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Abstract

Starch is a polymer of glucose where alpha-linkages associated with glucopyranose units. It comprises
a mixture of Amylose and Amylopectin. Furthermore, Amylose is a linear chain of hundreds of glucose
molecules. Starches are not allowed to be dissolved in water. They can be digested by breaking down
alpha bonds (glycosidic bonds). Its cyclic degradation products, called cyclodextrins, are the best role
models for Amylose. They can be considered simple turns of the Amylose propeller that has imploded
into a circular path. Both humans and animals have Amylases, which allow them to digest starches. The
important sources of starch include potatoes, rice, wheat and maize for human consumption. The production
of starches is how plants store glucose. The blue colour of starch produced by an iodine solution or iodine
reaction is used for its identification. Polysaccharides with a reduced degree of polymerization, known as
dextrins, are produced in the starch’s partial acid hydrolysis. Complete hydrolysis leads to glucose. In this
article, we compute the topological properties: Zagreb index M1(Γ) and M2(Γ), Randić index Rα(Γ) for
α =−1

2 ,−1, 1
2 ,1, Atom-bond connectivity index ABC(Γ), Geometric arithmetic index GA(Γ), fourth Atom-

bond connectivity index ABC4(Γ) and fifth Geometric arithmetic index GA5(Γ), degree-based topological
indices a graph Γ representing Polysaccharides, namely, Amylose and Blue Starch Iodine Complex. In the
end, we compare these indices and depict their graphic behavior.
Keywords: Polysaccharides, Amylose, Blue Starch Iodine Complex, Zagreb index, Randić index, Atom-
bond connectivity index, Geometric arithmetic index

1 Introduction
Amylose has the most basic structure of all nutritional polysaccharides, composed purely of glucose polymers
connected only by α(1−4) bonds. Notice that starch is, in fact, a combination of Amylose and Amylopectin.
Amylose is not allowed to be dissolved in water and is more difficult to digest compared to Amylopectin. The
complexing of Amylopectin with Amylose facilitates its water- another view of Amylose solubility and di-
gestibility. Amylose plays an important role in the storage of plant energy, and as plants do not require glucose
to explode, its dense structure and slow breakdown features are under plant’s growth. Another function of
polysaccharides within cells refers to structural support. Besides, hemicelluloses is another group of polysac-
charides located in plant cell walls.
In 1814, Colin and Claubry discovered the starch-iodine reaction, which is well-renowned to any chemist from
basic courses in qualitative and quantitative analysis.

∗Corresponding author
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The first topological index was derived in 1947 when Wiener worked on the boiling point of paraffin,
alkanes. It was known as the Wiener number. Later on, it is called a path number. The work [2] described
the M-polynomial and degree-based topological indices of graphs. The articles [7, 9] discussed the symmetric
divisor deg index of graphs, first Zegrab after 30 years in changed form and topological indices of molecular
structure. The authors in [10] also discussed the π electron energy of hydrocarbons. In the recent years, Hasni et
al. computed the degree based topological indices of line graph of benzene ring embedded in P-type-surface in
2D network [1]. In [11] the authors calculated the index numbers for the edge version of geomeetric-arithmetic
index of nanocones. Much research has been done to explain the nature of chromophore absorption at 620 nm
that yields starch-iodine complex, the distinctive dark blue colour. Still, there seem to have been many disputes
that might be addressed to some extent in recent decades.

Let Γ be connected simple graph with V (Γ) a set of vertices and E(Γ) a set of edges. Let u ∈V (Γ) and its
degree is represented by ℜ̃u. The idea of degree-based topological indices began from Wiener index, in 1945,
Wiener defined them while studying alkane’s boiling point cf. [15]. The first degree-based topological index is
Randić index given by Milan Randić in [12] and is described as:

R− 1
2
= ∑

uv∈E(Γ)

1√
ℜ̃uℜ̃v

Generalized Randić index (denoted as Rα(Γ) ) is described as:

Rα(Γ) = ∑
uv∈E(Γ)

(ℜ̃uℜ̃v)
α

α = 1,
1
2
,−1

2
,−1 (1)

Inverse generalized Randić index (denoted as RRα(Γ)) is described as:

RRα(Γ) = ∑
uv∈E(Γ)

1

(

√
ℜ̃uℜ̃v)α

In [8, 10] and [13], Gutman and Trinajstić introduced and defined the first Zagreb index (denoted as M1(Γ))
and second Zagreb index (denoted as M2(Γ)) as:

M1(Γ) = ∑
uv∈E(Γ)

(ℜ̃u + ℜ̃v)

M2(Γ) = ∑
uv∈E(Γ)

(ℜ̃uℜ̃v)
(2)

In [3], Estrada introduced and studied about the Atom-bond connectivity index (denoted as ABC(Γ)). It is
defined as:

ABC(Γ) = ∑
uv∈E(Γ)

√√√√ℜ̃u + ℜ̃v−2

ℜ̃uℜ̃v
(3)

Geometric-arithmetic index (denoted as GA(Γ)) was given by Vukičević cf. [14] and is defined as:

GA(Γ) = ∑
uv∈E(Γ)

2
√

ℜ̃uℜ̃v

ℜ̃u + ℜ̃v
(4)

The fourth version of the ABC index (denoted as ABC4(Γ)) was introduced by Ghorbani in [4] and is defined
as:

2



ABC4(Γ) = ∑
uv∈E(Γ)

√
Su +Sv−2

SuSv
(5)

where Su = ∑v=NΓ(u) ℜ̃v and NΓ(u) = {v ∈V (Γ)|uv ∈ E(Γ)}

The fifth version of the GA index (denoted as GA5(Γ)) was given by Graovac cf. [5] and is defined as:

GA5(Γ) = ∑
uv∈E(Γ)

2
√

SuSv

Su +Sv
(6)

2 Result for Amylose
Starch is a polymer of glucose whose glucopyranose alpha bonds bind cells. It is a mixture of Amylose and
Amylopectin. Amylose is a linear chain of hundreds of glucose molecules. Starches cannot be dissolved in
water. They can be digested by breaking the alpha-bonds (glycosidic bonds). Amylose is a polysaccharide
composed of α-D-glucose units, linked by α(1−4) glycosidic bonds. It is one of the two starch components
that make up about 20 to 30 percent. Due to its tight spiral structure, Amylose seems to be more resilient to
digestion than other starch molecules and is, thus, a significant form of resistant starch [6] (see Figure1 for a
molecular structure of Amylose and Figure2 for its unit graph and the graph model corresponding to Amylose
for n=4, where n is the number of units). In Amylose, there are three types of vertices having degrees 1, 2, and
3. For n≥ 2, Amylose has four types of edge partitions as:

E1,2(Γ) = {ℜ̃u = 1, ℜ̃v = 2 and u,v ∈V (Γ)}

E1,3(Γ) = {ℜ̃u = 1, ℜ̃v = 3 and u,v ∈V (Γ)}

E2,3(Γ) = {ℜ̃u = 2, ℜ̃v = 3 and u,v ∈V (Γ)}

E3,3(Γ) = {ℜ̃u = 3, ℜ̃v = 3 and u,v ∈V (Γ)}

Figure 1: Molecular structure of Amylose

Types of edges E{1,2} E{1,3} E{2,3} E{3,3}
Edges (1,2) (1,3) (2,3) (3,3)

Frequency n 2n+2 5n−2 4n

Table 1: Edge partition of edges based on degree of vertices
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(a) (b)

Figure 2: (a) Graph of Amylose for n=1 (b) Graph of Amylose for n=4

Theorem 1. For all n≥ 2, the graph Γ of Amylose, we have the following:

R1(Γ) = 74n−6
R 1

2
(Γ) = 29.1258n−1.4349

R− 1
2
(Γ) = 5.2363n+0.3382

R−1(Γ) = 2.4444n+0.3334

Proof. The general Randić connectivity index Rα(Γ) for α = 1 is

R1(Γ) = ∑
uv∈E(Γ)

ℜ̃uℜ̃v

From Table 1 and Equation 1, we get

R1(Γ) = n(1×2)+(2n+2)(1×3)+(5n−2)(2×3)+4n(3×3)
= 74n−6

Now, for α = 1
2 , the general Randić connectivity index Rα(Γ) is

R 1
2
(Γ) = ∑

uv∈E(Γ)

√
ℜ̃uℜ̃v

Again, from Table 1 and Equation 1, we have

R 1
2
(Γ) = n

√
(1×2)+(2n+2)

√
(1×3)+(5n−2)

√
(2×3)+4n

√
(3×3)

= 29.1258n−1.4349

If α =−1
2 , then

R− 1
2
(Γ) = ∑

uv∈E(Γ)

1√
ℜ̃uℜ̃v
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From Table 1 and Equation 1, it follows that

R− 1
2
(Γ) =

n√
(1×2)

+
(2n+2)√
(1×3)

+
(5n−2)√
(2×3)

+
4n√
(3×3)

= 5.2363n+0.3382

Now, for α =−1, we have

R−1(Γ) = ∑
uv∈E(Γ)

1

ℜ̃uℜ̃v

From Table 1 and Equation 1, we get

R−1(Γ) =
n

(1×2)
+

(2n+2)
(1×3)

+
(5n−2)
(2×3)

+
4n

(3×3)
= 2.4444n+0.3334

Theorem 2. For all n≥ 2, Γ be the graph of Amylose. Then we have the following:

M1(Γ) = 60n−2
M2(Γ) = 74n−6
ABC(Γ) = 8.5423n+0.2188
GA(Γ) = 11.5738n−0.2276

Proof. By using Table 1 and Equation 2, we get

M1(Γ) = ∑
uv∈E(Γ)

(ℜ̃u + ℜ̃v)

= n(1+2)+(2n+2)(1+3)+(5n−2)(2+3)+4n(3+3)
= 60n−2

M2(Γ) = ∑
uv∈E(Γ)

ℜ̃uℜ̃v

= n(1×2)+(2n+2)(1×3)+(5n−2)(2×3)+4n(3×3)
= 74n−6

By using Table 1 and Equation 3, we get

ABC(Γ) = ∑
uv∈E(Γ)

√√√√ℜ̃u + ℜ̃v−2

ℜ̃uℜ̃v

= n

√
1+2−2

1×2
+(2n+2)

√
1+3−2

1×3
+(5n−2)

√
2+3−2

2×3
+4n

√
3+3−2

3×3
= 8.5423n+0.2188
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By using Table 1 and Equation 4, we get

GA(Γ) = ∑
uv∈E(Γ)

2
√

ℜ̃uℜ̃v

ℜ̃u + ℜ̃v

= 2
(

n
√

1×2
(1+2)

+(2n+2)
√

1×3
(1+3)

+(5n−2)
√

2×3
(2+3)

+4n
√

3×3
(3+3)

)
= 11.5738n−0.2276

In the following table, we give the edge partition centered on degree sum of end vertices for each edge.

Types of edges E{2,4} E{3,6} E{3,7} E{4,7} E{6,6} E{6,7} E{6,8} E{7,7} E{7,8}
Number of edges (2,4) (3,6) (3,7) (4,7) (6,6) (6,7) (6,8) (7,7) (7,8)

Frequency n 1 2n+1 n 1 3n−1 n−1 2n+1 2n−2

Table 2: Edge partition based on degree sum of end vertices of each edge

Theorem 3. For all n≥ 2, the graph Γ of Amylose, we have

ABC4(Γ) = 6.4972n+0.2874
GA5(Γ) = 11.7142n−0.123

Proof. By using Table 2 and Equation 5, we get

ABC4(Γ) = ∑
uv∈E(Γ)

√
Su +Sv−2

SuSv

= n

√
2+4−2

2×4
+

√
3+6−2

3×6
+(2n+1)

√
3+7−2

3×7
+n

√
4+7−2

4×7
+

√
6+6−2

6×6

+(3n−1)

√
6+7−2

6×7
+(n−1)

√
6+8−2

6×8
+(2n+1)

√
7+7−2

7×7
+(2n−2)

√
7+8−2

7×8
= 6.4972n+0.2874

By using Table 2 and Equation 6, we get

GA5(Γ) = ∑
uv∈E(Γ)

2
√

SuSv

Su +Sv

= 2
(

n
√

2×4
(2+4)

+

√
3×6

(3+6)
+(2n+1)

√
3×7

(3+7)
+n
√

4×7
(4+7)

+

√
6×6

(6+6)
+(3n−1)

√
6×7

(6+7)

+(n−1)
√

6×8
(6+8)

+(2n+1)
√

7×7
(7+7)

+(2n−2)
√

7×8
(7+8)

)
= 11.7142n−0.123
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Table 3: Numerical Comparison of M1(G), M2(Γ), ABC(Γ), GA(Γ), R1(Γ), R−1(Γ), R 1
2
(Γ), and R− 1

2
(Γ)

n M1(Γ) M2(Γ) ABC(Γ) GA(Γ) R1(Γ) R−1(Γ) R 1
2
(Γ) R− 1

2
(Γ)

1 58 68 8.7611 11.3462 68 2.7778 27.6909 5.5746
2 118 142 17.3034 22.92 142 5.2222 56.8166 10.8109
3 178 216 25.8457 34.4938 216 7.6667 85.9424 16.0474
4 238 290 34.388 46.0676 290 10.1111 115.0682 21.2837
5 298 364 42.9303 57.6414 364 12.5556 144.1939 26.5201
6 358 438 51.4726 69.2152 438 15 173.3197 31.7565
7 418 512 60.0149 80.789 512 17.4444 202.4455 36.9929
8 478 586 68.5572 92.3628 586 19.8889 231.5712 42.2293
9 538 660 77.0995 103.9366 660 22.3333 260.6969 47.4656

10 598 734 85.6418 115.5104 734 24.7778 289.8228 52.7020

Table 4: Numerical Comparison of ABC4(Γ) and GA5(Γ)

n 1 2 3 4 5 6 7 8 9 10
ABC4(Γ) 6.785 13.282 19.779 26.276 32.773 39.271 45.768 52.265 58.762 65.259
GA5(Γ) 11.591 23.305 35.019 46.734 58.448 70.162 81.876 93.5906 105.305 117.019

3 Numerical and Graphical Representation
” The numeric representation of the results calculated above is illustrated in Tables 3 and 4, while the graphic
representation is devoted to Figures 3 and 4.”

Figure 3: (a) Comparison of Rα for α = 1, −1, 1
2 , −1

2 , (b) Comparison of M1(Γ), M2(Γ), ABC(Γ) and GA(Γ)

4 Results for Blue Starch-Iodine Complex
The main structure for Amylose are cyclic degradants known as cyclodextrins. They are obtained enzymati-
cally and may be considered as single turns of the helix of Amylose imploding into a circular path. In all of
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Figure 4: Comparison of ABC4(Γ), GA5(Γ)

these complexes, cyclodextrin molecules are positioned in front to form dimers and they are piled together to
generate large cylinders, that resemble the Amylose helix in its global structure. The most interesting one is
(trimesic acid H20)10HI5 with linear polyiodide chain. Even though this structural model was accepted. But,
unfortunately, cannot shed light on the actual configuration of the polyiodide chain (see Figure5 for Molecu-
lar structure of Blue Starch-Iodine and Figure6 for its unit graph and the graph model corresponding to Blue
Starch-Iodin for n=6, where n is the number of units)). In starch iodine there are three types of vertices having
degrees 1, 2, and 3. For n≥ 3, Blue Starch-Iodine Complex has five types of edge partitions as:

E1,2(Γ) = {ℜ̃u = 1, ℜ̃v = 2 and u,v ∈V (Γ)}

E1,3(Γ) = {ℜ̃u = 1, ℜ̃v = 3 and u,v ∈V (Γ)}

E2,2(Γ) = {ℜ̃u = 2, ℜ̃v = 2 and u,v ∈V (Γ)}

E2,3(Γ) = {ℜ̃u = 2, ℜ̃v = 3 and u,v ∈V (Γ)}

E3,3(Γ) = {ℜ̃u = 3, ℜ̃v = 3 and u,v ∈V (Γ)}

Figure 5: (Molecular structure of Blue Starch-Iodine)
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(a) (b)

Figure 6: (a) Graph of Blue Starch-Iodine for n=1 (b) Graph of Blue Starch-Iodine for n=6)

Types of edges E{1,2} E{1,3} E{2,2} E{2,3} E{3,3}
Number of edges (1,2) (1,3) (2,2) (2,3) (3,3)

Frequency 2n ∑
n−1
i=1 (n+2)−2 n ∑

n−1
i=1 (6n−2)+2 4n

Table 5: Edge partition based on degree of vertices

Theorem 4. For all n≥ 3, the graph Γ of blue starch-iodine complex, we have the following Rα(Γ), α ∈ R :

R1(Γ) = 39n2−n+12

R 1
2
(Γ) = 16.429n2−1.0354+2.8695

R− 1
2
(Γ) = 3.0272n2 + .5585n−0.6764

R−1(Γ) = 0.75n2 +0.6944n−0.6667

Proof. For α=1, the general Randić connectivity index is

R1(Γ) = ∑
uv∈E(Γ)

ℜ̃uℜ̃v

From Table 5 (for edge partition) and Equation 1, we get

R1(Γ) = 2n(1×2)+ [
n−1

∑
i=1

(n+2)−2](1×3)+n(2×2)+ [
n−1

∑
i=1

(6n−2)+2](2×3)+4n(3×3)

= 39n2−n+12

Now, for α = 1
2 , we have

R 1
2
(Γ) = ∑

uv∈E(Γ)

√
ℜ̃uℜ̃v

By using Table 5 and Equation 1, after simplification, we have

R 1
2
(Γ) = 2n

√
(1×2)+ [

n−1

∑
i=1

(n+2)−2]
√

(1×3)+n
√

(2×2)+ [
n−1

∑
i=1

(6n−2)+2]
√
(2×3)+4n

√
(3×3)

= 16.429n2−1.0354+2.8695
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For α =−1
2 , we have

R− 1
2
(Γ) = ∑

uv∈E(Γ)

1√
ℜ̃uℜ̃v

From Table 5 and Equation 1, it follows that

R− 1
2
(Γ) =

2n√
(1×2)

+
[∑n−1

i=1 (n+2)−2]√
(1×3)

+
n√

(2×2)
+

[∑n−1
i=1 (6n−2)+2]√

(2×3)
+

4n√
(3×3)

= 3.0272n2 + .5585n−0.6764

For α =−1, we have

R−1(Γ) = ∑
uv∈E(Γ)

1

ℜ̃uℜ̃v

Again by using Table 5 and Equation 1, we get

R−1(Γ) =
2n

(1×2)
+

[∑n−1
i=1 (n+2)−2]

(1×3)
+

n
(2×2)

+
[∑n−1

i=1 (6n−2)+2]
(2×3)

+
4n

(3×3)
= 0.75n2 +0.6944n−0.6667

Theorem 5. For all n≥ 3, Γ be the graph of blue starch-iodine complex. Then we have the following:

M1(Γ) = 34n2−2n+4

M2(Γ) = 39n2−n+12

ABC(Γ) = 5.0591n2−0.0523n−0.4376

GA(Γ) = 6.7448n2−3.0868n+0.4552

Proof. By using Table 5 and Equation 2, we get

M1(Γ) = ∑
uv∈E(Γ)

(ℜ̃u + ℜ̃v)

= 2n(1+2)+ [
n−1

∑
i=1

(n+2)−2](1+3)+n(2+2)+ [
n−1

∑
i=1

(6n−2)+2](2+3)+4n(3+3)

= 34n2−2n+4

M2(Γ) = ∑
uv∈E(Γ)

ℜ̃uℜ̃v

= 2n(1×2)+ [
n−1

∑
i=1

(n+2)−2](1×3)+n(2×2)+ [
n−1

∑
i=1

(6n−2)+2](2×3)+4n(3×3)

= 39n2−n+12
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By using Table 5 and Equation 3, we get

ABC(Γ) = ∑
uv∈E(Γ)

√√√√ℜ̃u + ℜ̃v−2

ℜ̃uℜ̃v

= 2n

√
1+2−2

1×2
+[

n−1

∑
i=1

(n+2)−2]

√
1+3−2

1×3
+n

√
2+2−2

2×2
+[

n−1

∑
i=1

(6n−2)+2]

√
2+3−2

2×3

+4n

√
3+3−2

3×3
= 5.0591n2−0.0523n−0.4376

By using Table 5 and Equation 4, we get

GA(Γ) = ∑
uv∈E(Γ)

2
√

ℜ̃uℜ̃v

(ℜ̃u + ℜ̃v)

= 2
(

2n
√

1×2
(1+2)

+ [
n−1

∑
i=1

(n+2)−2]
√

1×3
(1+3)

+n
√

2×2
(2+2)

+ [
n−1

∑
i=1

(6n−2)+2]
√

2×3
(2+3)

+4n
√

3×3
(3+3)

)
= 6.7448n2−3.0868n+0.4552

Types of edges E{2,3} E{2,4} E{3,5} E{3,6} E{3,7} E{4,8}
No. of edges (2,3) (2,4) (3,5) (3,6) (3,7) (4,8)
Frequency n n n ∑

n−1
i=1 (1)−1 ∑

n−1
i=1 (n)−1 n

Types of edges E{5,7} E{6,6} E{6,7} E{6,8} E{7,7} E{7,8}
No. of edges (5,7) (6,6) (6,7) (6,8) (7,7) (7,8)
Frequency n ∑

n−1
i=1 (1)−1 ∑

n−1
i=1 (3n−2)+2 n ∑

n−1
i=1 (2)−2 ∑

n−1
i=1 (4n−3)+3

Table 6: Edge partition based on degree sum of end vertices of each edge

Theorem 6. For all n≥ 3, the graph Γ of blue starch-iodine complex, we have

ABC4(Γ) = 4.0798n2−0.7682n+0.04

GA5(Γ) = 7.8987n2−3.1339n+1.1727

Proof. By using Table 6 and Equation 5, we get

ABC4(Γ) = ∑
uv∈E(Γ)

√
Su +Sv−2

SuSv

= n

√
2+3−2

2×3
+n

√
2+4−2

2×4
+n

√
3+5−2

3×5
+(n−2)

√
3+6−2

3×6
+(n2−n−1)

√
3+7−2

3×7

+n

√
4+8−2

4×8
+n

√
5+7−2

5×7
+(n−2)

√
6+6−2

6×6
+(3n2−5n+4)

√
6+7−2

6×7

+n

√
6+8−2

6×8
+(2n−4)

√
7+7−2

7×7
+(4n2−7n+6)

√
7+8−2

7×8
= 4.0798n2−0.7682n+0.04
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By using Table 6 and Equation 6, we get

GA5(Γ) = ∑
uv∈E(Γ)

2
√

SuSv

(Su +Sv)

= 2
(

n
√

2×3
(2+3)

+n
√

2×4
(2+4)

+n
√

3×5
(3+5)

+(n−2)
√

3×6
(3+6)

+(n2−n−1)
√

3×7
(3+7)

+n
√

4×8
(4+8)

+n
√

5×7
(5+7)

+(n−2)
√

6×6
(6+6)

+(3n2−5n+4)
√

6×7
(6+7)

+n
√

6×8
(6+8)

+(2n−4)
√

7×7
(7+7)

+(4n2−7n+6)
√

7×8
(7+8)

)
= 7.8987n2−3.1339n+1.1727

5 Numerical and Graphical Representation
Here, we give numeric and graphic representation for the results calculated in the above section (see Table 7
and 8).

Table 7: Numerical Comparison of M1(Γ), M2(Γ), ABC(Γ), GA(Γ), R1(Γ), R−1(Γ), R 1
2
(Γ), and R− 1

2
(Γ)

n M1(Γ) M2(Γ) ABC(Γ) GA(Γ) R1(Γ) R−1(Γ) R 1
2
(Γ) R− 1

2
(Γ)

1 36 50 4.5692 4.1132 50 1.361 18.2633 2.9093
2 136 166 19.6942 21.2608 166 6.0553 66.5148 12.5488
3 304 360 44.9374 51.898 360 13.4162 147.6243 28.2419
4 540 632 80.2988 96.0248 632 23.4437 261.5918 49.9887
5 844 982 125.7784 153.6412 982 36.1378 408.4173 77.7891
6 1216 1410 181.3762 224.7472 1410 51.4985 588.1007 111.6433
7 1656 1916 247.0922 309.3428 1916 69.5258 800.6421 151.5512
8 2164 2500 322.9264 407.428 2500 90.2197 1046.0415 197.5126
9 2740 3162 408.8788 519.0028 3162 113.5802 1324.2989 249.5278
10 3384 3902 504.9494 644.0672 3902 139.6073 1635.4143 307.5967

Table 8: Numerical Comparison of ABC4(Γ) and GA5(Γ)

n 1 2 3 4 5 6 7 8 9 10
ABC4(Γ) 3.35 14.82 34.45 62.24 98.19 142.30 194.57 255 323.59 400.34
GA5(Γ) 5.94 26.49 62.86 115.02 182.97 266.72 366.27 481.62 612.76 759.70
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Figure 7: (a) Comparison of Rα(Γ) for 1, −1, 1
2 , −1

2 , (b) Comparison of M1(Γ), M2(Γ), ABC(Γ) and GA(Γ)

Figure 8: Comparison of ABC4(G), GA5(G)

6 Conclusion
Amylose has a significant function in the storage of plant energy. It is not easy to digest Amylopectin; however,
it occupies less space than Amylopectin due to its spiral structure. Consequently, for storage in plants, it is the
preferred starch. A mixture of iodine and potassium iodide in water is light orange-brown. When added
to a sample containing starch, such as the bread pictured above, the color will change to a deep blue (see
the comparison of different indices in Figures 7 and 8 ). In this study, we have calculated degree-dependent
topological-indices of Amylose and Blue Starch-Iodine. We observed that R−1

2
is closely related to geometric

arithmetic, R−1 is closely related to atom bond connectivity bond and modified atom bond connectivity, the
second zegrab is the first Randic index, while R 1

2
is approximately equal to the modified geometric arithmetic

of Amylose. Similarly, Other observations can take place from the graphical representations given in this paper.
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