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Gene Therapy: A Possible Alternative
to CFTR Modulators?
J. Mercier1, M. Ruffin1, H. Corvol1,2 and L. Guillot1*

1Sorbonne Université, Inserm, Centre de Recherche, Saint Antoine, F-75012, Paris, France, 2Pneumologie Pédiatrique, APHP,
Hôpital Trousseau, Paris, France

Cystic fibrosis (CF) is a rare genetic disease that affects several organs, but lung disease is
the major cause of morbidity and mortality. The gene responsible for CF, the CFTR (Cystic
Fibrosis Transmembrane Conductance Regulator) gene, has been discovered in 1989.
Since then, gene therapy i.e., defective gene replacement by a functional one, remained
the ultimate goal but unfortunately, it has not yet been achieved. However, patients care
and symptomatic treatments considerably increased CF patients’ life expectancy ranging
from 5 years old in the 1960s to 40 today. In the last decade, research works on CFTR
protein structure and activity led to the development of new drugs which, by readdressing
CFTR to the plasma membrane (correctors) or by enhancing its transport activity
(potentiators), allow, alone or in combination, an improvement of CF patients’ lung
function and quality of life. While expected, it is not yet known whether taking these
drugs from an early age and for years will improve the quality of life of CF patients in the long
term and further increase their life expectancy. Besides, these molecules are not available
(specific variants ofCFTR) or accessible (national health policies) for all patients and there is
still no curative treatment. Another alternative that could benefit from new technologies,
such as gene therapy, is therefore still attractive, although it is not yet offered to patients.
Faced with the development of new CFTR correctors and potentiators, the question arises
as to whether there is still a place for gene therapy and this is discussed in this perspective.

Keywords: cystic fibrosis, gene therapy, ivacaftor, lumacaftor, tezacaftor, personalized medicine

INTRODUCTION

Cystic fibrosis (CF) is a rare genetic disease caused by pathogenic variants in the CFTR (Cystic
Fibrosis Transmembrane Conductance Regulator) gene, which encodes for a chloride channel
expressed ubiquitously within epithelia. As a result, ionic and hydric imbalances across epithelia are
observed in several organs, affecting their function. Specifically, manifestations can occur in the
pancreas, liver, kidneys, and intestine, but lung disease is the main cause of morbidity and mortality
of CF patients.

Since the CFTR gene discovery in 1989, more than 2000 variants of the CFTR gene have been
identified. They were classified into six classes depending on their consequences on the CFTR
protein. CF patients’ life expectancy increased considerably between the 1960s and the beginning of
the 21st century mainly due to symptomatic treatment development and to patient management
standardization. However, even if new promising drugs (called “CFTR modulators”) directly
targeting the CFTR protein are already available for some CF patients, there is still no curative
treatment. Gene therapy, as defined by the delivery of a wild-type CFTR gene in cells, might be this
curative treatment but is not yet available.
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This perspective briefly describes the latest development of
CFTR modulators and CFTR gene delivery strategies and
discusses whether gene therapy is a still relevant alternative to
be considered with respect to these promising molecules.

CFTR Modulators
In the last decade, new drugs called “CFTR modulators”
addressing the direct consequences of CFTR variants on the
CFTR protein have been identified thanks to high-throughput
screening (extensively reviewed in (Lopes-Pacheco, 2019)). The
two major types of CFTR modulators are correctors and
potentiators. Correctors are intended to improve CFTR
trafficking to the plasma membrane, while potentiators are
designed to increase CFTR channel conductance. Thus,
correctors and potentiators can only be effective on certain
classes of CFTR variants i.e., those affecting CFTR protein
trafficking (class II) and conductance (class III and IV). CFTR
class I variants, that result in the absence of protein synthesis, and
CFTR class V and VI variants, that lead to decreased CFTR
protein quantity production, are excluded from modulator
therapies. CFTR modulators approval represents a
breakthrough in CF care because a significant improvement in
patient’s lung function (evaluated by measurements of FEV1
(forced expiratory volume in 1 s)) has been observed (Table 1).

Ivacaftor, the first potentiator designed to target the G551D
gating variant (the most prevalent CFTR class III gating variant),
showed in phase 3 clinical trial that patients gain more than 10%
of FEV1 (Ramsey et al., 2011). Ivacaftor was then validated for
other CFTR class III gating variants. A few years after, modulators
targeting the most common CFTR variant called F508del (a class
II variant) emerged. The combination of the corrector lumacaftor
with the potentiator ivacaftor was approved for patient
homozygotes for the F508del variant but showed limited FEV1
improvement. New correctors and combinations emerged
further, which have more interesting effects on FEV1, allowing
to address patients carrying only one F508del variant (Table 1).
The latest combination (elexacaftor/tezacaftor/ivacaftor) showed
indeed impressive results with a 14% increase in FEV1
(Heijerman et al., 2019; Middleton et al., 2019). Even if the
level of increased lung function remains the principal
measurement of treatment efficiency, these modulators have
also been shown to be beneficial for other clinical parameters
including increased body-mass index, improved life quality, and
decreased exacerbations frequency.

Altogether, based on their age and genotype, around 80% of the
patients reported in the Cystic Fibrosis Foundation Patient Registry
are eligible for CFTR modulators (https://www.cff.org/Research/
Researcher-Resources/Patient-Registry/). According to this
registry, 10% of the patients are still too young to be eligible for
CFTRmodulators; and the remaining 10% carryCFTR variants not
currently known to be responsive to modulators or have unknown
or incomplete genotypes. Among these patients, it has been
estimated that 7% may require genetic-based therapy.

In this new promising era, some other concerns remain. For
example, it should be noted that the hindsight on these treatments
is limited, which makes it difficult to assess their long-term
efficacy and tolerance. According to national health policies,
the cost of these treatments might also be an obstacle to their
access for all CF patients. Finally, as shown in a recent
retrospective study, among 845 CF patients who initiated
lumacaftor/ivacaftor, 22.8% fully or temporarily discontinued
their treatment mostly because of respiratory adverse events
(Burgel et al., 2020). This could result in limiting the total
number of patients who can benefit from these treatments.

The latest generation ofmodulator, the triple therapy, elexacaftor/
tezacaftor/ivacaftor, showed impressive results leading us to question
in this perspective whether gene therapy is still attractive.

GENE THERAPY: WHAT’S UP?

Gene therapy consists of introducing a functional gene into host
cells to replace a defective gene. Theoretically, this could be a
perfect match for the needs of a monogenic disease as CF and
could lead to a universal treatment for CF patients. Especially
since Johnson and colleagues stated in 1992 that 6–10% of CFTR-
corrected cells are sufficient to observe a therapeutic effect in vitro
(Johnson et al., 1992), we can speculate that correction of all CF
airway cells may not be mandatory to observe the same effect in
vivo. However, the race for CF gene therapy turned out to bemore
challenging than expected so far.

Lungs: Barriers to Delivery
The lung represents an organ of choice for the delivery of organ-
specific treatments due to its ease of access. Therefore, aerosol
administration has been widely used in previous clinical trials of
pulmonary gene therapy as reviewed by Resnier et al. (Resnier
et al., 2016). However, the major difficulty encountered in these

TABLE 1 | CFTR modulators available for the treatment of CF patients. ppFEV1: percent-predicted Forced Expiratory Volume in 1 s; m.o.: months old; y.o.: years old. *only
initial Phase III studies are cited. [detailed in (Lopes-Pacheco, 2019)].

Molecules First approval date Eligibility age Indication* Absolute
change in ppFEV1

Ivacaftor 2012 ≥6 m.o. G551D/other Ramsey et al. (2011) 10.6%
Class III variants/Other Davies et al. (2013) 12.5%

Lumacaftor/ivacaftor 2015 ≥2 y.o. F508del/F508del Wainwright et al. (2015) 2.8%
Tezacaftor/ivacaftor 2018 ≥6 y.o. F508del/F508del Taylor-Cousar et al. (2017) 4%

F508del/residual function variant in trans Rowe et al. (2017) 6.8%
Elexacaftor/tezacaftor/ivacaftor 2019 ≥12 y.o. F508del/minimal function variant in trans Middleton et al. (2019) 13.8%

F508del/F508del Heijerman et al. (2019) 10.4%

Frontiers in Pharmacology | www.frontiersin.org April 2021 | Volume 12 | Article 6482032

Mercier et al. Gene Therapy versus CFTR Modulators

https://www.cff.org/Research/Researcher-Resources/Patient-Registry/
https://www.cff.org/Research/Researcher-Resources/Patient-Registry/
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


trials is the delivery of the gene into airway epithelial cells. Indeed,
mucus, mucociliary clearance, and lung immune responses
complicate the entry of the gene transfer agent into target
cells, and the few that succeed encounters a new obstacle: the
nuclear membrane (Yonemitsu et al., 2000; Stern et al., 2003;
Schuster et al., 2014; Xia et al., 2014). Moreover, since the airway
epithelium renews itself gradually, another challenge is to target
progenitor cells to obtain a permanent treatment and avoid
repeated required deliveries (Gill and Hyde, 2014).

CFTR Gene Delivery Methods: Advantages
and Limitations
Only 1 year after the CFTR gene discovery in 1989 (Kerem et al.,
1989; Riordan et al., 1989; Rommens et al., 1989), two groups
independently showed that it was possible to produce a functional
CFTR protein by using a viral vector to introduce the full-length
CFTR gene in vitro (Drumm et al., 1990; Rich et al., 1990). This
proof of concept paved the way for the beginning of CF gene
therapy clinical trials (Figure 1). To efficiently introduce a
normal CFTR gene into cells, various delivery strategies have
been developed for three decades, including viral and non-viral
vector systems, and are briefly presented after (recently reviewed
in detail by (Cooney et al., 2018; Schneider-Futschik, 2019; Yan
et al., 2019)).

Viral Vectors
Viruses have a high natural capacity to infect host cells and were
modified by scientists to decrease their pathogenicity. Thus,
recombinant vectors expressing a foreign antigenic protein or

a functional protein were created and used for vaccines or gene
therapy, respectively.

Recombinant Adenovirus Vector
Recombinant Adenovirus-based vectors (rAd-vector) were the
first viral vectors used in CF gene therapy clinical trials. They are
non-enveloped viruses with a linear and double-stranded DNA
genome. Commonly, two serotypes are observed beyond Ad -
type 2 (Ad2) or type 5 (Ad5) which allow host-cell binding. In
vivo studies showed that Ad-vectors were transduced in all airway
epithelial cell types (Mastrangeli et al., 1993) and also in
submucosal glands (Pilewski et al., 1995). The first use of Ad-
vectors with CFTR gene in CF gene therapy clinical trial showed
that their delivery was safe, with little or no immune response and
a partial correction of Cl− transport defect (Zabner et al., 1993;
Zabner et al., 1996). Crystal et al. showed that rAd-CFTR protein
was expressed in the airway epithelium 4 days after intra-
bronchial administration. They tested doses up to 2 × 109 pfu,
which led to short-term adverse events such as transient systemic
inflammation (Crystal et al., 1994). No other adverse event was
reported after a 6-months follow-up. Another trial showed no
evidence of CFTR functional defect correction, probably due to
inflammatory responses (Knowles et al., 1995). Thus, rAd-vectors
are capable of transducing and occasionally correcting Cl−

transport defect in CF human airway epithelial cells. Yet, some
inflammatory responses were observed. Besides, rAd-vector DNA
does not integrate the host cell genome but rather persists within
the cells as episomal DNA (Athanasopoulos et al., 2017). Finally,
rAd-vector DNA is not replicated upon cell divisions, requiring
multiple deliveries for patients.

FIGURE 1 | Summary of CF gene therapy clinical trials. Colors represent vector agent used (red: Ad, purple: AAV, yellow: liposome). Vectors agent made with
biorender: https://biorender.com.
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Recombinant Adeno-Associated Virus Vector
Recombinant adeno-associated virus vectors (rAAV) are
characterized by their ability to transduce both dividing and
quiescent cells and by their high transduction efficiency in
primary human airway (Yan et al., 2013). Those vectors are
less immunogenic than Ad-vectors and were the most used
vectors in CF gene therapy clinical trials, showing a strong
safety profile record but failed in improving the lung function
(Wagner et al., 1999; Wagner et al., 1998; Aitken et al., 2001;
Wagner et al., 2002; Flotte et al., 2003; Moss et al., 2007)
(Figure 1).

A limitation of rAAV vector is its packaging capacity limited
to 4.8 kb (Blacklow et al., 1988; Wu et al., 2010). The small size of
this vector may give it an advantage to enter cells more easily but
considering that the size of the CFTR gene is 4.6 kb, there is
almost no space left for regulatory sequences allowing CFTR gene
expression enhancement. As reviewed by Cooney and coll., the
shortening of the CFTR gene and other cassette sequences led to a
generation of modified AAV vectors that expressed
functional CFTR.

Moreover, rAAVs vectors genome integrates into the human
genome (Kotin et al., 1991; Samulski et al., 1991; Kotin et al.,
1992; Rivadeneira et al., 1998; Ding et al., 2003; Janovitz et al.,
2014) and can also persist as episomal DNA in post-mitotic
tissues when the replication protein rep is absent
(Athanasopoulos et al, 2017). Besides, rAAV-mediated
transduction has been proved to induce a long-lasting gene
expression up to several months in pigs (Steines et al., 2016)
and better rAAV vectors allowing an increased packaging
capacity and higher tropism for airway epithelial cells are
developed (Yan et al., 2019).

Helper-Dependent Adenovirus Vector
Helper-dependent adenovirus (Hd-Ad) vectors, which have had all
viral genes deleted, were developed to circumvent inflammatory
properties of rAd-vectors (Parks et al., 1996). With a 36 kb
packaging capacity (Cots et al., 2013), they circumvent little
packaging capacities of rAAV-vectors. Multiple serotypes of
Hd-Ad vectors have been tested but serotype 5 showed effective
transduction in vivo in airways basal cells in mouse and pig models
and, in vitro, in primary human airway epithelial cell cultures (Cao
et al., 2018; Palmer et al., 2020).

Lentivirus
Finally, the last type of viral vector used for CF gene therapy
studies is lentiviral vector, which could allow a genomic
integration and provide a long-term expression (Naldini et al.,
1996) without repeated administrations. Even if LV vectors seem
less likely to be destroyed by immune system than rAAVs,
because of no-prexisting immunity (neutralizing antibodies),
they activate the immune system as the other viral vectors
(Nayak and Herzog, 2010). LV-mediated transgene integration
site into the host genome can be multiple, extremely variable and
potentially leading to proto-oncogenes activation. This property
led to the interruption of a clinical trial in severe combined
immunodeficiency patients (Hacein-Bey-Abina et al., 2003a;
Hacein-Bey-Abina et al., 2003b; Fischer et al., 2004; Fischer

and Cavazzana-Calvo, 2005; Hacein-Bey-Abina et al., 2008). In
order to circumvent this, LV vectors design was then improved
with self-inactivating (SIN) of long terminal repeats (LTRs),
reducing the genotoxic risk of these strong enhancer-promoter
sequences (Modlich and Baum, 2009; Milone and O’Doherty,
2018). Thus, lentiviruses still seem to be interesting vectors for CF
gene therapy as some lentiviral vector pseudotypes demonstrated
high vector production and apical tropism to airway epithelium
in vitro and in vivo (Sinn et al., 2005; McKay et al., 2006). Plus,
repeated administration was possible without blocking antibody
immune responses (Sinn et al., 2008; Griesenbach et al., 2012) and
LV efficiency was demonstrated in several animal models
including mice, ferret and pigs (Oakland et al., 2013; Yan
et al., 2015; Cooney et al., 2016). Recently, a study with a
promising lentiviral vector developed by the United Kingdom
Cystic Fibrosis Gene Therapy consortium showed a 14% airway
cells transduction efficiency in vitro, low toxicity and an
integration site profile supporting a future first-in-man trial
(Alton et al., 2017).

Nevertheless, viral vectors use can be limited by several factors.
Firstly, neutralizing antibodies to Ad or AAV, due to the immune
response to previous natural infection, are frequently found in
patients, rendering them ineligible for this kind of treatments
(Erles et al., 1999). Secondly, viral vectors internalization into
host cells requires receptors such as αV integrins (Wickham et al.,
1993), Coxsackie-Adenovirus Receptor (Bergelson et al., 1997),
heparan sulfate glycosaminoglycans (Dechecchi et al., 2001) or
fibroblast growth factor receptors (Duan et al., 1998) that are
expressed on the basolateral membrane of bronchial epithelial
cells, thus explaining the lack of transduction efficiency (Duan
et al., 1998; Pickles et al., 1998; Marquez Loza et al., 2019).
Pseudotyping viral vectors with proteins able to interact with
apical membrane receptors of airway epithelial cells is thus
required to enhance delivery efficiency.

Non-Viral Vectors
Non-viral vectors allow genomic material delivery into cells by
direct administration as naked DNA or associated with different
compounds. Those vectors have theoretically no size restrictions
and have mainly three possible configurations: lipid-based,
peptide-based or polymer-based delivery. They can carry
plasmid or linear DNA as well as RNA molecules. A non-viral
strategy for CFTR delivery was considered as an alternative to
viral vectors. Indeed, several studies showed that cationic lipids
were safe delivery vehicles for gene transfer (Kollen et al., 1996;
Fasbender et al., 1998; McDonald et al., 1998), their main issue
remaining the limited transgene delivery into the nucleus
(Brisson et al., 1999). However, as recently reviewed (Cooney
et al., 2018), several clinical trials using cationic lipids showed
transient expression of vector related-CFTR for few days and
partial restoration of nasal potential differences in CF patients
without significant clinical effect on lung function (Caplen et al.,
1995; Gill et al., 1997; Porteous et al., 1997; Zabner et al., 1997;
Alton et al., 1999; Noone et al., 2000; Ruiz et al., 2001; Konstan
et al., 2004). In 2015, Alton and colleagues reported an increase in
FEV1 of 3.7% (0.07–7.25%) after using pGM169/GL67A cationic
lipid (Alton et al., 2015b) in patients who received nebulized

Frontiers in Pharmacology | www.frontiersin.org April 2021 | Volume 12 | Article 6482034

Mercier et al. Gene Therapy versus CFTR Modulators

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


vector at 28 days intervals for 12 months (Alton et al., 2015a).
However, as FEV1 improvements observed were only comparable
to those obtained with some CFTR modulators, trial did not result
in the current clinical application for CF patients. Alton et al. now
focused on alternative lentiviral vectors candidates, such as the
lentiviral vector based on simian immunodeficiency virus (SIV)
pseudotyped with Sendaï virus envelope proteins Fusion (F) and
Hemagglutinin-Neuraminidase (HN) (rSIV.F/HN), which retains
90–100% transduction efficiency and leads to a functional CFTR
expression in preclinical models (Alton et al., 2016; Alton et al.,
2017).

GENE THERAPY STILL TO CONSIDER?

To date, CF gene therapy clinical trials have not been conclusive,
with a weak effect observed on CF patients’ lung function,
associated with important immune responses, which may
render the treatment ineffective. Moreover, as mentioned
previously, the recent developments of effective drugs such as
the triple combination elexacaftor/tezacaftor/ivacaftor, which
greatly improves patients’ lung function and quality of life, has
given rise to the idea that “cystic fibrosis is almost cured”. Thus, it
is therefore legitimate to wonder to what extent gene therapy still
has a place in the treatment of CF. However, it should be
remembered that the drugs currently on the market still leave
aside at least 10% of CF patients without curative treatment, as
highlighted by the Cystic Fibrosis Foundation patient registry. In
addition, current CFTR modulators are not well tolerated by all
eligible patients and real-life studies show that numerous patients
stop their treatment. Besides, we do not have enough hindsight to
predict effectiveness of these promising drugs in the long term.

Over the last 20 years, gene therapy has shown successful
transient or permanent results for several diseases such as
X-linked severe combined immune deficiency (Cavazzana-
Calvo et al., 2000), adenosine deaminase deficiency (Cicalese
et al., 2016), Leber congenital amaurosis (Cideciyan et al.,
2013), hemophilia (Nathwani et al., 2011), severe beta-
Thalassemia (Cavazzana-Calvo et al., 2010; Persons, 2010), but
also Parkinson’s disease (Palfi et al., 2014) or leukemia, with 27
children who experienced complete remission after treatment
(Maude et al., 2014). In 2012, the first viral gene-therapy
treatment was approved in Europe for treatment of lipoprotein
lipase deficiency (Yla-Herttuala, 2012) and showed good results

even years later (Gaudet et al., 2016). Recently, gene therapy also
showed promising results for Leber hereditary optic neuropathy
by improving bilateral vision in patients over 96 weeks of follow-
up after a unilateral intravitreal injection (Yu-Wai-Man et al.,
2020). These successful trials were carried out on easily accessible
hematopoietic stem cells or by direct vectors injections into
specific tissues, which may explain previous trials failure in CF
compared to other diseases.

In addition to wild-type CFTR gene delivery strategy, CFTR
gene editing with CRISPR/Cas9 technology emerged as a
promising therapeutic option for CF patients (Hodges and
Conlon, 2019). New strategies are also currently tested in on-
going trials, such as RESTORE-CF phase I/II clinical trial (http://
ClinicalTrials.gov Identifier: NCT03375047), which evaluates
safety and tolerability of MRT5005, an RNA-based therapy.
RNA-based therapy has the advantage of not disturbing the
genome, however would require repeated doses. Another
promising strategy is to combine gene therapy with
pluripotent stem cells (iPSCs). As a proof of concept, Hawkins
et al. succeeded to derive airway basal cells from human iPSCs, to
perform an engraftment and to allow epithelial regeneration in
vivo using a tracheal xenograft model in immune-compromized
mice, with similar structure and composition than in vivo airways
(Hawkins et al., 2020). The long-term goal is to obtain a de novo
generation of the full diversity of lung lineages and transplantable
3D lung tissues, that could be corrected by gene therapy and
transferred into CF patients (Kotton, 2012).

In conclusion, CF gene therapy still has a bright future ahead.
The main current challenge is to circumvent technical problems
of transduction encountered in the lung. If this happens one day,
not only will CF be truly cured, but the gene therapy might also be
applied to other lung genetic diseases.
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