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Chapter

Competitive Adsorption and
Diffusion of Gases in a
Microporous Solid
Mykhaylo Petryk, Mykola Ivanchov, Sebastian Leclerc,

Daniel Canet and Jacques Fraissard

Abstract

The experimental and theoretical study of the co-adsorption and co-diffusion of
several gases through a microporous solid and the instantaneous (out of equilibrium)
distribution of the adsorbed phases is particularly important in many fields, such as
gas separation, heterogeneous catalysis, purification of confined atmospheres,
reduction of exhaust emissions contributing to global warming, etc. The original
NMR imaging technique used gives a signal characteristic of each adsorbed gas at
each instant and at each level of the solid and therefore the distribution of several
gases in competitive diffusion and adsorption. But it does not allow to determine
separately the inter- and intra-crystallite quantities. A new fast and accurate analyt-
ical method for the calculation of the coefficients of co-diffusing gases in the intra-
and inter-crystallite spaces of microporous solid (here ZSM 5 zeolite) is developed,
using high-performance methods (iterative gradient methods of residual functional
minimization and analytical methods of influence functions) and mathematical co-
adsorptionmodels, as well as the NMR spectra of each adsorbed gas in the bed. These
diffusion coefficients and the gas concentrations in the inter- and intra-crystallite
spaces are obtained for each position in the bed and for different adsorption times.

Keywords: competitive diffusion of gases, competitive adsorption, modeling,
diffusion coefficient, Heaviside’s operational method, zeolite bed,
gradient methods of identification

1. Introduction

Knowledge of the co-diffusion and co-adsorption coefficients of reactants and
products is essential when a heterogeneous catalytic reaction is performed by
flowing gases through a microporous catalyst bed. But generally the distribution of
the various reactants adsorbed on the catalyst is very inhomogeneous and, more-
over, very variable from one reactant to another. It is therefore necessary to deter-
mine at every moment the diffusion coefficient of each reactant in the presence of
the others and its instantaneous distribution along the length of the catalyst bed.

Classical H-MRI should be a good technique for monitoring the co-diffusion and
co-adsorption of several gases flowing through a microporous bed. However, since the
signal obtained is not specific for each gas, this requires that each experiment be
performed several times under identical conditions and each time with only one not
deuterated gas. To remedy the drawbacks of classical imaging, we have used the NMR
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imaging technique, named slice selection procedure, to follow the diffusion and
adsorption of a gas in a microporous bed [1–3]. The sample is displaced vertically, step-
by-step, relative to a very thin coil detector during the adsorption of the gas. The bed is
assumed to consist of N very thin layers of solid, and the region probed is limited to
each layer, so that the variation of the concentration of gas absorbed at the level of each
layer is obtained as a function of time. An interesting feature of this technique is its
ability to visualize directly the co-diffusion of several gases. Indeed, the NMR signals
are quantitatively characteristic of the adsorbed gases. They can therefore provide
directly, at every moment and at every level of the bed, the distribution of several
gases competing in diffusion and adsorption. We have presented in a previous paper
the experimental results of the co-diffusion of benzene and hexane through a silicalite
bed [4]. In [5, 6] we have developed a mathematical methodology for efficient linear-
ization of similar models. Using Heaviside’s operational method and Laplace’s integral
transformation method, we have built solutions allowing fast calculations for two-
component co-adsorption in a heterogeneous zeolite bed and for the dehydration of
natural gas [7]. In this chapter we have improved the methods previously used to
compute the diffusion coefficients against time, increasing the accuracy and speed of
calculations by significantly reducing the iteration number. This made it possible to
use them for the co-adsorption of several gases diffusing along such a column.

2. Experimental

The NMR imaging technique, the sample-holder bulb containing the liquid
phase in equilibrium with the gas phase, and the narrow zone monitored by the
detector have been described in [1–3], respectively.

The upper face of the cylindrical bed of zeolite crystallites is exposed to a
constant pressure of each gas (Figure 1). The diffusion of the two gases is axial in

Figure 1.
Distribution of the layers (left) and corresponding parameters (right).

2

Zeolites - New Challenges



the macropores of the inter-crystallite space (z direction along the height, l, of the
bed) and radial in the micropores of the zeolite. According to the experimental
conditions, the zeolite bed consists of a large number, N, of very thin layers of solid,
of thickness Δlk ¼ lk � lk�1, perpendicular to the propagation of the gas in the z
direction. The corresponding coefficients of inter- and intra-crystallite space are
Dinter,k and Dintra,k, respectively.

3. Experimental results: gaseous benzene and hexane adsorption curves

The experimental results have been summarized in [4]: the spectrum of each gas
at every instant and every level of the solid and the benzene and hexane concentra-
tions along the sample, for each diffusion time. Here we shall only use the evolution,
as a function of time, of the benzene and hexane concentrations at different levels
of the sample, on which the calculations of the diffusion coefficients and the
instantaneous inter- and intra-crystallite concentrations are based [8]. Figure 2
shows clearly that, under the chosen experimental conditions, benzene hinders the
diffusion of hexane, and this at every moment. Moreover, it can be noticed that, at
equilibrium, the amount of benzene within the zeolite is twice that of hexane,
indicating quantitatively the relative affinity to the two adsorbates.

These curves display modulations as a function of time, which must be averaged
for all subsequent mathematical representations. These modulations are weak at
the lower layers of the tube and can be due to errors in the measurement of small
amounts. Those closer to the arrival of the gas are greater and are similar for the two
gases. We suggested that these fluctuations may be due to the fact that inter-
crystallite adsorption at levels close to the gas phase is fast compared to the liquid-gas
equilibrium, which is not as instantaneous for a mixture as for a single component [8].
Each slight decrease of the gas pressure could correspond a slight fast desorption.

4. A mathematical model of competitive co-adsorption and co-diffusion
in microporous solids

4.1 Co-adsorption model in general formulation

The model presented is similar to the bipolar model [2, 3, 8, 9]. By developing
the approach described by Ruthven and Kärger [10, 11] and Petryk et al. [5]

Figure 2.
Evolution vs. time of the benzene and hexane concentrations (arbitrary units) at different levels of the sample
(continuous, experimental curves; dotted, their approximations used for simulation) [from Ref. [8], reprinted
with permission from ACS].
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concerning the elaboration of a complex process of co-adsorption and co-diffusion,
it is necessary to specify the most important hypotheses limiting the process.

The general hypothesis adopted to develop the model presented in the most
general formulation is that the interaction between the co-adsorbed molecules of
several gases and the adsorption centers on the surface in the nanoporous crystal-
lites is determined by the nonlinear competitive equilibrium function of the Lang-
muir type, taking into account physical assumptions [10]:

1.Co-adsorption is caused by the dispersion forces whose interaction is
established by Lennard-Jones and the electrostatic forces of gravity and
repulsion described by van der Waals [11].

2.The co-diffusion process involves two types of mass transfer: diffusion in the
macropores (inter-crystallite space) and diffusion in the micropores of
crystallites (intra-crystallite space).

3.During the evolution of the system toward equilibrium, there is a
concentration gradient in the macropores and/or in the micropores.

4.Co-adsorption occurs on active centers distributed over the entire inner
surface of the nanopores (intra-crystallite space) [10, 11]. All crystallites are
spherical and have the same radius R; the crystallite bed is uniformly packed.

5.Active adsorption centers adsorb molecules of the ith adsorbate, forming
molecular layers of adsorbate on their surfaces.

6.Adsorbed molecules are held by active centers for a certain time, depending on
the temperature of the process.

Taking into account these hypotheses, we have developed a nonlinear co-
adsorption model. The meaning of the symbols is given in the nomenclature:

дСs t,Zð Þ

дt
¼

Dinters

l2
∂
2
Сs

∂Z2 � einter ~Ks
Dintras

R2

∂Q s

∂X

� �

X¼1

(1)

�H
∂T t, zð Þ

∂t
� uhg

∂T

∂z
�
X

m

s¼1

ΔHs
∂Q s

∂t
� 2

αh

Rcolumn
T þ Λ

∂
2T

∂z2
¼ 0 (2)

дQ s t,X,Zð Þ

дt
¼

Dintras

R2

∂
2Q s

∂X2 þ
2

X

∂Q s

∂X

� �

(3)

with initial conditions

Cs t ¼ 0,Zð Þ ¼ 0;Q s t ¼ 0,X,Zð Þ ¼ 0;Z ∈ 0, 1ð Þ,X ∈ 0, 1ð Þ, s ¼ 1,m (4)

boundary conditions for coordinate X of the crystallite

∂

∂X
Q s t,X ¼ 0,Zð Þ ¼ 0 symmetry conditions

� �

, (5)

Q s t,X ¼ 1,Zð Þ ¼
Ks Tð ÞCs t,Zð Þ

1þ
P

m

s1¼1
Ks1 Tð ÞCs1 t,Zð Þ

, s ¼ 1,m Langmuir equilibriumð Þ, (6)
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boundary and interface conditions for coordinate Z

Cs t, 1ð Þ ¼ 1,
дСs

дZ
t,Z ¼ 0ð Þ ¼ 0, t>0 (7)

T t, Zð Þ Z¼1 ¼ Tinitial,
∂

∂z
T t, ZÞð jZ¼0 ¼ 0:

�

�

�

�

(8)

with Ks Tð Þ ¼ k0s exp � ΔHs

RgT

� �

.

Here the activation energy is the heat of adsorption defined

asΔHs ¼ ϕ� Ugs
�Uadss

� �

� RgT, where Ugs
�Uadss—the difference between the

kinetic energies of the molecule of the ith component of the adsorbate in the
gaseous and adsorbed states is the magnitude of the Lennard-Jones potential, aver-
aged over the pore volume of the adsorbent [11].

The non-isothermal model (1)–(8) can easily be transformed into isothermal
model, removing the temperature Eq. (2) and condition (8) and replacing the
functions Ks Tð Þ with the corresponding equilibrium constants Ks. The competitive
diffusion coefficients Dintras and Dinters can be considered as functions of the time
and the position of the particle in the zeolite bed.

4.2 The inverse model of co-diffusion coefficient identification: application to
the benzene-hexane mixture

On the basis of a developed nonlinear co-adsorption model (1)–(8) , we
construct an inverse model for the identification of the competitive
diffusion coefficients Dintras and Dinters as a function of time and coordinate in the
zeolite bed.

The mathematical model of gas diffusion kinetics in the zeolite bed is defined

in domains: Ωkt ¼ 0, ttotal
� �

� Ωk, Ωk ¼ Lk�1,Lkð Þ, k ¼ 1,N þ 1,L0 ¼ 0<L1 < … <

�

LNþ1 ¼ 1Þ by the solutions of the system of differential equations

дСsk t,Zð Þ

дt
¼

Dintersk

l2
∂
2
Сsk

∂Z2 � einterk
~Ksk

Dintrask

R2

∂Q sk

∂X

� �

X¼1

(9)

дQ sk
t,X,Zð Þ

дt
¼

Dintrask

R2

∂
2Q sk

∂X2 þ
2

X

∂Q sk

∂X

 !

(10)

with initial conditions

Csk t ¼ 0,Zð Þ ¼ 0;Q sk
t ¼ 0,X,Zð Þ ¼ 0;X ∈ 0, 1ð Þ,Z ∈Ωk, k ¼ 1,N þ 1, (11)

boundary and interface conditions for coordinate Z

Cs1 t,L1ð Þ ¼ 1,
дСs1

дZ
t,Z ¼ 0ð Þ ¼ 0, t∈ 0, ttotal

� �

; (12)

Csk t,Zð Þ � Csk t,Zð Þ
	 


Z¼Lk
¼ 0,

∂

∂Z
Dintersk�1

Csk�1
t,Zð Þ �Dintersk

Csk t,Zð Þ
h i

Z¼Lk

¼ 0, k

¼ 1,N, t∈ 0, ttotal
� �

;

(13)

boundary conditions for coordinate X in the particle
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∂

∂X
Q sk t,X ¼ 0,Zð Þ ¼ 0,Q sk t,X ¼ 1,Zð Þ

¼ KsCsk t,Zð Þ equilibrium conditionsð Þ,Z ∈Ωk, k ¼ 1,N þ 1:

(14)

Additional condition (NMR-experimental data)

Csk t,Zð Þ þQ sk
t,Zð Þ

	 
�

�

hk
¼ Msk t,Zð Þ

�

�

hk
, s ¼ 1, 2; hk ∈Ωk: (15)

The problem of the calculation (9)–(15) is to find unknown functions

Dintras ∈Ωt,Dinters ∈Ωt (Dintras>0,Dinters>0, s ¼ 1, 2), when absorbed masses

Csk t,Zð Þ þ Q sk
t,Zð Þ satisfy the condition (15) for every point hk ⊂Ωk of the kth

layer [8, 12].
Here

einterk ¼
εinterkcsk

εinterkcsk þ 1� εinterk
� �

qsk
≈

εinterk

1� εinterk
� �

~Ksk

, ~Ksk ¼
qsk∞
csk∞

,

where Q s t,Zð Þ ¼
Ð

1

0

Q s t,X,Zð ÞXdX is the average concentration of adsorbed

component s in micropores and Ms t,Zð Þjhk is the experimental distribution of the

mass of the sth component absorbed in macro- and micropores at hk ⊂Ωk (results of
NMR data, Figure 2).

4.3 Iterative gradient method of co-diffusion coefficient identification

The calculation of Dintrask
and Dintersk

is a complex mathematical problem. In

general, it is not possible to obtain a correct formulation of the problem (9)–(15) and
to construct a unique analytical solution, because of the complexity of taking into
account all the physical parameters (variation of temperature and pressure, crystallite
structures, nonlinearity of Langmuir isotherms, etc.), as well as the insufficient
number of reliable experimental data, measurement errors, and other factors.

Therefore, according to the principle of Tikhonov and Arsenin [13], later devel-
oped by Lions [14] and Sergienko et al. [15], the calculation of diffusion coefficients
requires the use of the model for each iteration, by minimizing the difference
between the calculated values and the experimental data.

The calculation of the diffusion coefficients (9)–(15) is reduced to the problem
of minimizing the functional of error (16) between the model solution and the
experimental data, the solution being refined incrementally by means of a
special calculation procedure which uses fast high-performance gradient methods
[6, 8, 12, 15].

According to [12, 15], and using the error minimization gradient method for the
calculation of Dintrask

and Dintersk
of the sth diffusing component, we obtain the

iteration expression for the n + 1th calculation step:

Dnþ1
intrask

tð Þ ¼ Dn
intrask

tð Þ � ∇JnDintrask

tð Þ

Csk Dn
intersk

,Dn
intrask

; t, hk
� �

þQ sk
Dn

intersk
,Dn

intrask
; t, hk

� �

�Msk tð Þ
h i2

∇JnDintrask

tð Þ
�

�

�

�

�

�

2
þ ∇JnDintersk

tð Þ
�

�

�

�

�

�

2 ,

Dnþ1
intersk

tð Þ ¼ Dn
intersm

tð Þ � ∇JnDintersk

tð Þ
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Csk Dn
intersk

,Dn
intrask

; t, hk
� �

þ Q sk
Dn

intersk
,Dn

intrask
; t, hk

� �

�Msk tð Þ
h i2

∇JnDintrask

tð Þ
�

�

�

�

�

�

2
þ ∇JnDintersk

tð Þ
�

�

�

�

�

�

2 , t∈ 0, ttotal
� �

(16)

where J Dintersk
,Dintrask

� �

is the error functional, which describes the deviation of

the model solution from the experimental data on hk ∈Ωk, which is written as

J Dintersk
,Dintrask

� �

¼
1

2

ð

T

0

Cs τ,Z,Dintersk
,Dintrask

� �

þQ s t,Z,Dintersk
,Dintrask

� �

�Msk tð Þ
h i2

hk
dτ,

hk ∈Ωk, k ¼ 1,N þ 1, (17)

∇JnDinttersk

tð Þ, ∇JnDintrask

tð Þ (the gradients of the error functional), J Dintersk
,Dintrask

� �

.

∇JnDintersk
tð Þ

�

�

�

�

�

�

2
¼
Ð

T

0

∇JnDintersk
tð Þ

h i2
dt, ∇JnDintrask

tð Þ
�

�

�

�

�

�

2
¼
Ð

T

0

∇JnDintrask
tð Þ

h i2
dt.

4.4 Analytical method of co-diffusion coefficient identification

With the help of iterative gradient methods on the basis of the minimization of
the residual functional, very precise and fast analytical methods have been devel-
oped making it possible to express the diffusion coefficients in the form of time-
dependent analytic functions (16). For their efficient use, it is necessary to have an
extensive experimental database, with at least two experimental observation condi-
tions for the simultaneous calculation of Dintrask

and Dintersk
coefficients. Our exper-

imental studies were carried out for five Z positions of the swept zeolite layer for
each of the adsorbed components. The data were not sufficient to fully apply this
simultaneous identification method to these five sections. We therefore used a
combination of the analytical method and the iterative gradient method for deter-
mining the co-diffusion coefficients.

Using Eqs. (9)–(15), it is possible to calculate Dintrask
,Dintersk as a function of time

using the experimental data obtained by NMR scanning. In particular, in Eqs. (9)
and (10), the co-diffusion coefficients can be set directly as functions of the time t:
Dintrask

tð Þ,Dintersk tð Þ. In this case, the boundary condition (11) can be given in a more

general form—also as a function of time:

Cs1 t, 1ð Þ ¼ Cinitial
s tð Þ: (18)

Experimental NMR scanning conditions are defined simultaneously for all P
observation surfaces:

Csk t,Zð Þ þ

ð

1

0

Q sk t,X,Zð ÞdX

2

4

3

5

Z¼hi

¼ Mski t,Zð Þ
�

�

hi
, i ¼ 1,P, s ¼ 1, 2; hi ∈ ∪

Nþ1

k¼1
Ωk

(19)

For simplicity we design u t,Zð Þ ¼ Csk t,Zð Þ, v t, X,Zð Þ ¼ Q sk t, X,Zð Þ,
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b tð Þ ¼ Dintrask tð Þ=R2, χi tð Þ ¼ Mski tð Þ, i ¼ 1, P,

and considering Eq. (10) in flat form, its solution can be written as [16]:

v t, X, Zð Þ ¼ �

ð

t

0

H
2ð Þ
4ξ t, τ, X, 1Þð Þb τð Þu τ, Zð Þdτ (20)

where H 2ð Þ
4ξ t, τ, X, ξð Þ ¼ �2

P

∞

m¼0
e�η2m θ2 tð Þ�θ2 τð Þð Þηm cos ηmX � �1ð Þm.

Here the Green influence function of the particle H
2ð Þ
k , k ¼ 1, 4 is used; it has the

form [17].

H
2ð Þ
4 t, τ, X, ξð Þ ¼ 2

P

∞

m¼0
e�η2m θ2 tð Þ�θ2 τð Þð Þ cos ηmX cos ηmξ, ηm ¼ 2mþ1

2 π,

H
2ð Þ
3 t, τ, X, ξð Þ ¼ 2

P

∞

m¼0
e�η2m θ2 tð Þ�θ2 τð Þð Þ sin ηmX sin ηmξ, ηm ¼

2mþ 1

2
π,

H
2ð Þ
2 t, τ, X, ξð Þ ¼ 1þ 2

P

∞

m¼1
e�η2m θ2 tð Þ�θ2 τð Þð Þ cos ηmX � cos ηmξ, ηm ¼ mπ,

where θ2 tð Þ ¼
Ð

t

0

b sð Þds.

The notation H
2ð Þ
4τξ,H

2ð Þ
4ξξ means partial derivatives of the influence function H

2ð Þ
4

relative to the definite variables τ and ξ, respectively.
Based on formula (20), we calculate

vX t, X, Zð Þ ¼ �

ð

t

0

H
2ð Þ
4ξX t, τ, X, 1ð Þb τð Þu τ, Zð Þdτ (21)

Integrating parts (21), taking into account the relations.

H
2ð Þ
4X t, τ, X, ξð Þ ¼ �H

2ð Þ
3ξ t, τ,X, ξð Þ,H 2ð Þ

3τ t, τ,X, ξð Þ ¼ �b τð ÞH
2ð Þ
3ξξ t, τ,X, ξð Þ,

and the initial condition u t¼0j ¼ 0, we find

vX t, X, Zð Þ ¼

ð

t

0

H
2ð Þ
3 t, τ, X, 1Þð Þuτ τ, Zð Þdτ (22)

We substitute the expression v t, X, Zð Þ (20) in the observation conditions (19):

u t, hið Þ �

ð

1

0

XdX

ð

t

0

H
2ð Þ
4ξ t, τ, X, 1ð Þb τð Þu τ, hið Þdτ ¼ χi tð Þ, i ¼ 1, P (23)

Integrating parts (23) and taking into account equality

H
2ð Þ
4ξ t, τ,X, 1ð Þ ¼ �H

2ð Þ
3X t, τ,X, 1ð Þ,

we obtain [16]
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u t, hið Þ ¼ χi tð Þ �

ð

t

0

H
2ð Þ
3 t, τ, 1, 1ð Þb τð Þu τ, hið Þdτ þ

ð

t

0

ð

1

0

H
2ð Þ
3 t, τ, X, 1ð Þb τð Þu τ, hið ÞdXdτ, i

¼ 1, P

(24)

Let us first put u t, hPð Þ ¼ μsP tð Þ ¼ Cinitial
s tð Þ, where Z ¼ hP is the observation

surface, approaching the point of entry into the work area Z = 1.
Then Eq. (24) for i = P will be

ð

t

0

H
2ð Þ
3 t, τ, 1, 1ð Þb τð ÞμsP tð Þdτ ¼ χsP tð Þ � μsP tð Þ þ

ð

t

0

ð

1

0

H
2ð Þ
3 t, τ, x, 1ð Þb τð ÞμsP tð Þdxdτ

(25)

Applying to Eq. (25) the formula
Ð

t

τ

b σð ÞH
2ð Þ
2 t, σ, 0, 0Þð ÞH

2ð Þ
4 t, σ, 0, 0Þð Þdσ ¼ 1,

obtained by Ivanchov [16], and taking into account.

H
2ð Þ
3 t, σ; 1, 1ð Þ ¼ H

2ð Þ
4 t, σ; 0, 0ð Þ, we obtain

ð

t

0

b τð ÞμsP τð Þdτ ¼

ð

t

0

H
2ð Þ
2 t, σ, 0, 0ð Þb σð Þ χsP σð Þ � μsP σð Þð Þdσ

þ

ð

t

0

H
2ð Þ
2 t, σ, 0, 0ð Þb σð Þdσ

ð

σ

0

ð

1

0

H
2ð Þ
3 σ, τ, x, 1ð Þb τð ÞμsP tð ÞdXdτ, t∈ 0, ttotal

	 


(26)

Differentiating Eq. (26) by t, after the transformations series, we obtain

μsP tð Þ ¼

ð

t

0

H
2ð Þ
2 t, σ, 0, 0ð Þ b σð ÞμsP σð Þ þ χsP σð Þ � μsP σð Þð Þdσ (27)

After multiplying Eq. (27) on the expression H
2ð Þ
4 t, σ, 0, 0Þð Þb σð Þ, the integration

by τ and the differentiation by t

b tð ÞμsP tð Þ þ χsP σð Þ � μsP σð Þ ¼ b tð Þ

ð

t

0

H
2ð Þ
2 t, τ, 0, 0Þð Þμ0sP τð ÞÞdτ:

So we obtain the expression for calculating the co-diffusion coefficient in the
intra-crystallite space:

DintrasP tð Þ � R2b tð Þ ¼ R2 χ0sP tð Þ � μ0sP tð Þ
Ð

t

0

H
2ð Þ
2 t, τ, 0, 0Þð Þμ0sP τð Þdτ � μsP tð Þ

, t∈ 0, ttotal
	 


(28)

Using calculated DintrasP tð Þ with the formula (28) on the observation limit hP, we
define the gradient method DintersP tð Þ in the same way. With DintrasP tð Þ and DintersP tð Þ
in hP, we calculate Сsk t, hPð Þ, substituting it in μsP�1 tð Þ ¼ Сsk t, hPð Þ for the next
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coefficient Dintersi tð Þ, i ¼ P� 1, 1 calculations. All subsequent coefficients Dintrasi tð Þ
will be calculated by the formula

Dintrasi tð Þ � R2bsi tð Þ ¼ R2 χ0si tð Þ � μ0si tð Þ
Ð

t

0

H
2ð Þ
2 t, τ, 0, 0Þð Þμ0si τð Þdτ � μsi tð Þ

, i ¼ P� 1, 1 (29)

with parallel computing Dintersi tð Þ, i ¼ P� 1, 1.

5. Numerical simulation and analysis: co-diffusion coefficients:
concentration profiles in inter- and intra-crystallite spaces

The variation against time of the benzene and hexane intra-crystallite diffusion
coefficients, Dintra1,k аnd Dintra2,k , respectively, is presented in Figure 3 for the five

coordinate positions: 6, 8, 10, 12, and 14 mm, defined now from the top of the bed.
The curves for benzene Dintra1,k are pseudo exponentials. Dintra1,k decreases from 9.0

Figure 3.
Variation of intra-crystallite diffusion coefficients (arbitrary units) for benzene Dintra1,k (left) and hexane
Dintra2,k (right) against time, at different positions in the bed. (Top) time range 6–240 mn, (bottom) time range
100–240 mn.

Figure 4.
Variation of inter-crystallite diffusion coefficients (a.u.) for benzene (left) and hexane (right) against time at
different positions in the bed.
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Figure 5.
Variation of the inter-crystallite concentration (a.u.) calculated for benzene (left) and hexane (right) against
time and at different positions in the bed.

Figure 6.
Distribution of the benzene (left) and hexane (right) concentrations in the intra-crystallite space from the
surface (abscissa 1) to the center (abscissa 0) of the crystallites, at different times: (1) dark blue, t = 25 min;
(2) green, t = 50 min; (3) brown, t = 100 min; and (4) red, t = 200 min.
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E�13 to about 1.0 E�14 a.u. (equilibrium) depending on the position of the crys-
tallite and the time, as well as on the amount of adsorbed gas. The shapes of the
variations of Dintra2,k for hexane are roughly the same, but the diffusion coefficients

are higher, from about 9.0 E�12 to 3.0 E�13 a.u.
Figure 4 presents the variation against time of the benzene and hexane diffusion

coefficients in inter-crystallite space, Dinter1,k аnd Dinter2,k , for the same positions.

These coefficients decrease with time from 2.0 E�6 to 1.0 E�7 a.u. (equilibrium)
for benzene and from 3 E�5 to 1.0 E�6 a.u. for hexane, depending on the bed
position, and increase adsorbed concentrations.

Figure 5 shows the variation against time of the calculated concentrations C
for benzene and hexane in the inter-crystallite space. As can be seen, these
concentrations approach the equilibrium values for a diffusion time around
250 min. But the variations of the concentrations with time are rather different for
the two gases.

Figure 6 shows the variation of the concentrations Q(t,X,z) of adsorbed benzene
(left) and hexane (right) in the micropores of the intra-crystallite space from the
surface (abscissa-1) to the center (abscissa-0) of the crystallites located between 6
and 14 mm from the top of the bed and after 25–200 min. of diffusion (a, b, c, and
d, respectively). The gradients increase, and the mean concentrations decrease with
the increasing distance of the particles from the arrival of the gases. The particles at
6 and 8 mm are saturated with benzene after 100 min, but not yet with hexane.

6. Conclusion

The main result of this work is the possibility, from a single experiment, of
simultaneously distributing several co-diffusing gases in a porous solid and of using
the methods of mathematical modeling to analyze for each of them the distribution
of their concentrations in the intra- and inter-crystallite spaces.

Using the experimental NMR data and proposed co-adsorption models, the
identification procedures for calculating the co-diffusion coefficients for two or
more components in intra- and inter-crystallite spaces are developed. These pro-
cedures use the iterative gradual identification methods on minimizing of the
Lagrange error function and rapid analytic methods based on the influence func-
tion. The co-diffusion coefficients were obtained as a function of time for different
positions along the catalyst bed. In particular, those in the intra-crystallite space
were computed by the analytical method which allowed a calculation with a rela-
tively high degree of discretization over time and to reduce practically twice the
volume of iterative calculations. Using these results, the concentrations of co-
diffusing benzene and hexane in the inter- and intra-crystallite spaces were calcu-
lated for each time and each position in the bed.

Nomenclature

k ¼ 1,N þ 1 layer number, subscript k will be added to all the
following symbols to specify that they are charac-
teristic of the kth layer

c adsorbate concentration in macropores
c∞ equilibrium adsorbate concentration in macropores
C = c/c∞ dimensionless adsorbate concentration in

macropores

12
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Dinter diffusion coefficient in macropores, m2/s
Dintra diffusion coefficient in micropores, m2/s
~K adsorption equilibrium constant

l bed length, m

Δl ¼ lk � lk�1; k ¼ 1,N þ 1 layer thickness (all layers have the same thickness)

L dimensionless bed length (L = 1)
q adsorbate concentration in micropores
q∞ equilibrium adsorbate concentration in micropores
Q = q/q∞ dimensionless concentration of adsorbate in micro-

pores
T temperature of gas phase flow, K, and time total, s
M mass total
u velocity of gas phase flow, m/s2

Λ coefficient of thermal diffusion along the columns
hg gas heat capacity, kJ/(kg K)
μ molecular mass of adsorbate, kg/mol
H total heat capacity of the adsorbent and gas,

kJ/(kg K)
αh heat transfer coefficient
Rcolumn column radius, m
Rg gas constant, kJ mol/(m3 K)
ΔHi activation energy (ΔHi ¼ ΔHi=μ), kJ/mol

ΔHi adsorption heat, kJ/kg

k0i empirical equilibrium coefficient for the i adsorbate,
depending on the adsorbent properties and the dif-
fusing adsorbate component (k0i equal to the ratio
of the desorption and adsorption rate constants)

x distance from crystallite center, m
R mean crystallite radius, m (we assume that the

crystallites are spherical)
X = x/R dimensionless distance from crystallite center
z distance from the bottom of the bed for mathemat-

ical simulation, m
Z = z/l dimensionless distance from the bottom of the bed
t time
τ, ξ variables of integration

ttotal total duration of co-adsorption, mn

Lk dimensionless position of the kth layer
hk (Lk –Lk-1)/2
εinter inter-crystallite bed porosity
einter value utilized in Eq. (9)
n iteration number of identification
m number of adsorbed components
P number of NMR observation surfaces
s index of adsorbate component
i index of NMR observation surface
initial index of initial value (concentrations,

temperature)
macro index of extended Lagrange functional component

for inter-crystallite space
micro index of extended Lagrange functional component

for intra-crystallite space
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Appendix

A. Iterative gradient method of the identification of co-diffusion coefficients

The methodology for solving the direct boundary problem (9)–(15), which
describes the diffusion process in a heterogeneous nanoporous bed, is developed in
[9, 12, 15]. According to [12] the procedure for determining the diffusion coeffi-
cients (16) requires a special technique for calculating the gradients ∇JnDintrask

tð Þ and

∇JnDintersk

tð Þ of the residual functional (17). This leads to the problem of optimizing

the extended Lagrange function [12, 15]:

Φ Dintersk ,Dintrask

� �

¼ Js þ Ismacro þ Ismicro , (A.1)

where Ismacro
, Ismicro

are the components given by Eqs. (A.2) and (A.3),
corresponding to the macro- and microporosity, respectively

Ismacro
¼

ð

T

0

ð

Lk

Lk�1

ϕsk
t,Zð Þ

∂Csk

∂t
�
Dintersk

l2
∂
2Csk

∂Z2 þ einterkKsk

Dintrask

R2

∂Q t,X,Zð Þsk
∂X

� �

X¼1

� �

dZdt

(A.2)

Ismicro
¼

ð

T

0

ð

1

0

ð

Lk

Lk�1

ψ sk
t,X,Zð Þ

∂Q sk
t,X,Zð Þ

∂t
�
Dintrask

R2

∂
2Q sk

∂X2 þ
2

X

∂Q sk

∂X

 ! !

XdXdZdt

(A.3)

Js is the residual functional (17), ϕsk ,ψ sk , s,¼1,2—unknown factors of Lagrange, to

be determined from the stationary condition of the functional Φ Dintersk ,Dintrask

� �

[9, 15]:

ΔΦ Dintersk ,Dintrask

� �

� ΔJs þ ΔIsmacro þ ΔIsmicro ¼ 0 (A.4)

The calculation of the components in Eq. (A.4) is carried out by assuming that
the values Dintersk ,Dintrask are incremented by ΔDintersk ,ΔDintrask . As a result,
concentration Csk t,Zð Þ changes by increment ΔCsk t,Zð Þ and concentration

Q sk
t,X,Zð Þ by increment ΔQ sk

t,X,Zð Þ, s ¼ 1, 2.

Conjugate problem. The calculation of the increments ΔJs, ΔJsmacro
, and ΔJsmicro

in
Eq. (A.4) (using integration by parts and the initial and boundary conditions of the
direct problem (9)–(15)) leads to solving the additional conjugate problem to
determine the Lagrange factors ϕsk

and ψ sk
of the functional (A.1) [15]:

∂ϕsk t,Zð Þ

∂t
þ
Dintersk

l2
∂
2ϕsk

∂Z2 þ einterkKsk

Dintrask

R2

∂ψ sk t,X,Zð Þ

∂X

�

�

�

�

X¼1

¼ En
sk
tð Þδ Z � hkð Þ

(A.5)

where En
sk
tð Þ ¼ Csk Dintraskn,Dinterskn; t, hk

� �

þQ sk
Dintraskn,Dinterskn; t, hk
� �

�Msk tð Þ,

δ Z � hkð Þ (function of Dirac) [15].

∂ψ sk t,X,Zð Þ

∂t
þ
Dintrask

R2

∂
2ψ sk

∂X2 þ
2

X

∂ψ sk

∂X

 !

¼ En
sk
tð Þδ Z � hkð Þ (A.6)
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ϕsk
t,Zð Þ t¼ttotalj ¼ 0;ψ sk

t,X,Zð Þ t¼ttotalj ¼ 0 conditions at t ¼ ttotal
� �

; (A.7)

∂

∂X
ψ sk

t,X,Zð Þ X¼0j ¼ 0;ψ sk
t,X,Zð Þ X¼1j ¼ φsk

t,Zð Þ (A.8)

ϕsk t,Z ¼ Lkð Þ ¼ 0,ϕsk�1
t,Z ¼ Lk�1ð Þ ¼ 0; s ¼ 1, 2, k ¼ N, 2, (A.9)

ϕs1 t,L1ð Þ ¼ 0,
дϕs1

дZ
t,Z ¼ 0ð Þ ¼ 0 (A.10)

We have obtained the solutions ϕsk and ψ sk of problem (A.5)–(A.10) using
Heaviside operational method in [15].

Substituting in the direct problem (9)–(15) Dintersk ,Dintrask , Сsk t,Zð Þ, and
Q sk

t,X,Zð Þ by the corresponding values with increments Dintersk þ

ΔDintersk ,Dintrask þ ΔDintrask , Csk t,Zð Þ þ ΔCsk t, zð Þ, and Q sk t,X,Zð Þ þ ΔQ sk t,X,Zð Þ,

subtracting the first equations from the transformed ones and neglecting second-
order terms of smallness, we obtain the basic equations of the problem (9)–(15) in

terms of increments ΔCsk t,Zð Þ and ΔQ sk
t,X,Zð Þ, s ¼ 1, 2 in the operator form

Lwsk t,X,Zð Þ ¼ Xsk ,wsk ∈ 0, 1ð Þ∪Ωkt, k ¼ 1,N þ 1 (A.11)

Similarly, we write the system of the basic equations of conjugate boundary
problem (A.5)–(A.10) in the operator:

L ∗Ψsk t,X,Zð Þ ¼ Esk tð Þδ Z � hkð Þ,Ψsk ∈ 0, 1ð Þ∪Ωkt, k ¼ 1,N þ 1 (A.12)

where L ¼

∂

∂t
�

∂

∂Z
Dintersk

∂

∂Z

� �

einterk
Dintrask

R

∂

∂X
X¼1j

0
∂

∂t
�
Dintrask

R2

∂
2

∂X2 þ
2

X

∂

∂X

� �

2

6

6

6

4

3

7

7

7

5

,

L ∗ ¼

∂

∂t
þ

∂

∂Z
Dintersk

∂

∂Z

� �

einterk
Dintrask

R2

∂

∂X
X¼1j

0
∂

∂t
þ
Dintrask

R2

∂
2

∂X2 þ
2

X

∂

∂X

� �

2

6

6

6

4

3

7

7

7

5

,

wsk t,X,Zð Þ ¼
ΔCsk t,Zð Þ

ΔQ sk t,X,Zð Þ

" #

, Ψsk t,X,Zð Þ ¼
ϕsk

t,Zð Þ

ψ sk t,X,Zð Þ

" #

.

Xsk t,X,Zð Þ ¼

∂

∂Z
ΔDintersk

∂

∂Z
Csk

� �

� einterk
ΔDintrask

R2

∂

∂X
Q sk

t,X,Zð ÞX¼1

ΔDintrask

R2

∂
2

∂X2 þ
2

X

∂

∂X

� �

Q sk
t,X,Zð Þ

2

6

6

6

4

3

7

7

7

5

(A.13)

where L ∗ is the conjugate Lagrange operator of operator L.
The calculated increment of the residual functional (17), neglecting second-

order terms, has the form

ΔJs Dintrask ,Dintersk

� �

¼

ð

T

0

ð

Lk

Lk�1

L�1Xsk,1 t,Zð Þ � Esk tð Þδ Z � hkð ÞdZdt

þ

ð

T

0

ð

Lk

Lk�1

ð

1

0

L�1Xsk2 t,X,Zð Þ � Esk tð Þδ Z � hkð ÞXdXdZdt

(A.14)
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wherе wsk ¼ L�1Xsk and L�1 is the inverse operator of operator L.
Defining the scalar product

Lwsk t,X,Zð Þ,Ψsk t,X,Zð Þ
� �

¼

Ð Ð

ΩkT

LΔCsk t,Zð Þϕsk t,Zð ÞdZdt

ÐÐÐ

0,Rð Þ∪ΩkT

LΔQ sk
t,X,Zð Þψ sk

t,X,Zð ÞXdXdZdt

2

6

4

3

7

5

(A.15)

and taking into account (A.19) Lagrange’s identity [12, 15]

Lwsk t,X,Zð Þ,Ψsk t,X,Zð Þ
� �

¼ wsk t,X,Zð Þ,L ∗Ψsk t,X,Zð Þ
� �

(A.16)

and the equality L�1 ∗ Esk tð Þδ Z � hkð Þ
	 


¼ Ψsk , we obtain the increment of the
residual functional expressed by the solution of conjugate problem (A.6)–(A.10)
and the vector of the right-hand parts of Eq. (A.13):

ΔJs Dintersk ,Dintrask

� �

¼ Ψsk t,X,Zð Þ, Xsk t,X,ZÞð Þ
�

(A.17)

where ϕsk
t,Zð Þ and ψ sk

t,X,Zð Þ belong to Ωkt and 0, 1½ �∪Ωkt, respectively, L
�1 ∗ is

the conjugate operator to inverse operator L�1, and Ψsk is the solution of conjugate
problem (A.5)–(A.10).

Reporting in Eq. (A.17) the components Xsk t,X,Zð Þ taking into account Eq. (A.18),
we obtain the formula which establishes the relationship between the direct problem
(9)–(15) and the conjugate problem (A.6)–(A.10) which makes it possible to obtain
the analytical expressions of components of the residual functional gradient:

ΔJs Dintrask ,Dintersk

� �

¼

ϕsk t,Zð Þ,
∂

∂Z
ΔDintersk

∂

∂Z
Csk

� �

� einterk
ΔDintrask

R2

∂

∂X
Q sk t,X,Zð ÞX¼1

� �

þ ψ sk t,X,Zð Þ,
ΔDintrask

R2

∂
2

∂X2 þ
2

X

∂

∂X

� �

Q sk t,X,Zð Þ

� �

(A.18)

Differentiating expression (A.18), by ΔDintrask and ΔDintersk , respectively, and
calculating the scalar products according to Eq. (A.15), we obtain the required
analytical expressions for the gradient of the residual functional in the intra- and
inter-crystallite spaces, respectively:

∇JDintrask
tð Þ ¼ �

einterk
R2

ð

Lk

Lk�1

∂

∂X
Q sk t, 1,Zð Þϕsk t,Zð ÞdZ

þ
1

R2

ð

Lk

Lk�1

ð

1

0

∂
2

∂X2 þ
2

X

∂

∂X

� �

Q sk t,X,Zð Þψ sk t,X,Zð ÞXdXdZ (A.19)

∇JDintersk
tð Þ ¼

ð

Lk

Lk�1

∂
2Csk t,Zð Þ

∂Z2 ϕsk
t,Zð ÞdZ (A.20)

The formulas of gradients ∇JnDintrask

tð Þ and ∇JnDintersk

tð Þ include analytical expres-

sions of the solutions of the direct problem (9)–(14) and inverse problem (A.5)–
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(A.10). They provide high performance of computing process, avoiding a large
number of inner loop iterations by using exact analytical methods [2, 15].

B. The linearization schema of the nonlinear co-adsorption model: system of
linearized problems and construction of solutions

The linearization schema of nonlinear co-adsorption (1)–(8) is shown in order to
demonstrate the simplicity of implementation for the case of two diffusing compo-
nents (m ¼ 2) and isothermal adsorption. The simplified model (1)–(8) for the case
of m ¼ 2 is converted into the form

дСs t,Zð Þ

дt
¼

Dinters

l2
∂
2
Сs

∂Z2 � einter ~Ks
Dintras

R2

∂Q s

∂X

� �

X¼1

(A.21)

дQ s t,X,Zð Þ

дt
¼

Dintras

R2

∂
2Q s

∂X2 þ
2

X

∂Q s

∂X

� �

, s ¼ 1, 2 (A.22)

with initial conditions

Cs t ¼ 0,Zð Þ ¼ 0;Q s t ¼ 0,X,Zð Þ ¼ 0;X ∈ 0, 1ð Þ, s ¼ 1, 2 (A.23)

boundary conditions for coordinate X of the crystallite

∂

∂X
Q s t,X ¼ 0,Zð Þ ¼ 0 (A.24)

Q1 t,X ¼ 1,Zð Þ ¼
K1C2 t,Zð Þ

1þ K1C1 t,Zð Þ þ K2C2 t,Zð Þ
Langmuir equilibriumð Þ,

Q2 t,X ¼ 1,Zð Þ ¼
K2C2 t,Zð Þ

1þ K1C1 t,Zð Þ þ K2C2 t,Zð Þ

(A.25)

boundary and interface conditions for coordinate Z

Cs t, 1ð Þ ¼ 1,
дСs

дZ
t,Z ¼ 0ð Þ ¼ 0, t∈ 0, ttotal

� �

(A.26)

K1 ¼
θ1

p1 1�θ1�θ2ð Þ
,K2 ¼

θ2

p2 1�θ1�θ2ð Þ
, where p1, p2 are the co-adsorption equilibrium

constants and partial pressure of the gas phase for 1-th and 2-th component and

θ1, θ2, are the intra-crystallite spaces occupied by the corresponding adsorbed mol-

ecules. The expression φs C1,C2ð Þ ¼ Cs t,Zð Þ
1þK1C1 t,Zð ÞþK2C2 t,Zð Þ is represented by the series of

Tailor [5]:

φs C1,C2ð Þ ¼ φs 0, 0ð Þ þ
∂φs

∂C1

�

�

�

�

0,0ð Þ

C1 þ
∂φs

∂C2

�

�

�

�

0,0ð Þ

C2

 !

þ
1

2!

∂
2φs

∂C2
1

�

�

�

0,0ð Þ
C2
1 þ 2 ∂

2φs

∂C1C2

�

�

�

0,0ð Þ
C1C1þ

þ∂
2φs

∂C2
2

�

�

�

0,0ð Þ
C2
2

0

B

@

1

C

A
þ …

(A.27)
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As a result of transformations, limiting to the series not higher than the second
order, we obtain

K1C1 t,Zð Þ

1þ K1C1 t,Zð Þ þ K2C2 t,Zð Þ
¼ K1C1 t,Zð Þ � K2

1C
2
1 t,Zð Þ þ

1

2
K1K2C1 t,Zð ÞC2 t,Zð Þ

� �

,

K2C2 t,Zð Þ

1þ K1C1 t,Zð Þ þ K2C2 t,Zð Þ
¼ K2C2 t,Zð Þ �

1

2
K1K2C

2
1 t,Zð ÞC1

2 t,Zð Þ þ K2
2C

2
2 t,Zð Þ

� �

(A.28)

Substituting the expanded expression (A.28) in Eq. (A.25) of nonlinear systems
(A.20)–(A.26), we obtain

Q1 t, X,Zð ÞX¼1 ¼ K1C1 t,Zð Þ � ε C2
1 t,Zð Þ þ

1

2

K2

K1
C1 t,Zð ÞC2 t,Zð Þ

� �

,

Q2 t, X,Zð ÞX¼1 ¼ K2C2 t,Zð Þ � ε
1

2

K2

K1
C1 t,Zð ÞC2 t,Zð Þ þ

K2

K1

� �2

C2
2 t,Zð Þ

 ! (A.29)

where ε ¼ K2
1 < < 1 is the small parameter.

Taking into account the approximate equations of the kinetics of co-adsorption
(A.29) containing the small parameter ε, we search for the solution of the problem
(A.21)–(A.26) by using asymptotic series with a parameter ε in the form [6, 7]

Cs t, Zð Þ ¼ Cs0 t, Zð Þ þ εCs1 t, Zð Þ þ ε2Cs2 t, Zð Þ þ … , (A.30)

Q s t,X,Zð Þ ¼ Q s0 t,X,Zð Þ þ εQ s1 t,X,Zð Þ þ ε2Q s2 t,X,Zð Þ þ … , s ¼ 1, 2 (A.31)

As the result of substituting the asymptotic series (A.30)–(A.31) into the equa-
tions of the nonlinear boundary problem (A.21)–(A.26) considering Eq. (A.28), the
problem (A.21)–(A.26) will be parallelized into two types of linearized boundary
problems [6]:

The problem As0 , s ¼ 1, 2 (zero approximation with initial and boundary conditions
of the initial problem): to find a solution in the domain D ¼ t, X, Zð Þ :f
t>0,X ∈ 0, 1ð Þ,Z ∈ 0, 1ð Þgof a system of partial differential equations

дСs0 t,Zð Þ

дt
¼

Dinters

l2
∂
2
Сs0

∂Z2 � einter ~Ks
Dintras

R2

∂Q s0

∂X

� �

X¼1

(A.32)

дQ s0 t,X,Zð Þ

дt
¼

Dintras

R2

∂
2Q s0

∂X2 þ
2

X

∂Q s0

∂X

� �

(A.33)

with initial conditions.

Cs0 t ¼ 0,Zð Þ ¼ 0;Q s0 t ¼ 0,X,Zð Þ ¼ 0;X ∈ 0, 1ð Þ, s ¼ 1, 2 (A.34)

boundary conditions for coordinate X of the crystallite

∂

∂X
Q s0 t,X ¼ 0,Zð Þ ¼ 0 (A.35)

Q s0 t,X ¼ 1,Zð Þ ¼ KsCs0 t,Zð Þ, s ¼ 1, 2 (A.36)

boundary and interface conditions for coordinate Z.
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Cs0 t, 1ð Þ ¼ 1,
дСs0

дZ
t,Z ¼ 0ð Þ ¼ 0, t∈ 0,Tð Þ (A.37)

The problem An; n ¼ 1,∞ (nth approximation with zero initial and boundary
conditions): to construct in the domain D a solution of a system of equations

дСsn t,Zð Þ

дt
¼

Dinters

l2
∂
2
Сsn

∂Z2 � einter ~Ks
Dintras

R2

∂Q sn

∂X

� �

X¼1

(A.38)

дQ sn t,X,Zð Þ

дt
¼

Dintras

R2

∂
2Q sn

∂X2 þ
2

X

∂Q sn

∂X

� �

(A.39)

with initial conditions.

Csn t ¼ 0,Zð Þ ¼ 0;Q sn t ¼ 0,X,Zð Þ ¼ 0; s ¼ 1, 2 (A.40)

boundary conditions for coordinate X of the crystallite.

∂

∂X
Q sn t,X ¼ 0,Zð Þ ¼ 0 (A.41)

Q1n t,X,Zð ÞX¼1 ¼ K1C1n t,Zð Þ �
X

n�1

ν¼0

C1v t, Zð Þ C1,n�1�ν t, Zð Þ þ
1

2

K2

K1
C2,n�1�ν t, Zð Þ

� �

,

Q2n t,X,Zð ÞX¼1 ¼ K2C2n t,Zð Þ �
X

n�1

ν¼0

C2s t, Zð Þ
1

2

K2

K1
C1,n�1�ν t, Zð Þ þ

K2

K1

� �2

C2,n�1�ν t, Zð Þ

 !

(A.42)

boundary and interface conditions for coordinate Z.

Csn t, 1ð Þ ¼ 0,
дСs0

дZ
t,Z ¼ 0ð Þ ¼ 0, t∈ 0, ttotal

� �

(A.43)

The problems As0 , s ¼ 1, 2 are linear with respect to zero approximation Cs0 ,Q s0 ;

the problems Asn ; n ¼ 1,∞ are linear with respect to the n-th approximation Csn ,Q sn

and nonlinear with respect to all previous n-1 approximations Cs0 , … ,Csn�1 .
As demonstrated for the two-component adsorption model (A.21)–(A.26), our

proposed methodology can easily be developed and applied to the co-adsorption of
any number of gases.

19

Competitive Adsorption and Diffusion of Gases in a Microporous Solid
DOI: http://dx.doi.org/10.5772/intechopen.88138



Author details

Mykhaylo Petryk1*, Mykola Ivanchov2, Sebastian Leclerc3, Daniel Canet3

and Jacques Fraissard4

1 Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine

2 Ivan Franco National University of Lviv, Lviv, Ukraine

3 University of Lorraine, Vandoeuvre-les-Nancy, France

4 Faculty of Science and Engineering, ESPCI, Sorbonne University, Paris, France

*Address all correspondence to: mykhaylo_petryk@tu.edu.te.ua

© 2019 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

20

Zeolites - New Challenges



References

[1] Leclerc S, Trausch G, Cordier B,
Grandclaude D, Retournard A,
Fraissard J, et al. Chemical shift imaging
(CSI) by precise object displacement.
Magnetic Resonance in Chemistry.
2006;44:311-317

[2] Petryk M, Leclerc S, Canet D,
Fraissard J. Mathematical modeling and
visualization of gas transport in a zeolite
bed using a slice selection procedure.
Diffusion Fundamentals. 2007;4:11.1.
Available from: http://www.diffusion-f
undamentals.org

[3] Petryk M, Leclerc S, Canet D,
Fraissard J. Modeling of gas transport in
a microporous solid using a sclice
selection procedure: Application to the
diffusion of benzene in ZSM5. Catalysis
Today. 2008;139:234-240

[4] Leclerc S, Petryk M, Canet D,
Fraissard J. Competitive diffusion of
gases in a zeolite using proton NMR and
a slice selection procedure. Catalysis
Today. 2012;187:104-107

[5] Petryk MR, Khimich OM, Boyko IV,
Mykhalyk DM, Petryk MM,
Kovbashyn VI. Mathematical Modeling
of Heat Transfer and Adsorption of
Hydrocarbons in Nanoporous Media of
Exhaust Gas Neutralization Systems.
Kyiv: National Academy of Sciences of
Ukraine; 2018. p. 280

[6] Petryk M, Khimitch A, Petryk MM.
Simulation of adsorption and desorption
of hydrocarbons in nanoporous catalysts
of neutralization systems of exhaust
gases using nonlinear langmuir
isotherm. Journal of Automation and
Information Sciences, Begell
House USA. 2018;50(10):18-33

[7] Petryk M, Khimitch A, Petryk MM,
Fraissard J. Experimental and computer
simulation studies of dehydration on
microporous adsorbent of natural gas

used as motor fuel. Fuel. 2019;239:
1324-1330

[8] Petryk M, Leclerc S, Canet D,
Sergienko I, Deineka V, Fraissard J.
Competitive diffusion of gases in a
zeolite bed: NMR and slice selection
procedure, modelling and parameter
identification. The Journal of Physical
Chemistry C. ACS (USA). 2015;119(47):
26519-26525

[9]Deineka V, Petryk M, Fraissard J.
Identifying kinetic parameters of mass
transfer in components of
multicomponent heterogeneous
nanoporous media of a competitive
diffusion system. Cybernetics and
System Analysis Springer. 2011;47(5):
705-723

[10] Ruthven DM. Principles of
Adsorption and Adsorption Processes.
New York: John Wiley; 1984. 433 p

[11] Kärger J, Ruthven D, Theodorou D.
Diffusion in Nanoporous Materials.
Hoboken: John Wiley & Sons; 2012.
660 p

[12] Sergienko IV, Deineka VS. Optimal
Control of Distributed Systems with
Conjugation Conditions. New York:
Kluwer Aсademic Publishers; 2005

[13] Tikhonov AN, Arsenin VY.
Solutions of Ill-Posed Problems.
Washington D.C.: V.H. Winston; New
York: J. Wiley; 1977

[14] Lions J-L. Perturbations Singulières
Dans les Problèmes Aux Limites et en
Contrôle Optimal. New York: Springer;
2008. Lecture Notes in Math. Ser

[15] Sergienko IV, Petryk MR, Leclerc S,
Fraissard J. Highly efficient methods of
the identification of competitive
diffusion parameters in inhomogeneous
media of nanoporous particles.
Cybernetics and Systems Analysis
Springer. 2015;51(4):529-546

21

Competitive Adsorption and Diffusion of Gases in a Microporous Solid
DOI: http://dx.doi.org/10.5772/intechopen.88138



[16] Ivanchov M. Inverse Problems for
Equations of Parabolic Type.
Mathematical Studies. Monograph
Series. Vol. 10. Lviv: VNTL Publishers;
2003

[17] Lenyuk M, Petryk M. The Methods
of Integral Transforms of Fourier-Bessel
with Spectral Parameter in Problems of
Mathematical Modeling of the Mass
Exchange Process in Heterogeneous
Medias. Кyiv: Naukova Dumka; 2000

22

Zeolites - New Challenges


