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Adapt or perish: Evolutionary rescue in a gradually deteriorating environment

We investigate the evolutionary rescue of a microbial population in a gradually deteriorating environment, through a combination of analytical calculations and stochastic simulations. We consider a population destined for extinction in the absence of mutants, which can only survive if mutants sufficiently adapted to the new environment arise and fix. We show that mutants that appear later during the environment deterioration have a higher probability to fix. The rescue probability of the population increases with a sigmoidal shape when the product of the carrying capacity and of the mutation probability increases. Furthermore, we find that rescue becomes more likely for smaller population sizes and/or mutation probabilities if the environment degradation is slower, which illustrates the key impact of the rapidity of environment degradation on the fate of a population. We also show that our main conclusions are robust across various types of adaptive mutants, including specialist and generalist ones, as well as mutants modeling antimicrobial resistance evolution. We further express the average time of appearance of the mutants that do rescue the population and the average extinction time of those that do not. Our methods can be applied to other situations with continuously variable fitnesses and population sizes, and our analytical predictions are valid in the weak-to-moderate mutation regime.

Introduction

Understanding how a population of living organisms can survive in a gradually deteriorating environment is a fundamental question in evolution [START_REF] Waxman | A Unified Treatment of the Probability of Fixation when Population Size and the Strength of Selection Change Over Time[END_REF][START_REF] Uecker | On the Fixation Process of a Beneficial Mutation in a Variable Environment[END_REF][START_REF] Peischl | Establishment of New Mutations in Changing Environments[END_REF], which is particularly relevant in the pressing context of climate change [START_REF] Bell | Evolutionary rescue can prevent extinction following environmental change[END_REF][START_REF] Chevin | Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory[END_REF][START_REF] Pauls | The impact of global climate change on genetic diversity within populations and species[END_REF][START_REF] Botero | Evolutionary tipping points in the capacity to adapt to environmental change[END_REF][START_REF] Nadeau | Climates Past, Present, and Yet-to-Come Shape Climate Change Vulnerabilities[END_REF]. Addressing this question is also important in order to understand antimicrobial resistance evolution, which often occurs in a variable environment, as antimicrobial is added to a medium or given to a patient [START_REF] Lin | Complex Interplay of Physiology and Selection in the Emergence of Antibiotic Resistance[END_REF][START_REF] Levin-Reisman | Antibiotic tolerance facilitates the evolution of resistance[END_REF]. In fact, even when antimicrobial is added instantaneously, yielding an abrupt environment switch, the resulting fitness decrease is gradual [START_REF] Lin | Complex Interplay of Physiology and Selection in the Emergence of Antibiotic Resistance[END_REF]. In a deteriorating environment, the fitness of wild-type organisms decreases with time. In the simple case of asexual microorganisms, their division rate can then become smaller than their death rate, which yields a decrease of population size, eventually leading to extinction [START_REF] Coates | Antibiotic-induced population fluctuations and stochastic clearance of bacteria[END_REF]. However, the population can be rescued by a mutation which is better adapted to the new environment, and restores positive population growth (or several such mutations): this phenomenon is called evolutionary rescue [START_REF] Martin | The probability of evolutionary rescue: towards a quantitative comparison between theory and evolution experiments[END_REF][START_REF] Gonzalez | Evolutionary rescue: an emerging focus at the intersection between ecology and evolution[END_REF][START_REF] Alexander | Evolutionary rescue: linking theory for conservation and medicine[END_REF][START_REF] Carlson | Evolutionary rescue in a changing world[END_REF][START_REF] Barton | Establishment in a new habitat by polygenic adaptation[END_REF].

A gradually deteriorating environment impacts the population size and the fitness of the wild-type organism, which can both strongly impact the fate of a mutation [START_REF] Uecker | On the Fixation Process of a Beneficial Mutation in a Variable Environment[END_REF]. The decay of the wild-type population simultaneously entails a decreased frequency of mutant appearance, which can hinder rescue, and a decreased competition for existing mutants, known as competitive release [START_REF] Wargo | Competitive release and facilitation of drugresistant parasites after therapeutic chemotherapy in a rodent malaria model[END_REF][START_REF] Kouyos | The path of least resistance: aggressive or moderate treatment?[END_REF], which can facilitate rescue. Studying the evolutionary rescue of a population in a gradually deteriorating environment requires accounting for simultaneous continuous time variations of fitness, population size and population composition, which makes it complex. Varying patterns of selection have recently been the focus of significant interest, mainly in the case of switches between different environment states, highlighting their strong effect on evolution [START_REF] Kussell | Polymer-population mapping and localization in the space of phenotypes[END_REF][START_REF] Mustonen | Molecular evolution under fitness fluctuations[END_REF][START_REF] Rivoire | The Value of Information for Populations in Varying Environments[END_REF][START_REF] Melbinger | The Impact of Environmental Fluctuations on Evolutionary Fitness Functions[END_REF][START_REF] Cvijović | Fate of a mutation in a fluctuating environment[END_REF][START_REF] Skanata | Evolutionary Phase Transitions in Random Environments[END_REF][START_REF] Hufton | Intrinsic noise in systems with switching environments[END_REF][START_REF] Wienand | Evolution of a fluctuating population in a randomly switching environment[END_REF][START_REF] Mayer | Transitions in optimal adaptive strategies for populations in fluctuating environments[END_REF][START_REF] Meyer | Noise-induced stabilization and fixation in fluctuating environment[END_REF][START_REF] Danino | Stability of two-species communities: Drift, environmental stochasticity, storage effect and selection[END_REF][START_REF] Marrec | Quantifying the impact of a periodic presence of antimicrobial on resistance evolution in a homogeneous microbial population of fixed size[END_REF][START_REF] Trubenová | Surfing on the seascape: Adaptation in a changing environment[END_REF][START_REF] Marrec | Resist or perish: fate of a microbial population subjected to a periodic presence of antimicrobial[END_REF]. Despite its practical relevance, the case of a fitness varying continuously over time for a given genotype has been comparatively less studied, with a focus on stabilizing selection [START_REF] Alexander | Evolutionary rescue: linking theory for conservation and medicine[END_REF][START_REF] Burger | Evolution and extinction in a changing environment[END_REF][START_REF] Gomulkiewicz | Demographic and genetic constraints on evolution[END_REF][START_REF] Kopp | Adaptation of a quantitative trait to a moving optimum[END_REF][START_REF] Kopp | The genetic basis of phenotypic adaptation I: fixation of beneficial mutations in the moving optimum model[END_REF][START_REF] Kopp | The genetic basis of phenotypic adaptation II: the distribution of adaptive substitutions in the moving optimum model[END_REF][START_REF] Matuszewski | Fisher's geometric model with a moving optimum[END_REF] or on the fate of a single beneficial mutation [START_REF] Waxman | A Unified Treatment of the Probability of Fixation when Population Size and the Strength of Selection Change Over Time[END_REF][START_REF] Uecker | On the Fixation Process of a Beneficial Mutation in a Variable Environment[END_REF][START_REF] Peischl | Establishment of New Mutations in Changing Environments[END_REF]. Furthermore, most theoretical works on evolutionary rescue consider an abrupt environment change [START_REF] Bell | Evolutionary rescue can prevent extinction following environmental change[END_REF][START_REF] Martin | The probability of evolutionary rescue: towards a quantitative comparison between theory and evolution experiments[END_REF][START_REF] Orr | Population extinction and the genetics of adaptation[END_REF][START_REF] Anciaux | Evolutionary Rescue over a Fitness Landscape[END_REF]. Here we address evolutionary rescue in a gradually changing environment, which deteriorates from the point of view of wild-type organisms.

Adaptation to a new environment can occur in multiple ways. A specialist mutant that is particularly welladapted to this new environment can emerge, e.g. a thermophilic mutant in the case of a temperature rise. Another possibility is the appearance of a generalist mutant, which is able to grow in both the initial and the final environments, while being less fit than specialists in their respective favorite environments [START_REF] Mayer | Transitions in optimal adaptive strategies for populations in fluctuating environments[END_REF][START_REF] Donaldson-Matasci | Phenotypic diversity as an adaptation to environmental uncertainty[END_REF][START_REF] Wang | Evolving generalists in switching rugged landscapes[END_REF][START_REF] Sachdeva | Tuning environmental timescales to evolve and maintain generalists[END_REF]]. Yet another one regards mutants that are less fit in the final environment than in the initial one, but still sufficiently fit to be able to grow in the final environment. The latter case can model the evolution of antimicrobial resistance as drug concentration is increased from zero to a value that is above the minimum inhibitory concentration of the sensitive microbes but below that of the resistant microbes [START_REF] Gullberg | Selection of resistant bacteria at very low antibiotic concentrations[END_REF][START_REF] Yu | Predicting drug resistance evolution: insights from antimicrobial peptides and antibiotics[END_REF].

In the present work, we consider a microbial population subjected to a gradual environment deterioration, such that the fitness and the size of the wild-type population are gradually decaying, and that extinction would be certain in the absence of adaptation. We study the fixation probability of generalist and specialist adaptive mutants as a function of the time when they appear during the environment deterioration, and we also consider a model of antimicrobial resistance evolution. We obtain an expression for the overall probability that the population is rescued by an adaptive mutation, thereby avoiding extinction. We investigate the dependence of the rescue probability on the rapidity of the environment deterioration, as well as on population size and mutation probability. We also compare different types of mutants. We further express the average time of appearance of the mutants that do rescue the population and the average extinction time of those that do not.

Model and methods

Population model

We consider a population of asexual microorganisms with carrying capacity K, corresponding to the maximum population size that the environment can sustain, given e.g. the nutrients available. We assume that two types of microorganisms can exist in this population: wild-type (W) and mutant (M). The division rate of each organism is assumed to be logistic [START_REF] Verhulst | Notice sur la loi que la population suit dans son accroissement[END_REF], and reads f i (t)(1 -N/K), where N represents the total population size, while the time-dependent fitness f i (t) with i = W or i = M represents the maximal possible division rate of the (wild-type or mutant) organism at time t, which would be reached if N ≪ K. The death rates of W and M organisms are respectively denoted by g W and g M . Note that (Malthusian) fitness is usually measured as the exponential growth rate at the population scale, and that fitness often refers to the overall outcome of both survival and selection: under such definitions, fitness would in fact correspond to f i (t)g i here. However, here we will not consider any variability of death rates, and thus, for the sake of simplicity, fitness will refer to f i (t) throughout. While we assume that the variability of the environment impacts fitnesses and not death rates, our approach can be easily extended to variable death rates. We further assume that W microorganisms can mutate into M microorganisms with the mutation probability µ upon each division. We do not consider back mutations. Note that because mutations occur upon division, the number of mutants appearing per unit time depends both on the population size and on the fitness of W microorganisms. Importantly, our model incorporates both variations of population size (population dynamics) and of composition (population genetics) [START_REF] Melbinger | The Impact of Environmental Fluctuations on Evolutionary Fitness Functions[END_REF][START_REF] Melbinger | Evolutionary game theory in growing populations[END_REF][START_REF] Huang | Stochastic game dynamics under demographic fluctuations[END_REF]. Throughout, we consider the fitness of W microorganisms in the initial environment as the reference fitness and set it to 1. Therefore, our time unit corresponds to the inverse of this fitness (which is the maximum division rate we consider).

We start from a microbial population composed of N W (0) = N 0 W wild-type microorganisms and no mutant. Specifically, our simulations include a phase of initial growth, which can model e.g. the development of an infection starting from the bottleneck at transmission [START_REF] Abel | Analysis of Bottlenecks in Experimental Models of Infection[END_REF]. In practice we will start our simulations with N 0 W = 10. Fig. S5 demonstrates that our results do not depend on this particular choice, since starting with N 0 W = 10 gives the same results as starting with

N 0 W = K[1 -g W /f W (0)],
which corresponds to the stationary population size in the initial environment within a deterministic description. Note however that if we started with a very small number of W microorganisms (i.e. 1 or 2), we would need to take into account rapid stochastic extinctions of the population [START_REF] Ovaskainen | Stochastic models of population extinction[END_REF]: we will not consider this regime.

Fitnesses in a deteriorating environment

To model the impact of a continuously deteriorating environment on the fitness of W microorganisms, we choose the Hill function:

f W (t) = 1 1 + (t/θ) n , ( 1 
)
where n is the Hill coefficient and θ the inflection point, such that f W (θ) = 0.5. This sigmoidal function represents a transition between two different environments, by decreasing from the reference fitness value f W (0) = 1 toward 0 as t increases, with a steepness that is tunable via n. Specifically, the decay is more abrupt manner for larger values of n (see Fig. 1A). The Hill function is quite generic in biological contexts, e.g. it is a good model for cooperative reactions, and for the pharmacodynamics of antimicrobials [START_REF] Regoes | Pharmacodynamic functions: a multiparameter approach to the design of antibiotic treatment regimens[END_REF]. Moreover, Eq. 1 allows us to recover the case of an abrupt environment change as a limiting case when n → ∞. Because it is n that sets the timescale of the environmental change occurring around θ, we will vary n at a fixed (and large) value of θ. Note that employing Eq. 1 implies environment changes with rates symmetric with respect to θ. But crucially, the methods presented here do not depend on the exact function chosen and can be applied to other forms of environment degradation beyond Eq. 1.

We will mainly consider two types of adaptive mutants. First, generalist mutants, denoted by G, are not impacted by gradual changes of the environment and have a constant fitness f G . We choose f G = 0.5 so that G mutants and W organisms have the same time-averaged fitness. Second, specialist mutants, denoted by S, have a fitness described by an increasing Hill function, so that they are better adapted to the final environment, in contrast to W organisms:

f S (t) = (t/θ) m 1 + (t/θ) m .
(

) 2 
We take the same point of inflection θ for W and S, as it marks the midst of the environmental transition. Conversely, we allow different Hill coefficients n and m, reflecting a different sensitivity of W and S individuals to environmental change (see Fig. 1A). Note that S mutants, G mutants and W organisms have the same time-averaged fitness over a time window that is symmetric around θ, and that G mutants are in fact S mutants with m = 0. The selection coefficient, defined as the fitness difference between mutant and wild-type (see Fig. 1A, inset), switches from negative to positive at the inflection point, more steeply when n and m are large, and with a wider range for S mutants than for G mutants. In section 2.1 of the Supporting Information, we also consider another type of mutant in order to model antimicrobial resistance evolution. We focus on the case where drug concentration is increased from zero to a value that is above the minimum inhibitory concentration of the sensitive microbes but below that of the resistant microbes [START_REF] Gullberg | Selection of resistant bacteria at very low antibiotic concentrations[END_REF][START_REF] Yu | Predicting drug resistance evolution: insights from antimicrobial peptides and antibiotics[END_REF]. Then, resistant mutants are able to grow in the final environment and rescue the population.

Methods

We present both analytical and numerical results. Our analytical results are obtained using methods from stochastic processes, especially from birth-death processes with time varying rates [START_REF] Uecker | On the Fixation Process of a Beneficial Mutation in a Variable Environment[END_REF][START_REF] Nissen-Meyer | Analysis of effects of antibiotics on bacteria by means of stochastic models[END_REF][START_REF] Bailey | The Elements of Stochastic Processes with Applications to the Natural Sciences[END_REF][START_REF] Alexander | Pre-existence and emergence of drug resistance in a generalized model of intra-host viral dynamics[END_REF][START_REF] Parzen | Stochastic processes[END_REF]. Importantly, our predictions make quite minimal assumptions and hold in the weak-to-moderate mutation regime where Kµ 1. Our simulations employ a Gillespie algorithm [START_REF] Gillespie | A general method for numerically simulating the stochastic time evolution of coupled chemical reactions[END_REF][START_REF] Gillespie | Exact stochastic simulation of coupled chemical reactions[END_REF], and incorporate all individual stochastic division, mutation and death events with the associated rates. In principle, the time variability of the division rates imposes a difficulty [START_REF] Thanh | Simulation of biochemical reactions with time-dependent rates by the rejection-based algorithm[END_REF], but the short duration of time intervals between individual events allows us to neglect rate variations between events (see Supporting Information, section 10 for details). Our model allows us to fully account for the stochasticity of mutation occurrence and establishment [START_REF] Ewens | Mathematical Population Genetics[END_REF][START_REF] Rouzine | Transition between stochastic evolution and deterministic evolution in the presence of selection: general theory and application to virology[END_REF][START_REF] Fisher | Evolutionary Dynamics[END_REF][START_REF] Patwa | The fixation probability of beneficial mutations[END_REF][START_REF] Weissman | The rate at which asexual populations cross fitness valleys[END_REF], as well as that of population extinction [START_REF] Coates | Antibiotic-induced population fluctuations and stochastic clearance of bacteria[END_REF][START_REF] Teimouri | Theoretical investigation of stochastic clearance of bacteria: first-passage analysis[END_REF][START_REF] Alexander | Stochastic bacterial population dynamics prevent the emergence of antibiotic resistance[END_REF]. Matlab implementations of our numerical simulations are freely available at https://doi.org/10.5281/zenodo.3993272.

In our analytical calculations, we will often make a deterministic approximation for the evolution of the number N W of W individuals, while the evolution of the mutant population will be described in a fully stochastic manner. Indeed, mutants are in small numbers when they appear, while they generally arise in a large population of W organisms. In the deterministic limit, N W satisfies the following ordinary differential equation:

dN W dt = f W (t) 1 - N W K -g W N W . ( 3 
)
This description is appropriate for very large N W , and Eq. 3 can be derived from the complete stochastic model in this limit (see Supporting Information, Section 8 and Refs. [START_REF] Van Kampen | Stochastic Processes in Physics and Chemistry[END_REF][START_REF] Gardiner | Handbook of Stochastic Methods for Physics[END_REF]). Fig. 1B compares the predictions from Eqs. 1 and 3 to the results of stochastic simulations (see Supporting Information Section 10.1), and demonstrates the validity of the deterministic approximation in this regime. Fig. 1b also illustrates that in the absence of mutants, the population of W individuals always goes extinct, due to the fact that fitness f W tends to 0 while death rate is nonzero (g W > 0). Moreover, the bigger the Hill coefficient n, the faster the W population goes extinct.

Results

Fixation probability of mutants: on the importance of good timing

In a deteriorating environment, mutants will have different fates depending on when they appear. Therefore, before investigating overall rescue probabilities, we address the fixation probability p fix (t 0 ) of a mutant as a function of the time t 0 when it appears during the environment deterioration. Competition with wild-type organisms is felt by mutants through their division rate f M (t){1 -[N W (t) + N M (t)]/K}. At the early stages when competition matters, i.e. when the logistic term is important, the number of mutants is small with respect to the number of wild-type microorganisms, N M (t) ≪ N W (t), and thus the division rate of mutants can be approximated by f M (t)[1 -N W (t)/K]. Furthermore, at these early stages, the number of wild-type microorganisms N W is large enough to be described in a deterministic framework (see Models and Methods, Eq. 3 and Fig. 1). We retain a full stochastic description for mutants, which are in small numbers just after the mutation arises [START_REF] Uecker | On the Fixation Process of a Beneficial Mutation in a Variable Environment[END_REF][START_REF] Alexander | Pre-existence and emergence of drug resistance in a generalized model of intra-host viral dynamics[END_REF][START_REF] Parzen | Stochastic processes[END_REF], and we introduce the probability P (i, t|1, t 0 ) of having i mutants at time t knowing that there is 1 mutant at time t 0 . The fixation probability of the mutants can then be obtained from the probability generating function φ(z, t) = ∞ i=0 z i P (i, t|1, t 0 ), which satisfies p fix (t 0 ) = 1lim t→∞ P (0, t|1, t 0 ) = 1lim t→∞ φ(0, t). Solving the partial differential equation governing the evolution of φ(z, t) (see Supporting Information, section 1) yields [START_REF] Uecker | On the Fixation Process of a Beneficial Mutation in a Variable Environment[END_REF][START_REF] Alexander | Pre-existence and emergence of drug resistance in a generalized model of intra-host viral dynamics[END_REF][START_REF] Parzen | Stochastic processes[END_REF] 

p fix (t 0 ) = 1 1 + g M ∞ t0 e ρ(t) dt , (4) 
where

ρ(t) = t t0 g M -f M (u) 1 - N W (u) K du . (5) 
Numerical integration of Eq. 4 is discussed in section 9 of the Supporting Information. Fig. 2 shows the fixation probability p fix of a mutant versus the time t 0 at which it appears during the deterioration of the environment. A very good agreement is obtained between the results of our stochastic simulations and the analytical prediction of Eq. 4. This holds both when t 0 < θ, while mutants are less fit than W organisms, and when t 0 > θ, where the opposite is true. In Fig. S4, we provide additional results for the fixation probability of generalist mutants with different fitness values f G , which thus become effectively beneficial sooner or later during the environment deterioration, illustrating that Eq. 4 holds in these various cases. , corresponding to different sensitivities to the changing environment, are considered. In both panels, markers correspond to averages over 10 4 replicate stochastic simulations ("Sim."). Dashed and solid lines correspond to numerical integrations of Eq. 4 ("Th.") for G and S mutants, respectively. Parameter values: g W = g G = g S = 0.1, K = 10 3 , N 0 W = 10 and θ = 10 3 . Vertical dotted lines: t 0 = θ. Main panels: linear scale; insets: semi-logarithmic scale. Fig. 2 shows that p fix strongly increases with t 0 : mutants appearing later in the environmental degradation are much more likely to fix. This reflects both the increasing intrinsic fitness advantage of mutants due to the environment transition, and the decreasing competition with the W population that decays as the environment deteriorates for W organisms. Note that variations of selection coefficients only, or of competition pressure only, were previously addressed [START_REF] Uecker | On the Fixation Process of a Beneficial Mutation in a Variable Environment[END_REF], and that an increase in fixation probability with mutant appearance time was described under decreasing competition [START_REF] Alexander | Pre-existence and emergence of drug resistance in a generalized model of intra-host viral dynamics[END_REF]. Fig. 2A shows that the increase of p fix is strong around the inflection point θ, and is steeper for larger Hill coefficients n characterizing the fitness decay of the wild-type organisms (see Eq. 1). Furthermore, for each value of n, sufficiently before θ, generalist (G) mutants are more likely to fix than specialist (S) mutants with m = n (see Models and Methods, Eq. 2), because then f G > f S . Conversely, S mutants are more likely to fix than G mutants sufficiently after θ because f G < f S . Note that in section 7 of the Supporting Information, we provide analytical approximations for the fixation probability with large Hill coefficients n, m → ∞. Finally, Fig. 2B shows that for t 0 > θ, p fix increases with the Hill coefficient m characterizing the steepness of the fitness transition for S mutants, and all S mutants are more likely to fix than G mutants, consistently with the fact that G mutants correspond to S mutants with m = 0 (see Eq. 2).

For large t 0 , if the W population is not extinct yet, the fixation probability p fix in Eq. 4 converges to 1g G /f G (resp. 1g S ) for G (resp. S) mutants, which is corroborated by our simulation results (see Figs. 2A andS4A). This simple limit can be interpreted as follows: mutants appearing just before the extinction of the W population face negligible competition, and thus they survive and fix unless they undergo rapid stochastic extinction [START_REF] Coates | Antibiotic-induced population fluctuations and stochastic clearance of bacteria[END_REF][START_REF] Marrec | Resist or perish: fate of a microbial population subjected to a periodic presence of antimicrobial[END_REF][START_REF] Ovaskainen | Stochastic models of population extinction[END_REF]. Note that p fix is constructed so that mutant lineages that undergo rapid stochastic extinctions are counted as not fixing in the population. Importantly, even though the fixation probability p fix at a given t 0 becomes larger as n is increased, mutants appearing just before the extinction of the W population (which occurs faster as n is increased, see Fig. 1B) have a fixation probability independent of n (see Figs. 2A andS1).

Rescue probability

So far, we investigated the fate of a given mutant lineage as a function of its appearance time during the environment degradation. Let us now address whether mutants can rescue the population or not. For a mutation probability µ at division, both the occurrence of a new mutation and its subsequent fixation probability depend on the number and division rate of W organisms. We thus consider the probability p af (t) that a mutant appears between 0 and t and fixes. The rescue probability p r corresponds to the probability that a mutant appears and fixes before the microbial population goes extinct, and is thus given by p r = lim t→∞ p af (t). Using Bayes' rule, the probability that a mutant appears between t and t+dt and fixes (which is equal to the probability that no mutant destined for fixation appeared before, and that a mutant destined for fixation then appears), denoted by dp af (t) = p af (t + dt)p af (t), can be written as:

dp af (t) = (1 -p af (t))dp naf (t) , (6) 
where (1p af (t)) is the probability that no mutant destined for fixation appeared before, while dp naf (t) is the probability that a mutant appears between t and t + dt and fixes, provided that no mutant destined for fixation appeared before. The latter can be calculated by considering that the population is fully or mostly wild-type at time t, i.e. N W (t) ≫ N M (t), which is expected to be valid in most cases, except in the strong-mutation regime Kµ ≫ 1 where multiple mutant lineages arise almost simultaneously. Then, dp naf (t) = p fix (t)dN app M (t), where

dN app M (t) = N W (t)f W (t)(1 -N W (t)/K
)µdt is the number of mutants that appear between t and t + dt in a fully wild-type population (see Fig. S6). Thus,

dp af (t) 1 -p af (t) = p fix (t)N W (t)f W (t) 1 - N W (t) K µdt . (7) 
We again take a deterministic description for N W (t) (see Eq. 3), and the fitness f W (t) of W organisms is given by Eq. 1. Then, integrating Eq. 7 with p af (0

) = 0 yields p af (t) = 1 -exp [-σ(t)], with σ(t) = µ t 0 p fix (s)N W (s)f W (s) 1 - N W (s) K ds . (8) 
Taking the limit t → ∞ then gives the rescue probability

p r = lim t→∞ p af (t) = 1 -exp (-Σ) , (9) 
where

Σ = lim t→∞ σ(t) = µ ∞ 0 p fix (t)N W (t)f W (t) 1 - N W (t) K dt . (10) 
Note that if Σ ≪ 1, Eq. 9 reduces to p r ≈ Σ, which would be obtained by neglecting possible earlier fixations. Note also that, since mutant lineages undergoing rapid stochastic extinction are counted as not fixing in p fix , they are correctly counted as not able to rescue the population. Numerical integration of Eqs. 9-10 is discussed in section 9 of the Supporting Information. Fig. 3 shows the rescue probability p r versus the mutation probability µ at each division. It demonstrates a very good agreement between our analytical prediction in Eq. 9 and results from our stochastic simulations (see Supporting Information, section 10.3). We observe a sigmoidal increase of p r as µ increases, with a transition between a small-µ regime where the population almost certainly goes extinct and a large-µ regime where it is almost certainly rescued by adaptive mutants. Fig. 3A further shows that this transition is strongly impacted by the rapidity of the environment degradation, which is modeled via the Hill coefficient n (see Eq. 1). Specifically, the faster the environment degradation, the bleaker the prospect is for the population, and the larger µ becomes necessary to allow its rescue. This is related to the rapidity of extinction of the W population in the absence of mutations: for small n, the population decay is slower, allowing a larger window of opportunity for mutants to appear and to be selected (see Fig. 1). Increasing n does not substantially affect the steepness of p r , but rather shifts the transition between small and large p r toward larger µ, because the associated faster decay of the W population mainly decreases the total number of mutants that appear (see Fig. S6), with little impact on their fixation probabilities at the end of the process (see Figs. 2A andS1). Note that our prediction in Eq. 9 is valid far beyond the weak-mutation regime Kµ ≪ 1. While our assumption that N W (t) ≫ N M (t) when the rescuing mutant arises can fail for Kµ ≫ 1, rescue is almost certain as this regime is reached. In the limit n → ∞ of an instantaneous environment degradation, discussed in detail in section 7 of the Supporting Information, the transition from large to small p r occurs for Kµ ≈ 1 (see Fig. 3A and Fig. S11A). Indeed, preexisting mutations then become necessary to population rescue, as no division occurs after the abrupt environment transition. In section 7.2 of the Supporting Information, we further show that Eq. 9 generalizes the predictions in our previous work [START_REF] Marrec | Resist or perish: fate of a microbial population subjected to a periodic presence of antimicrobial[END_REF] regarding the probability of extinction of a microbial population subjected to abrupt additions of antimicrobial, beyond the weak-mutation regime Kµ ≪ 1 (see Fig. S11B).

In Fig. 3A, we also compare G mutants and S mutants satisfying m = n (see Eq. 2) for each n, and we find that S mutants are slightly more successful at rescuing the population than G mutants unless n is very large. This is because S mutants that occur for t > θ have a larger selective advantage than G mutants and thus a larger fixation probability (see Fig. 2A). Note that for very steep environment changes, the situation reverses (see Figs. 3A andS10), because the decay of the W population is so fast that mutants occurring for t < θ are more likely to be the ones that rescue the population. Consistently, Fig. 3B further shows that specialists with a larger Hill coefficient m, such that fitness increases more steeply during the environment transition (see Eq. 2), are slightly more efficient at rescuing the population. The impact of n on the rescue probability is stronger than that of m, because n controls the rapidity of the decay of the wild-type population, which directly impacts the number of mutants that appear during this decay (see Fig. S6). Here, S mutants satisfy m = n, i.e. they have the same sensitivity to the environment as W organisms (see Eq. 2). Vertical dash-dotted line: Kµ = 1. B. Rescue probability p r by different types of mutants versus mutation probability µ upon division. A fixed Hill coefficient n = 10 characterizing the decay of f W (see Eq. 1) is chosen, but G mutants and S mutants with different Hill coefficients m (see Eq. 2) are considered. In both panels, markers correspond to averages over 10 4 replicate stochastic simulations ("Simulation"). Dashed and solid lines correspond to numerical integrations of Eq. 9 ("Theory") for G and S mutants, respectively. Parameter values: g W = g G = g S = 0.1, K = 10 3 , N 0 W = 10 and θ = 10 3 .

Apart from the detailed differences we just described, Fig. 3 demonstrates that the mutant type affects rescue probability quite little. In section 2.1 of the Supporting Information, we consider yet another mutant type, aiming to model antimicrobial resistance evolution, and we find that our results are also qualitatively robust to this variant. Overall, the key ingredients are that wild-type organisms are doomed to extinction in the absence of mutants, while mutants are fit enough in the final environment to be able to grow and rescue the population. If this holds, the detailed time evolution of mutant fitness matters little.

Time of appearance of the mutants that fix

The fixation probability of a mutant strongly depends on the time at which it appears during the environment degradation (see Fig. 2). But when do the mutants that fix and rescue the population appear? The probability density function F τ af of the time τ af of appearance of a mutant that fixes can be obtained from p af (see Eq. 7 and below) through F τ af = (1/p r )dp af /dt, where normalization is ensured by 1/p r (we focus on cases where rescue occurs). Indeed, p af (t)/p r is the cumulative distribution function of τ af . Thus,

F τ af (t) = µ p r p fix (t)N W (t)f W (t) 1 - N W (t) K exp(-Σ(t)) , (11) 
where

Σ(t) = µ t 0 p fix (u)N W (u)f W (u) 1 - N W (u) K du . (12) 
F τ af is shown in Fig. S7 for different Hill coefficients n characterizing the steepness of the environment deterioration. It illustrates that rescuing mutants tend to appear later as n is decreased, because the decay of the W population is slower in these cases. Eq. 11 allows to express the average time τ af = τ af of appearance of the mutants that fix:

τ af = ∞ 0 tF τaf (t)dt = µ p r ∞ 0 t p fix (t)N W (t)f W (t) 1 - N W (t) K exp(-Σ(t)) dt . (13) 
Fig. 4 shows the average time τ af of appearance of the mutants that fix, and demonstrates a very good agreement between our analytical prediction in Eq. 13 and the results of our stochastic simulations in the weak-to-moderate mutation regime Kµ 1. (Recall that our calculations assume that N W (t) ≫ N M (t) when the rescuing mutant appears, which can fail when Kµ is large.) Fig. 4A shows that τ af decreases as the mutation probability µ upon division is increased: this is because more mutants appear for larger µ. In addition, τ af is larger than the inflection time θ for Kµ 1, which confirms that the mutants that fix tend to be beneficial ones (see Fig. 2), and is consistent with the fact that S mutants, which are more beneficial than G mutants for t > θ, are more efficient at rescuing the population (see Fig. 3). Besides, when τ af > θ, S mutants that fix appear earlier than G mutants that fix: this is also due to their larger selective advantage, and consistently, the opposite holds for τ af < θ, when G mutants are fitter than S mutants (see Eq. 1). In addition, Fig. 4B shows that τ af decreases as the Hill coefficient n which characterizes the steepness of the environment degradation (see Eq. 1) is increased. Indeed, for large n, the population gets extinct quickly and rescue needs to occur fast if it occurs at all. While we have mainly focused on mutants that fix and rescue the population, in section 6 of the Supporting Information, we also investigate the mean time to extinction of the lineages of mutants that do not fix. This time is longest for mutants appearing close to the inflection point θ of the environment transition, which corresponds to the time when the fitness difference between W organisms and mutants is smallest. Intuitively, mutants that are strongly deleterious or beneficial have their fates sealed faster than neutral ones. Furthermore, in the framework of the Moran process (with constant population size and fitnesses), extinction times are longest for neutral mutants [START_REF] Ewens | Mathematical Population Genetics[END_REF][START_REF] Teimouri | Theoretical investigation of stochastic clearance of bacteria: first-passage analysis[END_REF][START_REF] Teimouri | Elucidating the correlations between cancer initiation times and lifetime cancer risks[END_REF]. While the time to extinction is not crucial to our study of rescue by a single mutation, it can become relevant to more complex processes involving several mutations, e.g. to the crossing of fitness valleys or plateaus [START_REF] Weissman | The rate at which asexual populations cross fitness valleys[END_REF][START_REF] Bitbol | Quantifying the role of population subdivision in evolution on rugged fitness landscapes[END_REF]. 

Impact of population size on rescue

So far, we have discussed population rescue at a given carrying capacity K. What is the impact of K on rescue? First, our analytical expression of the fixation probability p fix of mutants in Eq. 4 depends on K only via the function ρ introduced in Eq. 5. But ρ depends on the number of wild-type microbes N W (t) and on the carrying capacity K only through the ratio N W (t)/K, whose dynamics is independent from K (see Eq. 3). Therefore, p fix is expected to be independent from K. Fig. S8A confirms that it is the case: the simulation results obtained for different values of K collapse on the same curves. In addition, they are in very good agreement with the predictions from Eq. 4. Note that Eq. S13 shows that the mean extinction time of the lineages of mutants that do not fix is also independent from population size, which is confirmed by Fig. S9B.

Let us now turn to the rescue probability p r . Eqs. 9 and 10 demonstrate that p r depends on population size only via the product N W (t)µ. Therefore, the relevant parameter is Kµ. Fig. S8B confirms that p r only depends on K via Kµ: the simulation results obtained for different values of K collapse on the same curves when they are plotted as a function of Kµ, and feature a good agreement with Eq. 9. For larger K, smaller mutation probabilities per division suffice to ensure larger rescue probabilities, because more mutants appear in larger populations, but more precisely, what really matters for rescue is the value of Kµ. This finding extends previous results regarding abrupt environment change [START_REF] Martin | The probability of evolutionary rescue: towards a quantitative comparison between theory and evolution experiments[END_REF].

Finally, Eqs. 12 and 13 show that for the mean time τ af of appearance of a mutant that fixes, the relevant parameter is also Kµ. Fig. S8C confirms this: the simulation results obtained by varying µ at constant K or by varying K at constant µ collapse when they are plotted as a function of Kµ, in good agreement with Eq. 13.

Overall, the main quantities that characterize population rescue, namely the rescue probability p r and the mean time τ af of appearance of a mutant that fixes, are governed by Kµ. Hence, the impact of population size and mutation probability is mainly felt through this parameter.

Discussion

In this paper, we investigated the evolutionary rescue of a microbial population in a gradually deteriorating environment, characterized by a sigmoidal decay down to zero of the fitness of wild-type organisms, with a tunable steepness. The population is thus destined for extinction in the absence of adaptive mutants. We showed that mutants that appear later during the environment deterioration have a higher probability to fix, due to an increase of their intrinsic fitness advantage and to competitive release [START_REF] Wargo | Competitive release and facilitation of drugresistant parasites after therapeutic chemotherapy in a rodent malaria model[END_REF][START_REF] Kouyos | The path of least resistance: aggressive or moderate treatment?[END_REF]. However, the decay of the wild-type population also entails that mutants are less likely to appear at such late stages. We demonstrated that the overall rescue probability of the population increases with a sigmoidal shape as the product Kµ of the carrying capacity K and of the mutation probability µ is increased, which extends previous results regarding abrupt environment change [START_REF] Martin | The probability of evolutionary rescue: towards a quantitative comparison between theory and evolution experiments[END_REF]. In the limit of an instantaneous environment degradation, the increase of rescue probability occurs for Kµ ≈ 1, as preexisting mutations become necessary for rescue. Importantly, much smaller values of Kµ suffice for rescue if the environment degradation, and thus the population decay, are slower, consistently with previous studies on the rate of fitness decay in the regime of stabilizing selection [START_REF] Burger | Evolution and extinction in a changing environment[END_REF][START_REF] Gomulkiewicz | Demographic and genetic constraints on evolution[END_REF]. We also found that our main conclusions are robust to the exact type of mutant considered (generalist, specialist or modeling antimicrobial resistance evolution), provided that mutants are fit enough in the final environment to be able to rescue the microbial population, which is doomed to extinction in the absence of mutants. We further characterized the rescue process by investigating the average time of appearance of the mutants that do rescue the population, which also depends on the parameter Kµ, and the average extinction time of those that do not, which is longest when mutants are almost neutral.

In all cases, we provided both analytical expressions and stochastic simulation results, and obtained a very good agreement between them. Our analytical expressions were obtained with assumptions that hold in the weakto-moderate mutation regime Kµ 1, as we only required the wild-type population to be much larger than the mutant one upon the appearance of the successful mutant lineage. Our methods can be applied to other situations with continuously variable fitnesses and population sizes. Our predictions could be tested in controlled evolution experiments, e.g. in the context of antimicrobial resistance evolution, especially by varying population size and/or by studying strains with different mutation rates.

Overall, our study quantitatively confirms the key impact of the rapidity of environment degradation on the fate of a population, with fast degradation bringing the harshest prospects for population survival. This point confirms and extends previous theoretical results regarding a trait under stabilizing selection with a gradually moving optimum [START_REF] Burger | Evolution and extinction in a changing environment[END_REF], as well as experimental [START_REF] Lindsey | Evolutionary rescue from extinction is contingent on a lower rate of environmental change[END_REF] and numerical [START_REF] Wu | Dynamics of evolutionary rescue in changing environments and the emergence of antibiotic resistance[END_REF] results in the context of antibiotic resistance. Very large populations can almost always escape extinction because they have a wide range of existing mutants, while smaller ones (or rarely mutating ones, since what matters is Kµ) can be rescued by adaptive mutations only if the environment changes slowly enough. The case of not-too-large populations is practically very important because real populations tend to have complex structures [START_REF] Van Marle | Compartmentalization of the gut viral reservoir in HIV-1 infected patients[END_REF], and competition is local, which decreases their effective size, at least on timescales shorter than those of large-scale migrations and/or mixing. Accordingly, an exciting extension would be to consider the impact of spatial structure [START_REF] Bitbol | Quantifying the role of population subdivision in evolution on rugged fitness landscapes[END_REF][START_REF] Nahum | A tortoise-hare pattern seen in adapting structured and unstructured populations suggests a rugged fitness landscape in bacteria[END_REF][START_REF] Cooper | Tipping the mutation-selection balance: Limited migration increases the frequency of deleterious mutants[END_REF] on evolutionary rescue [START_REF] Uecker | Evolutionary rescue in structured populations[END_REF][START_REF] Czuppon | The effect of habitat choice on evolutionary rescue in subdivided populations[END_REF] in a gradually deteriorating environment. In cases where one aims to avoid rescue, our results entail that environment changes should be made as fast as possible. For instance, in order to avoid antimicrobial resistance evolution, gradually increasing doses of antimicrobial should be avoided. In addition, our results on the fixation probability of mutants and on the mean time of appearance of mutants that fix could be exploited in evolution experiments, e.g. to t mutagen use to potentially favor the appearance of rescue mutants. The average time to extinction of mutants that do not fix can also matter in practice, as another environment change occurring within this time after their appearance might rescue them. Importantly, here, we have considered rescue by a single mutation. However, more adaptations can be accessible in several mutation steps, and thus, considering rescue in a gradually deteriorating environment in the presence of fitness valleys [START_REF] Weissman | The rate at which asexual populations cross fitness valleys[END_REF][START_REF] Weinreich | Rapid evolutionary escape in large populations from local peaks on the Wrightian fitness landscape[END_REF] or on more complete fitness landscapes [START_REF] Poelwijk | Empirical fitness landscapes reveal accessible evolutionary paths[END_REF][START_REF] Szendro | Quantitative analyses of empirical fitness landscapes[END_REF] would also be very interesting from a theoretical point of view. Studying the interplay between time variability of the environment and spatial heterogeneities would also be interesting in this context, given that static antimicrobial gradients can favor resistance evolution [START_REF] Zhang | Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments[END_REF][START_REF] Greulich | Mutational pathway determines whether drug gradients accelerate evolution of drug-resistant cells[END_REF][START_REF] Hermsen | On the rapidity of antibiotic resistance evolution facilitated by a concentration gradient[END_REF][START_REF] Baym | Spatiotemporal microbial evolution on antibiotic landscapes[END_REF], in particular by stepwise accumulation of several mutations.

Fixation probability of mutants 1.Derivation

Here, we present the derivation of the fixation probability p fix (i 0 , t 0 ) of i 0 mutants present at time t 0 [START_REF] Uecker | On the Fixation Process of a Beneficial Mutation in a Variable Environment[END_REF][START_REF] Alexander | Pre-existence and emergence of drug resistance in a generalized model of intra-host viral dynamics[END_REF][START_REF] Parzen | Stochastic processes[END_REF], along similar lines as in [START_REF] Uecker | On the Fixation Process of a Beneficial Mutation in a Variable Environment[END_REF]. We assume that the number of wild-type microorganisms is initially much larger than the number of mutants (N W (t 0 ) ≫ i 0 ). As explained in the main text, the selective pressure due to the competition with the wild-type is felt by the mutants through their division rate f M (t)[1 -N (t)/K], and in the initial phase where this competition is important, the total population size N(t) can be approximated by N (t) ≈ N W (t). Thus, competition is felt through the effective mutant fitness

f eff M (t) = f M (t)[1 -N W (t)/K].
In addition, we treat the number of mutants stochastically, but the number N W (t) of wild-type organisms deterministically (see Eq. 3 and Fig. 1).

The master equation that describes the evolution of the probability P (i, t|i 0 , t 0 ) of having i mutants at time t knowing that there are i 0 mutants at time t 0 is given by:

∂P (i, t|i 0 , t 0 ) ∂t = f eff M (t)(i -1)P (i -1, t|i 0 , t 0 ) + g M (i + 1)P (i + 1, t|i 0 , t 0 ) -(f eff M (t) + g M )iP (i, t|i 0 , t 0 ) . (S1)
Eq. S1 allows to establish the partial differential equation satisfied by the probability generating function φ i0,t0 (z, t) = +∞ i=0 z i P (i, t|i 0 , t 0 ):

∂φ i0,t0 ∂t = (z -1)(f eff M (t)z -g M ) ∂φ i0,t0 ∂z . ( S2 
)
The method of characteristics then yields [START_REF] Parzen | Stochastic processes[END_REF][START_REF] Kendall | On the Generalized "Birth-and-Death" Process[END_REF]:

φ i0,t0 (z, t) = 1 + e ρ(t) z -1 - t t0 f eff M (u)e ρ(u) du -1 i0 , (S3) 
where:

ρ(t) = t t0 (g M -f eff M (u))du . (S4)
Note that ρ depends on the number of wild-type microbes N W (t) and on the carrying capacity K only through the ratio N W (t)/K, whose dynamics is system size-independent, i.e. independent from K (see Eq. 3). The probability generating function φ i0,t0 allows to calculate the fixation probability p fix (i 0 , t 0 ) of i 0 mutants present at time t 0 , through p fix (i 0 , t 0 ) = 1lim t→∞ P (0, t|i 0 , t 0 ) = 1lim t→∞ φ i0,t0 (0, t). This yields

p fix (i 0 , t 0 ) = 1 - g M ∞ t0 e ρ(t) dt 1 + g M ∞ t0 e ρ(t) dt i0 , (S5) 
where we used:

t t0 (g M -f eff M (u))e ρ(u) du = e ρ(t) -1 . (S6)
Since ρ does not depend on the carrying capacity K, as noted above, this is also true for p fix (see Fig. S8A).

In the main text, we focus on the fixation probability of a single mutant that appears at time t 0 , and denote it as p fix (t 0 ) = p fix (1, t 0 ) (see Eq. 4, which corresponds to Eq. S5 with i 0 = 1).

Additional results

Fig. S1 shows the same data as in Fig. 2A for the fixation probability p fix of G and S mutants versus their time of appearance t 0 in the deteriorating environment. However, here, t 0 is rescaled by the average extinction time τ W of the wild-type population in the absence of mutation (see Fig. 1). This rescaling illustrates the convergence of p fix toward asymptotes independent of n as τ W is approached. These asymptotes correspond to the extinction probabilities of mutants that exist in the absence of competition: mutants fix unless their lineage undergoes rapid stochastic extinction. 

Application to different types of mutants 2.1 Antimicrobial resistance evolution

An important application of the study of evolutionary rescue regards antimicrobial resistance evolution, where rescue of the microbial population corresponds to the fixation of resistance. In line with our model comprising two types of individuals, let us consider sensitive wild type microbes W, and resistant mutants M. Furthermore, because we consider variable fitnesses and constant death rates (as throughout this work), we here model the effect of biostatic antimicrobials, and not biocidal ones. However, our model could easily be extended to the biocidal case. Let us assume that the concentration of antimicrobial gradually increases from 0 to some value which is above the minimum inhibitory concentration (MIC) of the sensitive strain but below the MIC of the resistant strain. Then, appearance and fixation of resistant mutants is necessary for the microbial population to be rescued. Let us model the fitness of resistant mutants M by

f M (t) = f 0 M -f ∞ M 1 + (t/θ ′ ) n + f ∞ M , (S7) 
which is equal to f 0 M for t = 0 and tends to f ∞ M for t → ∞ (see Fig. S2). Because antimicrobial resistance often comes with a fitness cost in the absence of drug [START_REF] Borman | Resistance of human immunodeficiency virus type 1 to protease inhibitors: selection of resistance mutations in the presence and absence of the drug[END_REF][START_REF] Andersson | Antibiotic resistance and its cost: is it possible to reverse resistance?[END_REF][START_REF] Zur Wiesch | Population biological principles of drug-resistance evolution in infectious diseases[END_REF], we will consider f 0 M < 1. Since the final concentration is assumed to be above the mutant MIC, we have f ∞ M > g M , which ensures that a resistant population does not go extinct deterministically in the final environment. We further allow for the inflection point θ ′ to be different from that of f W , which is θ (see Eq. 1), so that θ ′ > θ may reflect the fact that M is less sensitive to the environment change than W. Indeed, compared to that of sensitive microorganisms, the dose-response curve of resistant microorganisms is usually shifted towards higher drug concentrations [START_REF] Gullberg | Selection of resistant bacteria at very low antibiotic concentrations[END_REF][START_REF] Yu | Predicting drug resistance evolution: insights from antimicrobial peptides and antibiotics[END_REF]. Note that the functional forms taken for f W and f M (see Eqs. 1 and S7) are realistic e.g. in the case of a linear drug concentration increase with time, given the usual pharmacodynamics of antibiotics [START_REF] Regoes | Pharmacodynamic functions: a multiparameter approach to the design of antibiotic treatment regimens[END_REF]. Fig. S3 shows the results obtained for rescue within this model, and a comparison to the generalist (G) mutant with f G = 0.5 studied in the main text. The agreement between our numerical simulations and our analytical predictions is very good. Larger values of θ ′ or of f ∞ M increase the mutant fixation probability p fix and the rescue probability p r , consistently with the fact that they lead to higher mutant fitnesses. Despite minor quantitative differences associated to these parameter values, the rescue probability behaves qualitatively in the same way in this model as with the generalist mutant and as with the specialist mutant studied in the main text. This illustrates the generality of our findings with respect to the exact mutant fitness form, as long as the mutant is able to grow in the new environment and rescue the population. 

Additional results for various generalist mutants

In the main text, we consider generalist (G) mutants with fitness f G = 0.5, corresponding to the case of specialist (S) mutants with m = 0 (see Eq. 2). Fig. S4 shows results obtained for various values of f G that satisfy f G > g G , ensuring that the mutant can grow and rescue the population. Mutant fixation and rescue are more difficult for smaller values of f G , but the overall behavior remains similar and is well described by our analytical predictions. 
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Sim. 3 Robustness of the results to different initial conditions

In Fig. S5, we show that our results are robust to varying N 0 W as long as it is not very small, since starting with N 0 W = 10 (as is done throughout) gives the same results as starting with N 0 W = K[1g W /f W (0)] = 0.9K, which corresponds to the stationary population size in the initial environment within a deterministic description (see Eq. 3). 

N W 0 =10 N W 0 =0.9K G S N W 0 =10 N W 0 =0.9K G S Fig S5.
Impact of the initial number N 0 W of wild-type organisms on rescue. A. Fixation probability p fix of G and S mutants versus their time of appearance t 0 in the deteriorating environment, for N 0 W = 10 and N 0 W = 0.9K. Vertical dotted line: t 0 = θ. B. Rescue probability p r of different types of mutants versus the mutation probability µ upon division, for N 0 W = 10 and N 0 W = 0.9K. G mutants and S mutants are considered. C. Mean time τ af of appearance of a G or S mutant that fixes versus µ, for N 0 W = 10 and N 0 W = 0.9K. Horizontal dotted line: τ af = θ. Vertical dash-dotted line: Kµ = 1. In all panels, the Hill coefficient characterizing the steepness of the environment deterioration (see Eq. 1) is n = 5. Furthermore, S mutants satisfy m = n, i.e. they have the same sensitivity to the environment as W organisms (see Eq. 2). Markers correspond to averages over 10 3 -10 4 replicate stochastic simulations. Dashed and solid lines correspond to our analytical predictions for G and S mutants, respectively. Parameter values: g W = g G = g S = 0.1, K = 10 3 and θ = 10 3 .

4 Additional results regarding the appearance of mutants 
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Appearance of mutants. A. Average number N app M of mutant appearance events that can occur between times 0 and t, plotted versus time t, for different Hill coefficients n characterizing the steepness of the environment deterioration. Vertical dotted line: t = θ. Markers correspond to averages over 10 4 replicate stochastic simulations ("Simulation"), where mutants that appear are replaced immediately by wild-type organisms to avoid any mutant fixation events and count all potential mutant appearance events. Solid lines correspond to numerical integrations of

N app M (t) = ∞ 0 N W (t)f W (t)(1 -N W (t)/K
)µdt ("Theory"), which corresponds to the number of mutants that appear, assuming that N M (t) ≪ N W (t) when they appear (see main text above Eq. 7). B. Same data, rescaled by the average extinction time τ W of the wild-type population in the absence of mutation. Vertical dotted lines: t = θ. Parameter values: g W = 0.1, K = 10 3 , θ = 10 3 , µ = 10 -5 and N 0 W = 10. Data is shown for t < τ W .

5 Results for the impact of population size on rescue 

Analytical approximations for a sudden environment degradation

Here, we derive analytical approximations for the fixation probability p fix , the probability p r of rescue and the mean time τ af of appearance of a mutant that fixes in the case of a sudden environment degradation. We thus consider that the Hill coefficient n describing the decay of W fitness f W tends to infinity (see Eq. 1), as well as m, which describes the increase of S mutant fitness f S (see Eq. 2), i.e. n, m → ∞. Then, the fitness transition around t = θ is very abrupt, and we therefore consider that f W = 1 and f S = 0 if t < θ while f W = 0 and f S = 1 if t > θ.

As soon as f W = 0, i.e. for t > θ, W microbes stop dividing. In a deterministic description, their number decreases exponentially according to the function N W (t) = N e W e -gW (t-θ) , where N e W = K(1-g W ) is the equilibrium size of the fully wild-type population if f W = 1, i.e. for t < θ. For analytical convenience, we make the approximation that N W (t) = N e W if t < θ + τ 1/2 and N W (t) = 0 otherwise, where τ 1/2 is the time such that N W (τ 1/2 ) = K/2 (i.e. τ 1/2 = ln(2N e W /K)/g W ). While the exact choice of θ + τ 1/2 as a threshold is somewhat arbitrary, it is important to choose a threshold that reflects the decay timescale of the W population. Indeed, it allows to effectively take into account the demographic pressure that mutants undergo because of the presence of W organisms during the decline of the W population. Considering a threshold θ instead of θ + τ 1/2 would lead one to underestimate the demographic pressure on mutants and thus to overestimate their fixation probability. Conversely, considering a threshold θ + τ 0 , where τ 0 is the mean time of W population extinction when W microbes no longer divide, would lead one to overestimate the demographic pressure on mutants and thus to underestimate their fixation probability.

Fixation probability

Generalist mutant

Let us first focus on the fixation probability p G fix (t 0 ) of a single generalist (G) mutant that appears at time t 0 . Recall that the fitness of G mutants is constant. In most of our work, we take f G = 0.5, but here, for the sake of generality, we will retain f G in our expressions, assuming that f G > g G . Within our approximation, the fate of a mutant will strongly depend on whether t 0 < θ = θ + τ 1/2 or t 0 > θ. We start from Eq. 4, which reads

p G fix (t 0 ) = 1 1 + g G ∞ t0 e ρG(t) dt . ( S14 
)
If t 0 > θ, Eq. 5 yields ρ S (t) = (g S -1)(tt 0 ) . (S25) Thus, Eq. S20 simplifies as:

p S fix (t 0 ) = 1 -g S . (S26)
Again, this is the probability that the mutant lineage escapes rapid stochastic extinctions, in the absence of any competition.

Let us summarize Eqs. S22, S24 and S26: Fig. S10 shows that Eqs. S19 and S27 provide good approximations in the appropriate regimes, i.e. for t 0 substantially smaller or larger than θ. (Our approximation that the decay of the W population occurs instantaneously is least valid when t 0 is close to θ.)

p S fix (t 0 ) =        e -g S (θ-t 0 ) (1-gS ) 1+gS (1-gS )( θ-θ) if t 0 < θ , 1-gS 1+gS (1-gS )( θ-t0) if θ < t 0 < θ , 1 -g S if θ < t 0 . ( 

Rescue probability

Now, let us focus on the rescue probability p r , which satisfies p r = 1e -Σ (see Eq. 9), where Σ is given by Eq. 10. Since here f W (t) = 0 for t > θ and f W (t) = 1 for t < θ, Eq. 10 simplifies into

Σ = µN W 1 - N W K θ 0 p fix (t)dt = µK(1 -g W )g W θ 0 p fix (t)dt , (S28) 
where we have employed N W = K(1g W ). Thus, we obtain a simplified formula for the rescue probability:

p r = 1 -exp -µK(1 -g W )g W θ 0 p fix (t)dt , (S29) 
which holds both for generalist and for specialist mutants. Specifically, in the case of a generalist mutant, Eq. S19 yields

θ 0 p G fix (t)dt = 1 f G g W log g G (1 -g W )e (gG-fGgW ) θ -g W (f G -g G ) g G (1 -g W )e (gG-fGgW ) θ -g W (f G -g G )e (gG-fGgW )θ . (S30)
And in the case of a specialist mutant, Eq. S27 gives

θ 0 p S fix (t)dt = (1 -e -gS θ )(1 -g S ) g S + g 2 S (1 -g S )( θ -θ) . (S31) 
Fig. S11A shows that there is a good agreement between our approximated analytical predictions and our numerical simulation results. Moreover, we observe that the transition between small and large values of p r occurs for µK of order 1. Indeed for abrupt environment degradations such that W fitness gets to 0 right at the transition point θ, preexisting mutants are necessary to ensure rescue.

In a previous work [START_REF] Marrec | Resist or perish: fate of a microbial population subjected to a periodic presence of antimicrobial[END_REF], we proposed an expression for the probability of extinction of a microbial population subjected to a periodic presence of antimicrobial in the weak-mutation regime Kµ ≪ 1. We then assumed that the antimicrobial was instantaneously added and removed from the environment, which thus corresponds to instantaneous environment changes. For a perfect biostatic antimicrobial that completely stops growth, wild-type fitness goes to 0 in the presence of antimicrobial, corresponding to the case studied here. When in addition the alternation period is long enough for extinction to occur at the first phase with antimicrobial if no resistant mutants preexist, our prediction in Eq. 1 of [START_REF] Marrec | Resist or perish: fate of a microbial population subjected to a periodic presence of antimicrobial[END_REF] gives a good approximation of our present results, as shown by Fig. S11B. Therefore, the present work generalizes this prediction beyond the weak-mutation regime Kµ ≪ 1. Note that in [START_REF] Marrec | Resist or perish: fate of a microbial population subjected to a periodic presence of antimicrobial[END_REF] we made the assumption Kµ ≪ 1 in particular when calculating the probability that at least one mutant be present when antimicrobial is added. Indeed, we expressed it as as the ratio of the average lifetime of a mutant lineage (destined for extinction in the initial environment) to the average time of appearance of a new mutant lineage. This assumes that at most one mutant lineage is present in the population. curves correspond to our analytical predictions in Eq. 9 for G (resp. S) mutants. Dark dashed (resp. solid) curves correspond to our approximations, corresponding to Eq. S29 with Eq. S30 (resp. Eq. S31) for G (resp. S) mutants, with τ 1/2 = 5.9. B. Rescue probability p r versus Kµ. The present results for G mutants are compared to those of our previous work [START_REF] Marrec | Resist or perish: fate of a microbial population subjected to a periodic presence of antimicrobial[END_REF] for K = 10 3 . Markers correspond to averages over 10 3 -10 4 replicate stochastic simulations. Dashed orange curve: analytical prediction in Eq. 9 for G mutants. Solid green curve: analytical prediction p r = 1p 0 with p 0 in Eq. 1 of [START_REF] Marrec | Resist or perish: fate of a microbial population subjected to a periodic presence of antimicrobial[END_REF], valid for Kµ ≪ 1. Vertical dash-dotted lines in both panels: Kµ = 1. Parameter values: g W = g G = g S = 0.1, N 0 W = 10, n = m = 10 10 , θ = 10 3 .

Appearance time of a mutant that fixes

Finally, we derive an approximated analytical prediction for the mean time of appearance τ af of a mutant that fixes in the population before it goes extinct. Let us recall that the probability density function of τaf satisfies F τaf (t) = (1/p r )(dp af /dt) (see Eq. 11 and above). Thus, for an abrupt environment degradation such that f W (t) = 0 for t > θ, the mean time of appearance τ af is given by: where we have performed an integration by parts, employed Eq. 8 (and the formula for p af (t) just above it), and used p af (θ) = p r (see Eq. 9, and recall that here, f W (t) = 0 for t > θ). Using Eq. 12 with f W = 1 and N W = K(1g W ) for t < θ, we have

τ af =
σ(t) = µKg W (1 -g W ) t 0 p fix (u)du . (S33)
Eq. S32 is valid for both generalist and specialist mutants. One just needs to compute p r by using Eq. S29 with Eq. S30 (resp. Eq. S31) for G (resp. S) mutants and p fix by using Eq. S19 (resp. Eq. S27) for G (resp. S) mutants. Fig. S12 shows that there is a very good agreement between our approximated analytical predictions and the results of our numerical simulations in the weak-to-moderate mutation regime Kµ 1 where our analytical derivations were conducted (see main text, "Rescue probability" section). Recall also that τ af only depends on K and µ via Kµ (see main text). Here, µ was varied at constant carrying capacity K = 10 3 . Horizontal dotted line: τ af = θ. Vertical dash-dotted line: Kµ = 1. Markers correspond to averages over 10 3 replicate stochastic simulations ("Simulation"). Dashed and solid lines correspond to our analytical predictions ("Theory") for G and S mutants, respectively (see Eq. S32). Parameter values: g W = g G = g S = 0.1, N 0 W = 10, m = n = 10 10 , θ = 10 3 and τ 1/2 = 5.9 and θ = 10 3 .

8 From the stochastic model to the deterministic limit

In our analytical calculations, we consider the deterministic description for the population of W organisms (see Eq.

3). Here, we present a full derivation of the deterministic limit of the stochastic model for large population sizes. This derivation is similar to those of Refs. [START_REF] Marrec | Quantifying the impact of a periodic presence of antimicrobial on resistance evolution in a homogeneous microbial population of fixed size[END_REF][START_REF] Traulsen | Coevolutionary dynamics: from finite to infinite populations[END_REF][START_REF] Traulsen | Stochastic evolutionary game dynamics[END_REF] that address the case of the Moran model. In a fully wild-type (W) population, the probability P (j, t|j 0 ) of having j W microorganisms at time t, knowing that j 0 W microorganisms were present at time t = 0, satisfies the master equation ∂P (j, t|j 0 ) ∂t = f W (t) 1 -j -1 K (j -1)P (j -1, t|j 0 ) + g W (j + 1)P (j + 1, t|j 0 )

f W (t) 1 -j K + g W jP (j, t|j 0 ) . (S34)

Let us introduce x = j/K and ρ(x, t|x 0 ) = KP (j, t|j 0 ), and perform a Kramer-Moyal expansion [START_REF] Van Kampen | Stochastic Processes in Physics and Chemistry[END_REF][START_REF] Gardiner | Handbook of Stochastic Methods for Physics[END_REF], which focuses on the regime 1/K ≪ x. To first order in 1/K, one obtains the following diffusion equation [START_REF] Ewens | Mathematical Population Genetics[END_REF] (also known as Fokker-Planck equation or Kolmogorov forward equation):

∂ρ(x, t|x 0 ) ∂t = - ∂ ∂x {[f W (t)x(1 -x) -g W x] ρ(x, t|x 0 )} + 1 2K ∂ 2 ∂x 2 {[f W (t)x(1 -x) + g W x] ρ(x, t|x 0 )} . (S35)
Note that the first term on the right hand-side of this equation corresponds to the selection term (known as the drift term in physics), while the second one corresponds to the genetic drift term (known as the diffusion term in physics).

In the limit K → ∞, to zeroth order in 1/K, one can neglect the diffusion term, yielding:

∂ρ(x, t|x 0 ) ∂t = - ∂ ∂x {[f W (t)x(1 -x) -g W x] ρ(x, t|x 0 )} . (S36)
In this limit, one obtains an equation on the average population size (scaled by K), x(t) = 1 0 xρ(x, t|x 0 )dx:

∂ x ∂t = [f W (t) -g W ] x -f W (t) x 2 . ( S37 
)
Further assuming that the distribution of x is very peaked around its mean ( x ≈ x) and in particular neglecting the variance ( x 2 ≈ x 2 ≈ x 2 ), which is acceptable for very large systems with demographic fluctuations, one 
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 1 Fig 1. Fitnesses and wild-type population in a deteriorating environment. A: Fitnesses f W , f G and f S of the wild-type organisms (W), generalist (G) and specialist (S) mutants versus time t (see Eqs. 1 and 2). Several values of the Hill coefficient n are shown for W. Inset: selection coefficient s = f Mf W for both types of mutants M = G or S versus time t, shown with n = 5 (and m = 5 for S mutants). B: Number N W of W microbes versus time t for different values of n (same colors as in A). Data points correspond to averages over 10 3 replicate stochastic simulations, and error bars (smaller than markers) represent 95% confidence intervals. Black solid curves correspond to numerical integrations of Eq. 3. Parameter values: g W = g S = g G = 0.1, K = 10 3 , N 0 W = 10, and θ = 10 3 . Vertical dotted line in both panels: t = θ.
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 2 Fig 2. Fixation probability of mutants. A. Fixation probability p fix of G and S mutants versus their time of appearance t 0 in the deteriorating environment, for different Hill coefficients n characterizing the steepness of the environment deterioration (see Eq. 1). Here, S mutants satisfy m = n, i.e. they have the same sensitivity to the environment as W organisms (see Eq. 2). Horizontal dashed line:p fix = 1g G /f G . Horizontal solid line: p fix = 1g S .Data is shown for t 0 < τ W , where τ W is the average extinction time of the W population in the absence of mutation. B. Fixation probability p fix of different types of mutants versus their time of appearance t 0 in the deteriorating environment, for a fixed Hill coefficient n = 10 characterizing the decay of f W (see Eq. 1). G mutants and S mutants with different Hill coefficients m (see Eq. 2), corresponding to different sensitivities to the changing environment, are considered. In both panels, markers correspond to averages over 10 4 replicate stochastic simulations ("Sim."). Dashed and solid lines correspond to numerical integrations of Eq. 4 ("Th.") for G and S mutants, respectively. Parameter values: g W = g G = g S = 0.1, K = 10 3 , N 0 W = 10 and θ = 10 3 . Vertical dotted lines: t 0 = θ. Main panels: linear scale; insets: semi-logarithmic scale.
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 3 Fig 3. Rescue probability. A. Rescue probability p r of a W population in a deteriorating environment by G or S mutants, versus mutation probability µ upon division. Different Hill coefficients n characterizing the steepness of the environment deterioration (see Eq. 1) are considered. Here, S mutants satisfy m = n, i.e. they have the same sensitivity to the environment as W organisms (see Eq. 2). Vertical dash-dotted line: Kµ = 1. B. Rescue probability p r by different types of mutants versus mutation probability µ upon division. A fixed Hill coefficient n = 10 characterizing the decay of f W (see Eq. 1) is chosen, but G mutants and S mutants with different Hill coefficients m (see Eq. 2) are considered. In both panels, markers correspond to averages over 10 4 replicate stochastic simulations ("Simulation"). Dashed and solid lines correspond to numerical integrations of Eq. 9 ("Theory") for G and S mutants, respectively. Parameter values: g W = g G = g S = 0.1, K = 10 3 , N 0 W = 10 and θ = 10 3 .
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 4 Fig 4. Time of appearance of the mutants that fix. A. Average time τ af of appearance of a G or S mutant that fixes versus mutation probability µ upon division. The Hill coefficient characterizing the steepness of the environment deterioration (see Eq. 1) is n = 5. Vertical dotted line: Kµ = 1. B. Average time τ af of appearance of a G or S mutant that fixes versus Hill coefficient n. The mutation probability upon division is µ = 10 -5 . In both panels, markers correspond to averages over 10 3 -10 4 replicate stochastic simulations ("Simulation"). Dashed and solid lines correspond to numerical integrations of Eq. 13 ("Theory") for G and S mutants, respectively. Parameter values: g W = g G = g S = 0.1, K = 10 3 , N 0 W = 10 and θ = 10 3 . Horizontal dotted lines: τ af = θ.
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  Fig S1.Fixation probability of mutants. Fixation probability p fix of G and S mutants versus their time of appearance t 0 in the deteriorating environment, rescaled by the average extinction time τ W of the wild-type population for different Hill coefficients n characterizing the steepness of the environment deterioration (see Eq. 1). Here, S mutants satisfy m = n, i.e. they have the same sensitivity to the environment as W organisms (see Eq. 2). Horizontal dashed line: p fix = 1g G /f G . Horizontal solid line: p fix = 1g S . Markers correspond to averages over 10 4 replicate stochastic simulations. Dashed and solid lines correspond to numerical integrations of Eq. 4 for G and S mutants, respectively. Parameter values: g W = g G = g S = 0.1, K = 10 3 , N 0 W = 10 and θ = 10 3 . Vertical dotted lines: t 0 = θ. Main panels: linear scale; insets: semi-logarithmic scale. Same data as in Fig.2A.
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  Fig S2. Fitnesses of the wild-type and mutant microbes in a model of antimicrobial resistance evolution. Fitnesses f W and f M of the wild-type sensitive microorganisms (W) and resistant mutants (M) versus time t (see Eqs. 1 and S7). Parameter values: n = 5, θ = 1000, θ ′ = 1050, f 0 M = 0.9 and f ∞ M = 0.5. Vertical dotted lines: t = θ and t = θ ′ . Horizontal dashed lines: f 0 M and f ∞ M .
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 S3 Fig S3. Fixation probability of mutants and probability of rescue in a model of antimicrobial resistance evolution. A. Fixation probability p fix as a function of the time of appearance of the mutants t 0 for mutants M with different values of ∆θ = θ ′θ and f ∞ M = 0.5 (see Eqs. 1 and S7) and for generalist (G) mutants with f G = 0.5. Vertical dotted line: t 0 = θ. B. Same as in panel A, but with ∆θ = 50 and different values of f ∞ M . C. Rescue probability p r as a function of the mutation probability µ upon division for mutants M with different values of ∆θ = θ ′θ and f ∞ M = 0.5 (see Eqs. 1 and S7) and for generalist (G) mutants with f G = 0.5, as in panel A. D. Same as in panel C, but with ∆θ = 50 and different values of f ∞ M , as in panel B. In all panels, markers correspond to the average over 10 3 -10 4 replicate stochastic simulations, and dashed curves correspond to our analytical predictions. Parameter values: g W = g M = g G = 0.1, f 0 M = 0.9, K = 10 3 , N 0 W = 10, n = 5 and θ = 10 3 .

e

  Fig S4. Additional results for generalist mutants. A. Fixation probability p fix as a function of the time of appearance of the mutants t 0 for different fitnesses f G of G mutants (in the rest of the paper, f G = 0.5). Vertical dotted line: t 0 = θ. Horizontal dotted lines: p fix = 1g G /f G . B. Rescue probability p r as a function of the mutation probability µ upon division for different fitnesses f G . C. Mean appearance time τ af of a mutant that fixes as a function of the fitness f G for the mutation probability upon division µ = 10 -5 . Vertical dotted line: τ af = θ. D. Mean time to extinction τ 0 as a function of the time of appearance of the mutants t 0 for different fitnesses f G . Vertical dotted line: t 0 = θ. In all panels, markers correspond to the average over 10 3 -10 4 replicate stochastic simulations, error bars (in panels C and D, often smaller than markers) are 95% confidence intervals and dashed curves correspond to our analytical predictions. Parameter values: g W = g G = 0.1, K = 10 3 , N 0 W = 10, n = 5 and θ = 10 3 .
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 1 Appearance of mutants during the environment deterioration
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  Fig S8. Impact of population size on rescue. A. Fixation probability p fix of G and S mutants versus their time of appearance t 0 in the deteriorating environment, for different carrying capacities K. Vertical dotted line: t = θ. Main panel: linear scale; inset: semi-logarithmic scale. B. Rescue probability p r of different types of mutants versus the product Kµ of the carrying capacity K and the mutation probability µ upon division, for different carrying capacities K. G mutants and S mutants are considered. Vertical dash-dotted line: Kµ = 1. C.Mean time τ af of appearance of a G or S mutant that fixes versus Kµ. Simulation results are shown both for a fixed mutation probability upon division µ = 10 -5 and a variable carrying capacity K, and for a fixed K = 10 3 and a variable µ. Horizontal dotted line: τ af = θ. Vertical dash-dotted line: Kµ = 1. In all panels, the Hill coefficient characterizing the steepness of the environment deterioration (see Eq. 1) is n = 5. Furthermore, S mutants satisfy m = n, i.e. they have the same sensitivity to the environment as W organisms (see Eq. 2). Markers correspond to averages over 10 3 -10 4 replicate stochastic simulations ("Sim."). Dashed and solid lines correspond to our analytical predictions ("Theory") for G and S mutants, respectively. Parameter values: g W = g G = g S = 0.1, N 0 W = 10 and θ = 10 3 .

  Fig S10.Fixation probability for a sudden environment degradation. Fixation probability p fix of S or G mutants versus their time of appearance t 0 in the deteriorating environment, for Hill coefficients n, m → ∞ (see Eqs. 1 and 2) corresponding to an instantaneous, stepwise, environment change. Markers correspond to averages over 10 4 replicate stochastic simulations. Light dashed (resp. solid) curves correspond to our analytical predictions in Eq. 4 for G (resp. S) mutants. Dark dashed (resp. solid) curves correspond to our approximations in Eq. S19 (resp. Eq. S27) for G (resp. S) mutants in the different regimes discussed. Vertical dotted line: t 0 = θ. Vertical dash-dotted line: t 0 = θ = θ + τ 1/2 . Parameter values: g W = g G = g S = 0.1, K = 10 3 , N 0 W = 10, n = m = 10 10 , θ = 10 3 and τ 1/2 = 5.9. Main panel: linear scale; inset: semi-logarithmic scale.
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  Fig S11.Rescue probability for a sudden environment degradation. A. Rescue probability p r versus the product Kµ of the carrying capacity K and the mutation probability µ upon division, for different carrying capacities K. Markers correspond to averages over 10 4 replicate stochastic simulations. Light dashed (resp. solid) curves correspond to our analytical predictions in Eq. 9 for G (resp. S) mutants. Dark dashed (resp. solid) curves correspond to our approximations, corresponding to Eq. S29 with Eq. S30 (resp. Eq. S31) for G (resp. S) mutants, with τ 1/2 = 5.9. B. Rescue probability p r versus Kµ. The present results for G mutants are compared to those of our previous work[START_REF] Marrec | Resist or perish: fate of a microbial population subjected to a periodic presence of antimicrobial[END_REF] for K = 10 3 . Markers correspond to averages over 10 3 -10 4 replicate stochastic simulations. Dashed orange curve: analytical prediction in Eq. 9 for G mutants. Solid green curve: analytical prediction p r = 1p 0 with p 0 in Eq. 1 of[START_REF] Marrec | Resist or perish: fate of a microbial population subjected to a periodic presence of antimicrobial[END_REF], valid for Kµ ≪ 1. Vertical dash-dotted lines in both panels: Kµ = 1. Parameter values: g W = g G = g S = 0.1, N 0 W = 10, n = m = 10 10 , θ = 10 3 .
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  Fig S12.Mean time of appearance for a sudden environment degradation. Mean time τ af of appearance of a G or S mutant that fixes versus the product Kµ of the carrying capacity K and the mutation probability µ.Here, µ was varied at constant carrying capacity K = 10 3 . Horizontal dotted line: τ af = θ. Vertical dash-dotted line: Kµ = 1. Markers correspond to averages over 10 3 replicate stochastic simulations ("Simulation"). Dashed and solid lines correspond to our analytical predictions ("Theory") for G and S mutants, respectively (see Eq. S32). Parameter values: g W = g G = g S = 0.1, N 0 W = 10, m = n = 10 10 , θ = 10 3 and τ 1/2 = 5.9 and θ = 10 3 .
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 S13 Fig S13. Robustness of parameters and numerical integrations. A. Fixation probability p fix of G mutants versus their time of appearance t 0 in the deteriorating environment. Solid curves correspond to numerical integrations of Eq. S39 with different values of τ 1 . B. Rescue probability p r of a W population in a deteriorating environment by G mutants, versus mutation probability µ upon division. Solid curves correspond to numerical integrations of Eq. S40 with different values of τ 2 . C. Mean time of extinction τ ′ 0 of G mutants versus their time of appearance t 0 in the deteriorating environment. Solid curves correspond to numerical integrations of Eq. S41 with different values of τ 3 . In all panels, gray markers correspond to averages over 10 3 replicate stochastic simulations, and error bars in panel C (often smaller than markers) to 95% confidence intervals. Parameter values: f G = 1 (recall that generally we take f G = 0.5), g W = g G = g S = 0.1, K = 10 3 , N 0 W = 10, n = 5 and θ = 10 3 .

  Fixation probability p fix of G and S mutants versus their time of appearance t 0 in the deteriorating environment, for different Hill coefficients n characterizing the steepness of the environment deterioration (see Eq. 1). Here, S mutants satisfy m = n, i.e. they have the same sensitivity to the environment as W organisms (see Eq. 2). Horizontal dashed line: p fix = 1g G /f G . Horizontal solid line: p fix = 1g S . Data is shown for t 0 < τ W , where τ W is the average extinction time of the W population in the absence of mutation. B. Fixation probability p fix of different types of mutants versus their time of appearance t 0 in the deteriorating environment, for a fixed Hill coefficient n = 10 characterizing the decay of f W (see Eq. 1). G mutants and S mutants with different Hill coefficients m (see Eq. 2)
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6 Extinction time of mutants that do not fix

In the case where the mutant that appears does not fix, how long does its lineage take to go extinct? As for the fixation probability p fix , the time of extinction of a mutant will depend on its time of appearance t 0 . The average time of extinction is the average of the first-passage time τ ′ 0 to the state i = 0 where i denotes the number of mutants. Then, we can compute the probability dp( τ

provided that the initial number of mutants is i 0 at time t 0 :

where P (0, t|0, ∞; i 0 , t 0 ) is the probability to have 0 mutant at time t, provided that the initial number of mutants is i 0 at time t 0 and the final number is i ∞ = 0, corresponding to extinction. Using Bayes' theorem and the Markov property yields P (0, t|0, ∞; i 0 , t 0 ) = P (0, t|i 0 , t 0 ) P (0, ∞|0, t; i 0 , t 0 ) P (0, ∞|i 0 , t 0 ) = P (0, t|i 0 , t 0 ) (1p fix (0, t))

where we have employed p fix (0, t) = 0, as having 0 mutant is an absorbing state of the system. Thus,

We can now express the mean time of extinction τ ′ 0 = τ ′ 0 of a mutant that appeared at t 0 using Eq. S10 as

The previous equation can be rewritten using the probability generating function φ i0,t0 (z, t) = +∞ i=0 z i P (i, t|i 0 , t 0 ) by noting that P (0, t|i 0 , t 0 ) = φ i0,t0 (0, t):

Using Eqs. S3 and S6 and introducing Λ(t) = g M t t0 e ρ(u) du then yields

Numerical integration of Eq. S13 is discussed in section 9 below. Fig. S9 shows the average lifetime τ 0 = τ ′ 0t 0 , or time to extinction, of the lineage of a single mutant (i 0 = 1) that finally goes extinct, versus the time t 0 when this mutant appears during the environment degradation. We obtain a very good agreement between the results of our stochastic simulations and our analytical prediction in Eq. S13. For t 0 < θ, mutants are less fit than wild-type organisms, and S mutants are less fit than G mutants (see Eq. 2). Conversely, for t 0 > θ, mutants are fitter than wild-type organisms, and S mutants are fitter than G mutants: hence, S mutants are always more extreme than G mutants. Because of this, intuition based e.g. on the fixation times within the Moran process [START_REF] Ewens | Mathematical Population Genetics[END_REF][START_REF] Teimouri | Theoretical investigation of stochastic clearance of bacteria: first-passage analysis[END_REF][START_REF] Teimouri | Elucidating the correlations between cancer initiation times and lifetime cancer risks[END_REF] with constant population size make us expect that S mutants will have their fates sealed faster, and thus will get extinct faster provided that they are destined for extinction (note that related results exist in the framework of the Wright-Fisher model, see e.g. [START_REF] Maruyama | A Note on the Speed of Gene Frequency Changes in Reverse Directions in a Finite Population[END_REF]). This is indeed what we obtain (see Fig. S9). In particular, the largest extinction time is obtained close to t 0 = θ, where G and S mutants are neutral. In addition, for t 0 ≪ θ, S mutants have a fitness f S ≈ 0 (see Eq. 2). Then, they generally go extinct in about one generation, i.e. in τ 0 ≈ 10 time units (in our simulations, the death rate, which sets the division rate when the population is close to its steady-state size K(1g W /f W ), is taken equal to 0.1): this is what is obtained in Fig. S9. Still for t 0 ≪ θ, G mutants are such that f G = 0.5 while f W ≈ 1 (see Eq. 1): then, the extinction time of the mutant lineage can be obtained within the framework of the Moran process assuming a constant population size K(1g W /f W ): it yields τ 0 ≈ 15 [START_REF] Ewens | Mathematical Population Genetics[END_REF], consistently with Fig. S9. Furthermore, Fig. S9A shows that for t 0 < θ, the bigger the Hill coefficient n characterizing the steepness of the environment degradation (see Eq. 1), the smaller the mean time to extinction. In particular, as long as t 0 < θ, we have f S ≈ 0 and f W ≈ 1, and therefore the results obtained just before for t 0 ≪ θ hold. Finally, Fig. S9B shows that τ 0 does not depend on the carrying capacity K. This can be understood from Eq. S13, given that p fix is independent from K, as well as ρ, as explained in Section 1.

Two regimes need to be distinguished:

For t 0 < θ, Eq. 5 yields

Thus, Eq. S14 simplifies as:

For t 0 > θ, N W = 0, and Eq. 5 yields

Then, Eq. S14 gives

which corresponds to the probability that the mutant lineage survives rapid stochastic extinction in a constant-rate birth-death process, in the absence of competition [START_REF] Coates | Antibiotic-induced population fluctuations and stochastic clearance of bacteria[END_REF][START_REF] Marrec | Resist or perish: fate of a microbial population subjected to a periodic presence of antimicrobial[END_REF][START_REF] Ovaskainen | Stochastic models of population extinction[END_REF]. This makes sense, because within our approximation, t 0 > θ formally corresponds to introducing a mutant in the absence of any W individual.

Let us summarize Eqs. S16 and S18:

Specialist mutant

Let us now turn to the fixation probability p S fix (t 0 ) of a single specialist (S) mutant that appears at time t 0 . Again, we start from Eq. 4, which reads

Note that we assume g S < 1. Three regimes need to be distinguished:

If t 0 < θ, Eq. 5 yields

Note that the second term in the second and the third lines of the previous equation both vanish if g S = g W . In this case, Eq. S20 simplifies as:

If θ < t 0 < θ, Eq. 5 yields

If in addition g S = g W , Eq. S20 then gives

obtains:

Multiplying this ordinary differential equation by the carrying capacity K yields Eq. 3, where j is denoted by N W .

Numerical integration methods

In this work, we derived analytical predictions for the fixation probability p fix , the rescue probability p r and the mean time of extinction τ ′ 0 (see Eqs. 4, 9 and S13, respectively). Since these equations involve improper integrals, it is necessary to appropriately choose the values of the (finite) integral boundaries in order to obtain a good approximation of these improper integrals by numerical integration. These choices are discussed below. The builtin function NIntegrate from Wolfram Mathematica was then employed to perform numerical integrations.

First, in order to compute numerically p fix from Eq. 4, let us introduce a parameter τ 1 such that:

e ρ(t) dt

e ρ(t) dt , (S39)

One should choose τ 1 such that it is much larger than the mean time of extinction of the mutants τ ′ 0 . Otherwise, some mutants destined for extinction will be considered as mutants that fix. Fig. S13A illustrates this point: for the parameters employed in this figure, the largest value of τ 0 is max(τ 0 ) ∼ 30, and accordingly, we observe that for τ 1 ≫ 30, the agreement between the analytical prediction calculated numerically via Eq. S39 and the simulated data is very good.

Similarly, in order to compute numerically p r from Eq. 9, we introduce a parameter τ 2 such that:

S40) Choosing τ 2 so that it is larger than the mean time of spontaneous extinction of wild-type microbes should ensure that we capture the whole time range over which mutants can appear and fix. As can be seen in Fig. 1, for the parameter values chosen in Fig. S13B, the mean time of spontaneous extinction is ∼ 1750. Indeed, Fig. S13B shows that a good agreement between numerical predictions and simulated data is obtained for τ 2 > 1750.

Similarly, in order to compute numerically τ 0 = τ ′ 0t 0 from Eq. S13 with i 0 = 1, we introduce a parameter τ 3 such that:

The parameter τ 3 must be chosen so that it is larger than all times for which the probability density function of τ 0 is significant. In practice, we may choose τ 3 as larger than the variance of the distribution of extinction times.

Assuming that this distribution is exponential (it is close to exponential in simulations), one should choose τ 3 ≫ τ 2 0 . Accordingly, Fig. S13C demonstrates a very good agreement with simulated data for τ 3 ≫ max(τ 0 ) 2 ∼ 900, where max(τ 0 ) is the largest value of τ 0 for the parameters involved in this figure .  In practice, in each figure of this paper, we chose the values of τ 1 , τ 2 and τ 3 so that they were large enough to satisfy the criteria outlined here in the worse case of the figure (i.e. the one requiring the largest value of this parameter).

Numerical simulation methods

In this work, all numerical simulations are performed using a Gillespie algorithm [START_REF] Gillespie | Exact stochastic simulation of coupled chemical reactions[END_REF]. Because the sampled time intervals ∆t between successive individual event satisfy ∆t < 1 (see Fig. S14), which is smaller than the timescales of all processes considered here, we neglect fitness variations between individual events. In practice, the sampled time intervals between each individual event tend to get larger close to extinction events, since the total number of microbes then substantially decreases, but even then, they remain smaller than 1. Note that, in order to take into account the time variability of fitness at a higher resolution than that of events, one could employ e.g. the approach described in [START_REF] Thanh | Simulation of biochemical reactions with time-dependent rates by the rejection-based algorithm[END_REF]. In the following, we provide details about the simulations used in each part of our work. Matlab implementations of our numerical simulations are freely available at https://doi.org/10.5281/zenodo.3993272. 

Population decay in a deteriorating environment

In our simplest simulations, presented in Fig. 1, only W microorganisms were considered (no mutation, µ = 0). For each replicate simulation, we saved the number of W individuals present at regular time intervals, i.e. at time points 0, δt, 2δt... The elementary events that can occur are:

where the value of f W (t) is taken at the time t of the last event that occurred.

Simulation steps are the following: 1. Initialization: The microbial population starts from N W = N 0 W wild-type microorganisms at time t = 0, and the value of f W is set at f W (0).

2. The time increment ∆t is sampled randomly from an exponential distribution with mean 1/R, where R = (k + W + k - W )N W . The next event to occur is chosen randomly, with probabilities k/R proportional to the rate k of each event.

3. The time t is increased to t = t + ∆t and the event chosen at Step 2 is executed, i.e. N W is updated. The value of f W is also updated from f W (t) to f W (t + ∆t).

4. The number of wild-type microbes N W is saved at the desired time points falling between t and t + ∆t.

We go back to

Step 2 and iterate until the total number of microbes reaches zero (N W = 0), corresponding to extinction.

Fixation probability and time of extinction of mutants

In our simulations concerning the fixation probability and the time of extinction of mutants, both wild-type microorganisms (W) and mutants (M) are considered, but no random mutations are allowed, i.e. µ = 0. Indeed, the aim is to determine the fate of i 0 mutants that are introduced at a controlled time t 0 (generally we take i 0 = 1 to model the appearance of a single mutant). The elementary events that can occur are:

• W → 2W : Division of a wild-type microbe with rate

, where the value of f W (t) is taken at the time t of the last event that occurred.

• W → ∅: Death of a wild-type microbe with rate k - W = g W .

• M → 2M : Division of a mutant microbe with rate

, where the value of f M (t) is taken at the time t of the last event that occurred. Note that for G mutants, f M is constant, but for S mutants, it varies in time.

• M → ∅: Death of a mutant microbe with rate k - M = g M . The total rate of events is R =

Simulation steps are the following: 1. Initialization: The microbial population starts from N W = N 0 W wild-type microorganisms and N M = 0 mutant at time t = 0, and the values of f W and f M are set at f W (0) and f M (0), respectively.

2. The time increment ∆t is sampled randomly from an exponential distribution with mean 1/R, where R = (k

The next event to occur is chosen randomly, with probabilities k/R proportional to the rate k of each event.

3. If t + ∆t ≥ t 0 for the first time, the time is set to t = t 0 , i 0 wild-types microbes are replaced by i 0 mutants (N W = N Wi 0 and N M = N M + i 0 ) and the event determined at Step 2 is not executed. Otherwise, the time t is increased to t = t + ∆t and the event determined at Step 2 is executed, i.e. N W or N M is updated. The values of f W and f M (in the case of an S mutant) are also updated.

We go back to

Step 2 and iterate until the total number of microbes is zero (N W + N M = 0), corresponding to extinction of the population, or there are only mutants (N W = 0 and N M = 0). In the latter case, we also check that the mutant lineage does not undergo rapid stochastic extinction by assessing whether it dies out or not before reaching a size of 100 individuals. If it reaches such a size, we consider that fixation of the mutant has occurred.

Rescue of a population by mutants

Finally, our simulations concerning the rescue of a population by mutants, both wild-type microorganisms (W) and mutants (M) are considered, with a probability µ of mutation from W to M upon division. The elementary events that can occur are:

• W → 2W : Division without mutation of a wild-type microbe with rate k + W = f W (t)(1-(N W +N M )/K)(1-µ), where the value of f W (t) is taken at the time t of the last event that occurred.

• W → W + M : Division with mutation of a wild-type microbe with rate k W M = f W (t)(1 -(N W + N M )/K)µ.

• W → ∅: Death of a wild-type microbe with rate k - W = g W .

• M → 2M : Division of a mutant microbe with rate k + M = f M (t)(1 -(N W + N M )/K), where the value of f M (t) is taken at the time t of the last event that occurred. Note that for G mutants, f M is constant, but for S mutants, it varies in time.

• M → ∅: Death of a mutant microbe with rate k - M = g M . The total rate of events is R = (k

Simulation steps are the following: 1. Initialization: The microbial population starts from N W = N 0 W wild-type microorganisms and N M = 0 mutant at time t = 0, and the values of f W and f M are set at f W (0) and f M (0), respectively.

2. The time increment ∆t is sampled randomly from an exponential distribution with mean 1/R, where R = (k

The next event to occur is chosen randomly, with probabilities k/R proportional to the rate k of each event.

3. The time t is increased to t = t + ∆t and the event determined at Step 2 is executed, i.e. N W and N M are updated. The value of f W and f M (in the case of an S mutant) are also updated.

4. We go back to Step 2 and iterate until the total number of microbes is zero (N W + N M = 0), corresponding to extinction of the population, or there are only mutants (N W = 0 and N M = 0), corresponding to fixation of the mutant and rescue of the population.