error points, while decreasing, does not reach zero under
our testing conditions. Also, using a single internal simulation typically results in a ∼ 80%
reduction in the number of undetected error points. Using 10 internal simulations resulted in
a reduction of 99.5% of undetected error points. Which number of internal simulations is the
best suited would depend on both the speed of the leader election process and reliability of the
obtained solution requirements.

Importantly, we notice that, were we to choose an error model and error bounds such that
it models the possible errors of representing real numbers using limited precision floats, then
this particular algorithm, when used with an infinitely large, similar to R2 number of random
tries, can be made to reliably detect anomalies due to the errors induced by evolving in the
continuous plane, yet only perceiving a discretized plane. Actually, me make the conjecture
that this algorithm can be adapted to allow any algorithm that makes decisions based on robot
locations to operate properly in a perceived discretized plane.
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Furthermore, using this algorithm allows us to reduce the size of a snapshot to a finite,
storable amount to realistically use the SyncSim protocol [17], and fully simulate the FSYNC
scheduler in LUMINOUS ASYNC.

6 Conclusion

In this paper, we introduce a modular framework designed to simulate mobile robots for any
given setting.

We discuss the limitations and constraints of this approach, and use it to compute the max-
imum distance traveled, or fuel efficiency, of multiple algorithms in several settings, with in-
teresting results. In particular, we note that the algorithm by Izumi et al. [33] can lead to an
unbounded increase in distance before eventually gathering. Similarly, the center of gravity al-
gorithm is inherently sub-optimal for n > 2 robots, and robots should use an algorithm based on
the geometric median instead.

We then use this framework to simulate inaccurate sensors for mobile robots and verify the
behavior of Convergence and motion based Leader Election under this new model. We also
introduce errors in the perception of colors for LUMINOUS robots performing state-of-the-
art two-robot Gathering.

Finally, we designed two new algorithms. The first one is designed to perform two-robot
Convergence under the ASYNC scheduler with optimal fuel efficiency. The second algorithm
uses the simulator itself to allow robots to solve motion based Leader Election with inaccu-
rate sensors. The latter can be adapted to allow for decision making algorithm, such as Leader
Election, to function using discretized snapshots, and so, to use the SyncSim protocol to simu-
late the FSYNC scheduler in LUMINOUS ASYNC.

Overall, this framework achieves its planned objective of being both easy to use and able to
produce useful results for researchers. As a test, we timed the full implementation, and testing
in FSYNC, SSYNC and ASYNC, of the two color Rendezvous algorithm from Viglietta to
require less than half an hour, including basic network monitoring and testing.

The source code and instructions for our simulator are provided in the appendix and at the
following repository: https://github.com/UberPanda/PyBlot-Sim

Future Work

As we already discussed, our simulator is modular to allow for use for any given algorithm and
model. So it seems logical that it should, ideally, implement every existing model and test all
major algorithms in the literature, such as mutual visibility for opaque robots.

Furthermore, while interesting for researchers, our simulator is not a tool for formal proofs.
However, one could also argue that in its current state, we have not proven that the simulator
actually simulates mobile robots, even within our degraded hypotheses. We believe that the
simulator itself should be formally proven to match the model of mobile robots it claims to
simulate. Note that the usefulness of this proof would be limited, as the addition of any new
module may require proving the entire simulator again.

Finally, our Leader Election algorithm for errors in vision is able to function in a contin-
uous setting using discretized snapshots. The design philosophy behind this algorithm of using
randomized tries to simulate sensor errors is not specific to the Leader Election problem, and
it could be used for other algorithms that rely on making decisions based on the locations of
robots in the network and that are sensitive to errors in perception. Building new algorithms
that can use these finite snapshots allows us to use the SyncSim protocol [17] and simulate a
FSYNC scheduler in LUMINOUS ASYNC and would be a major advantage for resilience to
asynchrony.
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A Appendix: example of an Instance of the Simulator

We present a minimum working example of an instance of the simulator. It simulates executions
of the Vig2 algorithm [42] in the standardOBLOT model with rigid motion, under the FSYNC
scheduler. It monitors the number of cycles needed to complete degraded gathering8. Results
predictably show the possible need of two full cycles in the case where both robots start in the
BLACK color. For better readability, more advanced features of the simulator are not included.

Listing 1 – Robot Class File: Common/lib_robot.py
import Common.lib_algorithms as lib_algos

class Robot:
def __init__(self, name, x, y, color=0):

self.name = name
self.x = x ## Real position in the network
self.y = y

self.phase = ’WAITING’

# Available info for COMPUTE :

self.snapshot = [] ## snapshot
self.color = color ## color
self.target = ()

def LOOK(self,network,scheduler):
self.snapshot = []
for R2 in network:

if self != R2:
R2x = R2.x
R2y = R2.y
self.snapshot.append(Robot(R2.name, R2x, R2y, R2.color))

self.phase = ’COMPUTING’

def COMPUTE(self,algo):
try:

result = getattr(lib_algos, algo)(self)
except:

raise AttributeError(’This algorithm does not exist in the current version (or you
↪→ made a typo ?)’)

return result

def MOVE(self):

self.x = self.target[0]
self.y = self.target[1]

self.target = ()
self.phase = ’WAITING’

Listing 2 – Miscellaneous Functions File: Common/lib_misc_functions.py
from math import sqrt

8i.e. robots are closer than 10−10 with the initial distance being 1.
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def rob_dist(R1,R2): # Using Robots
return dist((R1.x,R1.y),(R2.x,R2.y))

def dist(T1,T2): # USing Tuples
return sqrt((T1[0] - T2[0])**2+(T1[1] - T2[1])**2)

Listing 3 – Algorithms File: Common/lib_algorithms.py

def vig2(R1):
R2 = R1.snapshot[0]
if R1.color == 0:

if R2.color == 0:
R1.target = ((R1.x+R2.x)/2, (R1.y+R2.y)/2)
R1.color = 1
R1.phase = ’MOVING’

else:
R1.target = (R2.x, R2.y)
R1.phase = ’MOVING’

else:
R1.phase = ’WAITING’
if R2.color == 1:

R1.color = 0

Listing 4 – Scheduler File: Common/lib_schedulers.py

def scheduler(sched,network,algo):

if sched == ’FSYNC’:
for R1 in network:

R1.LOOK(network,’FSYNC’)
for R1 in network:

R1.COMPUTE(algo)
for R1 in network:

if R1.phase == ’MOVING’:
R1.MOVE()

else:
raise Exception(’Unknown Scheduler’)

Listing 5 – Simulation Functions File: Common/lib_sim_functions.py
# None Needed for this Example

Listing 6 – Simulation File: Vig2.py
from random import SystemRandom, choice, uniform
from math import sqrt, pi, cos, sin
from Common.lib_robot import Robot
from Common.lib_schedulers import scheduler
from Common.lib_misc_functions import rob_dist

_sysrand = SystemRandom()

######################################################

SSTAB = True
COLOR_RANGE = range(2) # Total number of colors.

######################################################
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simus = 0
act_list = []

while simus < 1000000:
simus += 1

# Network initialization

network = []
network.append(Robot(’r1’,0,0,0))

ang = uniform(-pi,pi)
network.append(Robot(’r2’,cos(ang),sin(ang),0))

for R1 in network:
if SSTAB == True:

R1.color = choice(COLOR_RANGE)

## Beginning of the simulation

steps = 0
while True:

scheduler(’FSYNC’,network,’vig2’)

## Live state monitoring

steps += 1

## Victory condition

if rob_dist(network[0],network[1]) < 10**(-10):
break

## Defeat condition

act_list.append(steps)

print(’FSYNC R Vig2’)
print(’Min : ’ + str(min(act_list)))
print(’Max : ’ + str(max(act_list)))
print(’Avg : ’ + str(sum(act_list) / len(act_list)))
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B Appendix: leader Election for 4 Robots

Figures 10 through 15 show the result of attempting to elect a GEOLEADER using algorithm
B.1 by Canepa and Gradinariu Potop-Butucaru [10], which should fail whenever two robots are
identically close to the center of the smallest enclosing circle. However, as we have shown, such
cases are statistically impossible with perfect sensors and simply become a small subset of the
error points of error-prone sensors.

Algorithm B.1 Original Leader Election Algorithm by Canepa and Gradinariu Potop-
Butucaru [10] for Four or More Robots

Compute the smallest enclosing circle SEC
Compute the distance dk to the center of SEC, for all robots 1≤ k ≤ n
if dmysel f < dk∀k 6= mysel f , where 1≤ k ≤ n

Become LEADER
Exit

if dmysel f ≤ dk∀k 6= mysel f , where 1≤ k ≤ n

Perform a Bernoulli trial with a probability of winning of p =
1
n

if Trial won
move a distance of dmysel f · p towards the center of the SEC

Robots r1 and r2 are fixed at coordinate (−0.5,0) and (0.5,0), respectively. Robot r3 has a
fixed location for each image, on a grid in the lower left quarter of the image. Symmetries of
the network allow us to extrapolate results for the remainder of the positions of r3. The position
of r4 is chosen at uniformly at random, and each point show the result for a given position. The
error is absolute with err = 0.001.

As before, colors red, green, and blue denote that robot r1, r2 and r3 are the chosen
GEOLEADER, respectively. Color cyan denotes that robot r4 is the chosen GEOLEADER, and
yellow denotes that two different GEOLEADER robots have been elected due to sensor error.
Similarly to previous simulations, each image contains one million points.

As can be seen from the following figures, computing precisely the bounds of the error zone
is extremely complex in practice, as the formula would be different and more complex as the
network size grows.
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Figure 11
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Figure 12
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Figure 13
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Figure 14
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Figure 15
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