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Abstract. We demonstrate the arbitrary control of the density profile of a two-
dimensional Bose gas by shaping the optical potential applied to the atoms. We
use a digital micromirror device (DMD) directly imaged onto the atomic cloud
through a high resolution imaging system. Our approach relies on averaging the
response of many pixels of the DMD over the diffraction spot of the imaging
system, which allows us to create an optical potential with an arbitrary intensity
profile and with micron-scale resolution. The obtained density distribution is
optimized with a feedback loop based on the measured absorption images of the
cloud. Using the same device, we also engineer arbitrary spin distributions thanks
to a two-photon Raman transfer between internal ground states.
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1. Introduction

Ultracold quantum gases are ideal platforms to
study physical phenomena, thanks to their high
flexibility and their isolation from the environment.
They are widely used for quantum simulations [1]
and metrological applications [2].  Various trap
geometries have been realized to confine atomic clouds.
Historically, harmonic confinements have been the
norm in cold atom experiments due to their ease
of implementation [3, 4]. The recent realization of
uniform systems opened new perspectives to explore
the thermodynamic properties and dynamical behavior
of quantum gases [5, 6, 7, 8]. Other trap potentials have
been applied to explore physics in specific geometries,
such as supercurrents in ring potentials [9, 10, 11, 12],
analog sonic black holes in more complex potentials
[13], and low-entropy phases in lattice systems [14].

In the past years, several approaches have
been developed to generate complex optical potential
profiles [15, 16, 17, 18, 19, 20, 21, 22]. Most of them rely
on the development of spatial light modulators (SLMs),
which can modulate the phase or the intensity of a light
beam. Digital micromirror devices (DMDs) are one of
the most widely used in cold atom experiments thanks
to their low cost, simple use and high refresh rates.
They consist of millions of individual micromirrors
which can be set in two different orientations, hence
corresponding to a “black” or “white” signal in a
chosen image plane of the DMD chip. They have
been used to correct optical aberrations when working
as a programmable amplitude hologram in a Fourier
plane [23], and to produce different potential profiles
by direct imaging [21, 24, 25, 26].

In this article, we demonstrate arbitrary control
of the density profile of two-dimensional (2D) Bose
gases by tailoring the in-plane trapping potential using
DMDs. We program a pattern on the DMD chip
and simply image it onto the atomic cloud. The
limitation due to the binary status of the DMD pixels
(black or white) is overcome by realizing a spatial
average of the response of ~ 25 pixels over the point
spread function of the imaging system. This gives
us access to several levels of grey for the optical
potential at a given position in the atomic plane. The
DMD pattern is computed thanks to an error diffusion
algorithm combined with a feedback loop to directly
optimize the measured atomic density distribution.
The method is proved to be efficient and robust to
optical imperfections. In addition, we demonstrate the
realization of arbitrary spin distributions with the same
protocol by using spatially resolved two-photon Raman
transitions.

DMD1

DMD?2
Objective 1
Atoms
Objective 2 .
\ Camera

Figure 1. Sketch of the experimental setup for arbitrary density
control. Two DMDs are used to project an optical potential onto
the atoms with a high NA microscope objective (Objective 1).
Both of them are illuminated by a blue-detuned 532 nm laser.
DMD1 provides the hard-wall potential, while DMD2 adds an
additional potential for density control. The light fields from
the two DMDs are mixed on a polarizing beam splitter (PBS)
with orthogonal polarizations so that they do not interfere with
each other. The atoms are imaged onto the camera with a second
identical objective (Objective 2). We use absorption imaging to
measure the 2D density profiles on a CCD camera.

2. Apparatus and main results

We work with a degenerate 2D Bose gas of 8"Rb atoms.
The main experimental setup has been described
previously in [27, 28]. Briefly, about 10> Rb atoms
in the F' = 1, m = 0 hyperfine ground state are loaded
into a 2D box potential. The vertical confinement is
provided by a vertical lattice. All atoms are trapped
around a single node of the lattice in an approximately
harmonic potential with a measured trap frequency
w,/2m = 4.1(1) kHz. The in-plane trap is provided by
a hard-wall potential created by a first DMD (DMD1
in the following) 1. All laser beams used for creating
the 2D box potential have a wavelength of 532nm
and thus repel Rb atoms from high intensity regions.
The cloud temperature is controlled by lowering the
in-plane potential height, thus enabling evaporative
cooling. We reach temperatures below 30nK and an
average 2D atom density of ~ 80 pm ™2, corresponding
to a regime where the cloud is well described by the
Thomas-Fermi approximation. Both the interaction
energy and thermal energy are smaller than the vertical
trapping frequency and the atom cloud is thus in the
so-called quasi-2D regime.

We show in figurel a sketch of the experimental

i All DMDs used in this work are DLP7000 from Texas
Instruments and interfaced by Vialux GmbH.
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Figure 2. Various density profiles realized in our experiment. From left to right, we show a uniform profile and linearly varying
density profiles along z, along the radial direction and along the azimuthal direction. (a)-(d) Averaged absorption images (50, 99,
50, 20 shots respectively). (e)-(h) Corresponding OD profiles integrated over one direction (z and y in (e)-(f), azimuthal in (g) and

radial in (h)).
corresponding to one standard error of the mean.

setup for arbitrary density control. We modify the
density distribution by using another DMD (DMD2)
to impose an additional repulsive optical potential to
the hard-wall potential made by DMD1. The pattern
on DMD2 is imaged onto the atomic plane thanks to
an imaging system of magnification ~ 1/70. The pixel
size of DMD2 is 13.7um, leading to an effective size
of 0.2 pm in the atomic plane. The numerical aperture
(NA ~ 0.4) is limited by a microscope objective above
the vacuum glass cell containing the atoms and leads
to a spatial resolution around 1pm. Consequently,
the area defined by the diffraction spot of the imaging
system typically corresponds to a region where 5x5
pixels of DMD2 are imaged, which makes possible the
realization of grey levels of light intensity. DMD2
is illuminated by a blue-detuned 532nm laser with a
waist of w ~ 55 pm in the atomic plane. The intensity
of the beam is set to provide a maximum repulsive
potential around 24 where p is the chemical potential
of the gas for a density of 80 pm~2. The potential is
added before the final evaporation stage in the box
potential.

The 2D atomic density profile is obtained by
absorption imaging with a second identical microscope
objective placed below the glass cell. This imaging
system has a similar optical resolution and the effective
pixel size of the camera in the atomic plane is 1.15 pm.
We probe the atoms in the trap using a 10ps pulse
of light on the Dy line resonant between the F' = 2

The solid lines represent the OD profiles of the target density distributions. Error bars show the statistical error

ground state and the F’ = 3 excited state. Before
detection, a microwave pulse is applied to transfer a
controlled fraction of atoms into the ground level from
F=1m=0to F = 2,m = 0, which thus absorbs
light from the imaging beam. The transferred fraction
is controlled so that the measured optical depth (OD)
is always smaller than 1.5 to reduce nonlinear imaging
effects.

Figure 2 presents a selection of 2D density profiles
realized in our experiment. For each example, we
show in figure 2(a-d) averaged absorption images and
in figure 2(e-h) the corresponding mean OD integrated
along one or two spatial directions. Figure 2(a) shows
a uniform profile in which we have corrected the
inhomogeneities caused by residual defects of the
overall box potential created by the combination of
DMD1 and vertical lattice beams. Figures2(b-d)
correspond to linearly varying density distributions
respectively along the x direction, along the radial
direction and along the azimuthal direction.

3. Detailed implementation

One could naively think that for a given target density
profile, the suitable pattern on DMD2 could be directly
computed and imaged onto the atoms. However,
several features prevent such a simple protocol. First,
the DMD is a binary modulator. Then, for a finite
number of pixels, it is not possible to create an
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Figure 3. (a) Diagram of the iterative algorithm. (b) Example
of grey-level profile G, obtained during the optimization loop
used to create the linearly varying profile shown in figure 2(b).
(c) Corresponding dithered image computed with the error
diffusion algorithm and programmed on the DMD. The grey level
ranges from 0 to 1, with an effective pixel size of 1.15 pm equal
to the one of the absorption image. The DMD pattern is binary
with an effective pixel size of 0.2 pm.

arbitrary grey-level pattern with perfect accuracy.
Here, we use the well-known error diffusion technique
to generate the binary pattern for a given grey-
level profile [29, 30] (see the appendix for a short
description). Second, the imaging system from DMD2
to the atoms has an optical response that leads to
a modification of the ideal image, mainly because of
the finite aperture of the optical elements. Third, any
imperfection on the optical setup (inhomogeneity of the
laser beam, optical aberrations...) also degrades the
imaging of the DMD pattern onto the atomic cloud.
Finally, the atomic density distribution is obtained
through absorption imaging, which adds noise mostly
coming from the photonic shot noise induced by the
imaging beam. Hence, an iterative method is needed to
obtain the optimal DMD pattern that gives a density
distribution as close as possible to the target. The
working principle of the optimization loop is simply
to add (remove) light at the positions where there are
more (fewer) atoms than the target until the density
profile converges to the target one.

Figure 3(a) shows the steps of the iterative loop.
The basic idea of each step n consists in computing the
difference between the measured density distribution
A,, and the target image T,, and adding it with a
suitable gain K to the previous grey-level intensity
profile G,,. This gives the grey-level profile of iteration

n+ 1 (see figure 3(b)),
Gry1 =Gp + KA, —T,), (1)

which is then discretized thanks to the error diffusion
algorithm (see figure 3(c)) and imaged onto the atoms.
Besides this general idea, we detail below some specific
features of our loop:

- We initialize the optimization with a grey-level
profile Gy which can either be uniformly 0 or 1.

- To avoid border effects, we select on the
absorption images a region slightly inside the box
potential (two pixels smaller in each direction) for
density control and we extrapolate the grey-level
profile G,, outside the box. The extrapolation
is done by simply duplicating the value of the
outermost pixels of G,, by three more pixels along
each side for a square box or along the radial
direction for a disk.

- The image A, of the density distribution is
obtained from the average of several repetitions
of the experiment with the same parameters to
limit the contribution of detection noise.

- The measured image of the atomic distribution is
convoluted with a Gaussian function of rms width
1 pixel of the camera of the imaging system. This
convolution acts as a low pass filter which reduces
high spatial frequency noise, especially detection
noise.

- Considering the Gaussian shape of the beam

illuminated on DMD, we choose K to be position
2[(m—mo)2-g(?/—1/0)2]

dependent K(x,y) = Ko X e w ,
where w is the waist of the beam in the atomic
plane and zg and yo are the coordinates of the
center of the beam. It makes the effective gain
approximately the same for all the pixels.

- At each iteration, we rescale the amplitude of the
target profile to obtain the same mean optical
depth as the one of A,. This avoids taking
into account errors coming from the shot-to-shot
variation of the atom number which would lead to
a global error that we are not interested in. Note
that this variation is smaller than 10 % during the
optimization loop.

4. Characterization of the loop

We stop the optimization loop when the measured
density distribution has converged to the target one,
up to a predefined precision. To estimate the
deviation from the target, we define a figure of merit
Fm corresponding to the measured root-mean-square
deviation:

Fo— Npix Z(ZJ)GA(OD(Z’]) - ODT<7’5.7))2
" (Xi,5)e4 OD(, 1)) ’

(2)
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Figure 4. Convergence of the iterative algorithm. (a) Plot of
Fm, Ng and F with iteration number. Target profile is a linear
density distribution along z in a square box (of figure 2(b)). F
converges very fast and stays around 0.06 after iteration 6. Ny
decreases suddenly at iteration 8 and 15 because Nq(number
of absorption images for averaging) changes from 5 to 10 at
iteration 8 and to 99 at iteration 15. For F,,, we show the
estimated statistical error bars to give an illustrative indication
of our typical uncertainties. These error bars are obtained from a
bootstrap approach on the different repetitions of the experiment
in the same conditions. (b) For the last iteration (iteration 15),
we plot Fr, Ny and F versus the number of images N, used for
averaging. Both F,, and Ny decrease with N, while F does not
depend on Ng. (c) Evolution of F for different Ko's.

where A is the region of interest containing Npix pixels
and OD(i, 7) (resp. ODr(i, 7)) is the measured average
OD (resp. target OD). The value of the figure of merit
Fm results from two kinds of contributions. Obviously,
there is the actual deviation of the density distribution
from the target. In addition, several features of the
measurement method give an undesired contribution
to F,. Indeed, thermal fluctuations of the atomic
cloud, projection noise due the partial transfer imaging
discussed above and photonic shot noise in absorption

imaging lead to unavoidable residual noise. For our
parameters, we computed in a separate work that the
two dominant mechanisms are photonic and projection
noise with a similar weight, whose exact values depend
on the studied density distribution. In the low
temperature regime explored here thermal fluctuations
are almost negligible.

The contributions coming from photonic shot
noise and projection noise can be reduced by averaging
more images. However, for the typical repetition rate
of our experiment (~ 30s), the number of averaged
images has to be limited to a few tens for realistic
applications. To characterize the optimization loop, we
compute this noise contribution Ay so as to remove it
from the measured F,,. We directly estimate Ny from
the set of images taken with the same parameters by
computing the dispersion of the measured absorption
images from the averaged image,

Npix Zk Z(i,j)eA(ODk(i’j) B OD(i7j))2
NZ(3 (i j)ea OD(E, ) ’

where the index k refers to the k-th absorption
image among the N, pictures taken for the average.
We thus define the corrected figure of merit:

F=\F N2 (@)

which quantifies the distance of the density profile
from the target while removing measurement noise.

In figure4(a), we show the evolution of F,,, Ny
and F as a function of the number of iterations in
the example case of a linear profile in a square box
(as shown in figure 2(b)). We initialize the loop with a
grey-level profile equal to zero and we choose Ky = 0.2.
The number of pictures which are averaged is 5 for
the first 7 iterations, 10 up to iteration 14 and 99 for
the last iteration. This leads to clear jumps of Ny
with the iteration number. Interestingly, we see that F
converges almost monotonously to about 0.06 after the
first 6 iterations and then stays approximately constant
whatever the value of N, is. This indicates that the
contribution of measurement noise is well subtracted.
This is confirmed in figure 4(b), where we plot F,, Ny
and F as a function of N, using the data of the final
iteration of figure4(a). As expected, both F,,, and Ny
decrease with N, while F does not change.

We also studied the behavior of the iterative loop
with different Ky’s varying from 0.1 to 0.6. The
convergence of F is plotted in figure4(c). The iterative
algorithm works well for a large range of values of
Ky. We observe that increasing Ky speeds up the
convergence, but too large values of K lead to strong
local variations in the measured images. In practice,
for most target distributions, we use Ko = 0.2 as a
good compromise between these two trends.

Nag =
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In the appendix, we study through simple
numerical simulations the remaining limitations that
contribute to the experimentally obtained F. The
main limitation comes from the number of iterations
used in the experiment (~ 15). We show that the
figure of merit F decreases slowly down to ~ 0.02
for larger iteration numbers but reaching such a limit
would require prohibitively long experimental times.

5. Arbitrary spin distribution

Using a similar protocol, we also demonstrate arbitrary
spin distributions by shaping a pair of copropagating
Raman beams which couple the |F' = 1,m = 0)
(I1)) and |F = 2,m = 0) (|2)) states by a two-
photon Raman transition. The two Raman beams
originate from the same laser and have a wavelength
of ~ 790 nm, in between the D; and Dy line of 3"Rb
atoms. One beam is frequency shifted with respect
to the other by ~6.8 GHz to fulfill the two-photon
resonance between the two states. The two beams are
coupled into the same single-mode optical fiber with
orthogonal linear polarizations. After reflection on a
third DMD (DMD3, not shown in figurel) they are
overlapped with the two beams coming from DMD1
and DMD2 and are imaged onto the atomic plane with
a magnification of ~ 1/40 and a waist of 40 pm.

Starting from a cloud of atoms in state |1) of
uniform density, we pulse the Raman beams with a
duration of a few tens of ps to coherently transfer
a controlled fraction of atoms to state |2). In
this protocol, the total density of the cloud remains
uniform. We then image the density distribution of
atoms in state |2) prior to any spin dynamics and apply
an optimization protocol identical to the one developed
for creating arbitrary density distributions. We show
in figure5 two examples of spin profiles realized in
our system at the end of the optimization loop: a
Gaussian profile (figure 5(a)) and the so-called Townes
profile (figure5(b)), which is a solitonic solution of
the 2D attractive non-linear Schrédinger equation that
decreases almost exponentially with r at large r [31].
The measured profiles are very close to the target over
typically two orders of magnitude in density.

6. Discussion and outlook

In conclusion, we have demonstrated the arbitrary
control of the density profile of an ultracold 2D
quantum gas by tailoring a repulsive optical potential.
We have also demonstrated the arbitrary creation
of spin textures using spatially resolved Raman
transitions. An iterative method was applied, making
the method robust to technical imperfections. The
approach described here can be straightforwardly

(a) (b)

OD 1
0.1
0.1
0.01
0.01
0 10 20
7 (nm) 7 (pm)

Figure 5. Imprinting a spatial spin texture. We show the
density distribution of atoms in |2) immersed in a bath of atoms
in |1). The total density of the gas is uniform in a 20 pm radius
disk (~ 80 pm~—2, corresponding to OD ~ 8). The main figures
show the radial profiles of component |2) in semilog scale for (a)
a Gaussian profile and (b) a solitary Townes profile. The solid
lines are the target radial profiles. Error bars show the statistical
error corresponding to one standard error of the mean. Insets
show the corresponding averaged absorption images (20 shots).
The dashed lines represent the edges of the bath of atoms in |1).

applied to other atomic species. It opens new
possibilities for studying the dynamics of single
or multi-component low-dimensional gases where,
for instance, the presence of scale-invariance or
integrability leads to a rich variety of non-trivial time
evolutions [32, 33, 34, 35].
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Appendix

Error diffusion algorithm

We briefly recall in this paragraph the main features of
the error diffusion algorithm, which we use to compute
the pattern programmed on the DMD. Error diffusion
is used to convert a grey-level image where each pixel
takes arbitrary values into an image with only zeros
and ones. Starting for instance from the top left
pixel of the image, one chooses the status of the
corresponding DMD pixel by rounding to 0 or 1 the
targeted grey level. This binary choice results in an
error which is “diffused” to the remaining neighboring
pixels with a given weight. In this work, we use the
method developed in Ref. [29]. We process the pixels
from left to right and from top to bottom. The error
made when choosing the state of a pixel (denoted by
a * in equation 5) is diffused to its first right neighbor
and the three nearest neighbors of the following line
with weights given by

_ e
* 16
(5)
3 5 1
6 16 16
Simulations

In this section, we simulate the experiment to
understand the various contributions to the obtained
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Figure 6. Numerical simulation of the experiment. Evolution
of F as a function of iteration number with (blue) or without
(red) noise. The target distribution is a linear density profile
along z. The diamond corresponds to the number of iterations
used in figure4(a). The inset shows the same curves at large
iteration number.

value of the figure of merit F for the density correction.
In the simulation, we start with a “test” density profile
Ay, which is obtained from an experiment with DMD2
being off. It is an averaged image of 100 experimental
shots so that the detection noise is mostly averaged out.
We follow the same procedure which was described
in figure3(a) but in a “numerical experiment”. We
simulate the action of the potential shaped by the
DMD by using the local density approximation in the
Thomas-Fermi regime. Thus, for each iteration n of
the loop we compute the density profile as

Ap =Ag—aCh, (6)

where C,, is the light intensity profile given by the
DMD pattern after a convolution step that simulates
the finite numerical aperture of the optical system. We
use here a Gaussian profile with an rms width ¢ =
0.5nm. The parameter « is introduced to represent
the effect of the light potential on the atomic density.
We use as an input to the simulation experimental
images of the optical depth distribution (OD ~ 1)
and we choose a = 2 to be as close as possible to the
calibrated experimental parameters. We add an offset
to A,, to keep the mean OD constant. We also have
the possibility to add some noise to A, to simulate the
experimental fluctuations.

We show in figure 6 the simulated evolution of F
as a function of the iteration number. The target
is a linear profile along the x direction, same as the
one studied in figure2(b) and figure4. The blue
and red curves show the simulated results with the
parameters used in the experiment: Ky = 0.2 and
the absorption image is convolved with a Gaussian
function of an rms width 1 pixel. For the blue curve,
we add independently on each pixel of A,, a Gaussian
noise corresponding to Ay = 0.09, which is the typical
noise obtained in the experiment for the average of
10 repetitions of the sequence. For the red curve, no
detection noise is added, i.e. Ny = 0. The marker

on the red curve corresponds to the point when the
iterative loop is terminated for the experimental data
shown in figure4(a). Here, F = 0.046, in qualitative
good agreement with the obtained experimental value
of 0.06.

We finally discuss the limitations to the obtained
figure of merit. We show in the inset of figure6
the evolution of the figure of merit at large iteration
number. Better values (~ 0.02) are obtained for
larger number of iterations (~ 600) but with a slow
convergence largely hidden by the typical experimental
noise.  This regime is not reachable in practice
with our typical experimental cycle time. The
residual value could be explained by the filtering made
when convolving the absorption image and also by
the residual defects coming from the error diffusion
protocol.



