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Abstract Freestanding columns, built out of nothing but loose gravel and continuous strings can be stable
even at several meters in height and withstand vertical loads high enough to severely fragment grains of
the column core. We explain this counter-intuitive behavior through dynamic simulations with polyhedral
rigid particles and elastic wire chains. We evaluate the “ne structure of the particle contact networks, as
well as con“ning forces and reveal fundamental intrinsic di�erences to the well-studied case of con“ning
silos.

1 Introduction

Granular materials in the form of freestanding struc-
tures in the absence of additional con“nement can be
realized through so-called designed granular matter [1…
3], consisting of pre-fabricated particles of particular
shape. These particular methods are based on the non-
convexity of the designed particles, utilizing their pos-
sibility to interlock. This approach gave rise to a new
paradigm for fabricating jammed granular materials
composed of initially disordered particles that can form
stable structures when being packed. It is an interesting
question if also ordinary disordered granular materials
can become freestanding and load-bearing. Aejmelaeus-
Lindstr öm et al. [4] showed that through the use of a
thread or a wire, carefully placed inside gravel parti-
cles in a layer-wise manner, jamming can be induced.
Both approaches have in common the aim of transform-
ing an initially disordered granular material to a solid-
like jammed material. However, the latter approach
makes use of a very peculiar form of con“nement. Since
decades, reinforcement through “bers or wires has been
used in soils for geotechnical applications to increase the
cohesion and strength of the material [5…10], but in the
combination proposed by Aejmelaeus-Lindström et al.,
the wire has also a con“ning role. Further experimental
investigations were carried out on the wire-reinforced
jammed architectural structures by Rusenova et al. [11],
where large scale columns were tested under uniax-
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c e-mail: hans.herrmann@espci.fr

ial uncon“ned compression. In these experiments, frag-
mented particles were found along the central axis of
the sample, suggesting the presence of strong vertical
force chains at the center of the granular column (see
Fig. 1).

Several key observations regarding the mechanical
behavior of jammed wire-reinforced granular structures
have been made. For instance, the approximately lin-
ear pre-failure stress…strain response, the high-strength
under vertical loads, and the accumulation of frag-
mented particles and broken wire segments located
along the column centers as shown in Ref. [11] and in
Fig. 1. Moreover, by means of parametric studies per-
formed with numerical methods [12], conditions ben-
e“cial to the stability of the columns were identi“ed.
However, none of these studies focuses on the intrin-
sic mechanism preventing the collapse of the structures
or investigates the force redistribution caused by the
interaction between the granular particles and the elas-
tic wire.

Although several numerical [12…15] and experimen-
tal [11,16,17] studies have been performed on granular
matter reinforced with continuous long wires and key
parameter dependencies on the stability as well as the
behavior of the structures have been identi“ed, a deeper
understanding of the underlying mechanisms allowing
for the material to jam under low and high compressive
loads is still lacking. Therefore, two fundamental ques-
tions remain: •How is structural collapse prevented?Ž
and •How does the interaction between the granular
particles and the elastic wire a�ect the load redistribu-
tion in di�erent loading conditions?Ž. To answer those
questions, we employ in this work our numerical frame-
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(b)

(c)

(a)

Fig. 1 Freestanding experimental jammed wire-reinforced
granular column with initial diameter 330 mm before load-
ing. a The state of the material inside a column after loading
with a force Fz = 60kN b and Fz = 200kN c

work developed previously and described in detail in
Ref. [12,18]. We show the formation of dominant force-
chains located near the column centers during uniaxial
loading. Furthermore, by investigating the fabric ten-
sor “eld, we look into the structure of the contact net-
work and quantify the anisotropy of the structural back-
bone of the columns. We “nd substantial di�erences
with the contact force networks in granular columns
inside a rigid cylindrical con“nement. The principal
fabric and stress tensors are further investigated and
an inversion of the principal orientations is observed.
Recently, Mahajan et al. in Ref. [19] observed a similar
e�ect, manifested in a deviation from Janssen•s law [20]
for narrow granular columns by investigating the ratio
between the apparent mass and added mass together
with its dependence on the “lling height.

2 Numerical method

At the core of the numerical simulations are randomly
shaped convex polyhedral particles with their interac-
tions. We employ the Non-Smooth Contact Dynamics
(NSCD) method [21,22], originally proposed by Moreau
[23]. This method is well-suited for modeling dense
packings of rigid, frictional particles with lasting con-
tacts. Recent studies [24…26] also show the e�ciency
of this method for modeling polyhedral particles. The
NSCD method is based on volume exclusion constraint
and Coulomb•s friction law. Because of the discontinu-
ous nature of the contact laws, an implicit integration
of the equations of motion:

mi
d
dt

v i = F i + Fext
i ,

I i
d
dt

� i = T i + T ext
i ,

(1)

(a)

(b)

(c)

Fig. 2 a Freestanding numerical jammed wire-reinforced
granular column with N w

l = 25 before loading (left) and
after loading (right). The inter-particle force network at dif-
ferent loads viewed from the side (b) and from the top ( c).
Colors on the wire represent the normalized elastic strain
energy �Us = Us/max (Us) for each wire element and colors
as well as the thickness of the lines on the force networks rep-
resent the normalized force magnitude �Fn = Fn /max (Fn )
between each contacting pair of particles

is required for each particlei . Where mi and I i are the
mass and moment of inertia tensor of particlei , v i and
� i are its translational and rotational velocities, F i and
T i are forces and torques from contacts, whileFext

i and
T ext

i are external forces and torques. The contact forces
F = Fn n + Ft between the particles are calculated with
an iterative scheme based on a Gauss…Seidel algorithm
for each time step until a desired global convergence
criterion is satis“ed. The validity of the Coulomb con-
dition Ft � µp� Fn � is checked for each existing contact
to calculate the friction forces.

The elastic wire is modeled as a chain of point-like
masses connected by tensile spring elements and rota-
tional springs attached to each node [13,27]. The ten-
sile force for a wire element isf elo = kelo � elem with
the elongational elastic constantkelo and the element
strain denoted by � elem . The bending moment for a wire
node is M rot = krot � node with the rotational elastic
constant krot and the node angle� node given by the
angle between the two elements connected at the node.
Self-interaction of the wire is realized with the soft par-
ticle (SP) discrete element method [28] introduced by
Cundall and Strack [29] with a linear spring-dashpot
model for simplicity. Each wire element consists of a
spherocylinder [30] with radius r w to carry out the over-
lap computation (see Ref. [31]). The forces of a contact
between two elements are distributed to each of the two
nodes for the respective elements with weights inversely
proportional to their distance from the closest point
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of contact [31]. A 5th order Gear predictor-corrector
method is used to integrate the equations of motion
(Eq. 2) for the translational degrees of freedom of each
node nj :

mj
d2

dt2 r j = f j + f el
j + f ext

j , (2)

wheremj is the mass of nodej , r j denotes the position
vector, f j is the contact force, f el

j is the elastic force
due to stretching and bending andf ext

j denotes exter-
nal force on the wire. The contact forcef consists of
normal and tangential componentsf n = kw

n � n + � w
n

�� n

and f t = kw
t � t + � w

t
�� t , where kw

n and kw
t are the elas-

tic constants, � w
n and � w

t are the damping coe�cients
for the normal and tangential interactions, respectively,
and with � n and � t we denote the indentation depth and
the tangential displacement. Dynamic friction is taken
into account by removing the spring when the condition
f t � µw

s � f n � is violated and replacing the tangential
force by f t = µw

d f n f t / � f t � , where µw
s and µw

d are the
static and dynamic friction coe�cients of the wire. The
contributions of the elastic forces due to elongation and
bending of the wire are stored in the vectorf el .

Similar to the spherocylinders of the wire segments,
the polyhedra are dilated with a spherical particle
of radius r p, which in our simulations is set to be
equal to the wire radius r w . This spherical dilatation
of polyhedra is known as spheropolyhedra and it is
a well-established technique for SP discrete element
simulations of irregular particles [32…34]. Note that
for the particle…particle interaction, we also consider
spheropolyhedra, instead of the sharp-edged polyhedra,
which does not change the contact law or the con-
tact calculation procedure. Since the NSCD method
is implicit and the SP method is explicit, two di�er-
ent time steps � tNSCD and � tSP are used and a sub-
cycling procedure is implemented to transfer forces and
torques between particles and wire. A detailed descrip-
tion of the hybrid model and the coupling scheme can
be found in Refs. [12,18]. Similarly to previous numer-
ical studies, the simulation units are non-dimensional
as the NSCD is typically employed in a dimensionless
form.

The numerical procedure for generating stable, free-
standing, wire-reinforced granular columns is the same
as in Ref. [12]. Particles and wire are sequentially
deposited under gravity in a layer-wise manner inside
a rectangular container with a frictional bottom wall
and frictionless sidewalls. A single layer of particle con-
stitutes of randomly generated particles placed on two
staggered regular lattices. In between two particle lay-
ers a double wire loop with disconnected ends is placed.
After the system is relaxed, the walls are removed
slowly and a stable column remains. The radius of the
stable column after the wall removal corresponds to the
radius of the wire loop. After a certain simulation time
and when the kinetic energy is nearly zero, a vertical
load Fz is applied to the column through a horizon-
tal top plate, constrained from rotations. The force Fz

is linearly increased, meaning a constant loading rate.
The gravity is kept throughout the wall removal and the
loading procedure. For the cylindrical system particles
are deposited under gravity and the friction coe�cient
µw with the walls is µw = µp.

Due to the approximate rotational symmetry of the
system, averaging around the central axis is performed
on all measured variables to reduce the dimensionality
of the results [35]. This procedure is essentially a map-
ping to cylindrical coordinates and averaging around
the polar angle resulting in a two-dimensional repre-
sentation.

3 Results

We study here wire-reinforced granular columns with
radius approximately 6 times the radius of the biggest
particles, with number of wire layers N w

l = 20, 25, and
30. An increase in number of layers leads to an increase
in column height and number of particles in the sys-
tem. Note that the ratio between cylinder diameter and
particle size along other parameters can signi“cantly
a�ect the load distribution for the silo case and lead to
counter-intuitive results in the extreme case of a very
narrow cylinder [19]. Therefore, we only focus here on
the comparison between wire-reinforced and rigid cylin-
der systems of equivalent sizes and for the considered
set of investigated parameters. We are interested in the
static case before loading and in the evolution during
the quasi-static loading. An example of such a column is
shown in Fig. 2a for Fz = 0 (left) and Fz = 800 (right).
For both cases, larger stresses are found near the cen-
ter of the column due to the lateral forces, which is
evident even when only body forces act on the system.
However, we see that due to the shear band formed at
a high load, the wire gets stretched along the shearing
region (marked in Fig. 2a by a red ellipse), indicated by
the high wire strain energy within the failure zone. To
get an insight into the load redistribution between the
particles, we show a sequence of snapshots of the inter-
particle force network at di�erent loads viewed from
the side (Fig. 2b) and from the top (Fig. 2c). At the
initial con“guration when the sample is not subjected
to an external load, the force magnitudes increase from
top to bottom. When we start loading the column, we
see the formation of strong force chains in the vertical
direction for loads Fz = 200, 400, and 600. Despite the
small system size, limited by the numerical complexity,
it is noticeable that the force chains are located near
the column center as observed experimentally in larger
columns [11]. At even higher loads (Fz = 800), the force
chains are no longer aligned in the vertical direction,
since they resist not only against the vertical loads but
also the shearing forces. Nevertheless, the strong force
chains are still con“ned within the central region of the
samples.

Due to the absence of lateral walls, measures used in
Ref. [19] cannot be applied to the studied system. For
the study of the structural backbone of the system on
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the micro-level, we calculate the fabric tensor “eld from
the particle-particle contact force network. The fabric
tensor is de“ned as:

F i =
1

N c
i

N c
i�

c=1

n(c) � n(c) , (3)

where the sum of the dyadic products� of the normal
contact vectors n(c) spans allN c

i contacts c of the par-
ticle i . The fabric tensor is a measure of the contact
anisotropy and reveals the “ne structure of the con-
tact network. Typically, reduced representations of the
fabric tensors are used, such as the trace and the devi-
atoric components or anisotropy coe�cients [36…39] to
derive conclusions for the anisotropy of granular mate-
rials, but these measures do not show the “ne details of
the contact network. For this reason, the principal vec-
tors of the fabric tensor are calculated and the resulting
vector “eld is shown in Fig. 3a. To compare the wire-
reinforced jammed granular column to a system gov-
erned by arch formation as a mechanism for load redis-
tribution, we show in Fig. 3b the fabric tensor “eld of
a granular column with no wire of an equivalent size
inside a rigid cylinder. It is evident that for both sys-
tems close to the central axis, i.e., close to zero in the
x-axis of Fig. 3, the principal vectors are approximately
aligned to the vertical axis. However, at a further dis-
tance from the center, the angles formed between the
vertical axis and the principal fabric vectors have oppo-
site signs for both systems. This leads to the inver-
sion of the force lines as compared to the well-studied
silo system. In the silo case (Fig.3b), the loads are
redistributed outward, toward the cylinder walls, while
opposite to that, in Fig. 3a, one observes that the loads
are redirected inward, toward the column center. Thus,
the con“ning mechanisms of the rigid cylinder and the
elastic wire-reinforcement are fundamentally di�erent
in nature. Unlike the case in the cylinder, where due
to the rigid con“nement arches form within the force
network, in the wire-reinforced material, the forces are
anchored toward the central axis preventing the col-
lapse of the columns.

We further proceed by quantifying the average ori-
entation of the greater principal vector of the fabric
tensor by measuring its angle with the vertical axis.
The results for both the wire-reinforced and the rigid
cylinder systems are shown in Fig.4 as a function of
the radial distance. For the wire-reinforced case, we see
that the average angles are always positive, even when
a load is applied, although the e�ect is less predom-
inant for higher columns. On the other hand, for the
con“ning cylinder, the average angles are negative at
any distance from the column center. This result fur-
ther indicates to intrinsic di�erences between the silo
system and the novel wire-reinforced structures for the
studied parameters and system sizes.

Since the fabric tensor is a measure of the anisotropy
of the contact network, one expects to see the anchoring
e�ect, leading to larger forces toward the center of the
column. Indeed, this becomes visible, when the aver-

(a) (b)

Fig. 3 Fabric tensor “elds for a wire-reinforced granular
column a for N w

l = 25 and granular material inside a rigid
cylinder b for N c = 1300 expressed in cylindrical coordi-
nates and averaged around the central axis. The largest and
smallest principal vectors of the fabric tensors are shown
by thick and thin lines, respectively. The magnitudes of the
lines represent the principal values of the fabric tensors and
the colors represent the signed angle between the vertical
axis and the biggest principal vector

Fig. 4 Average principal fabric tensor orientations as a
function of the radial distance from the column center for
both a wire-reinforced column, denoted by superscript w

and a rigid cylinder, denoted by superscript c . The orien-
tation is given by angle � in radians, obtained between the
principal direction and the z-axis. Positive angle means the
principal vector is located in the I st quadrant and negative
angle in the II nd quadrant

age magnitude of the particle-particle contact forces
Fn (r ) is plotted as a function of the radial distance
(see Fig. 5). In the initial con“guration, before the
loading begins, we see no noticeable maximum, which
indicates an approximately homogeneous radial depen-
dency of contact forces. However, when the column is
being loaded, there is a peak at the proximity of the cen-
ter. As expected, there is an increase in all values along
the radial direction, but a more unexpected observation
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Fig. 5 Average inter-particle normal contact force Fn (r )
of the wire-reinforced column for N w

l = 25 as a function of
the radial distance for di�erent loads

is the existence of a small second maximum, which is
noticeable at all loads. This second peak in the distribu-
tion is due to the branching of the large force chains as
can also be observed in Fig.2b, c. One can see that there
is a characteristic distance between the second peak
and the column center, related to the system dimen-
sions. These phenomena, resulting in the concentration
of large forces could explain the congregation of bro-
ken particles and wire segments, observed previously in
Ref. [11] and also discussed in Ref. [18].

In order to explain in more detail the microscopic
behavior, one needs to also investigate the local inter-
action between the wire and the particles. This can
be done by looking at the orientation of particle-wire
contact forces. Figure6 shows the distribution of force
orientations (left) and the average force magnitudes in
polar plots. The distributions are obtained by taking
into account only the force vector components in the
z Š r plane, wherez is the unit vector in the vertical
direction, and r is the radial unit vector of the con-
tact point. Thus, the plots represent the ratio between
vertical and lateral contact forces between the particles
and the wire. Interestingly, the majority of the forces
are oriented in the vertical direction, meaning that wire
segments are activated by being squeezed between par-
ticles. The lateral forces counteracting the outward ”ow
of particles are therefore transmitted to the wire by ten-
sion forces, instead of the wire directly balancing those
lateral forces. This is further observed in the right side
of Fig. 6, where one sees again an anisotropic distribu-
tion with the largest forces being in the direction of the
z-axis. Moreover, at high loads (bottom parts), even
though the average force distribution becomes slightly
wider and tends toward a more isotropic distribution,
the structure is not generally changed. This widening
of the average force distribution in the radial direction
is likely caused by the shear band and the increased
lateral forces at certain regions of the structure. Thus,
we demonstrate that the con“ning function of the wire-
reinforcement is mostly in the redistribution of loads

Fig. 6 Polar histogram of the contact orientation (left)
and normalized polar average of the contact force (right)
for the contacts between the wire and the particles for
N w

l = 25 and N c = 1300 as function of the angle � (in
radians) between the force vectors and the z-axis with no
load applied (top) and with applied vertical load Fz = 800
(bottom). The distribution on the right is normalized with
respect to the largest average force in order to be able to
compare both cases. Thez-axis is aligned with the 90� orien-
tation. Note that for both polar distributions, the condition
p(� ) = p(� + � ) is valid, therefore, it is su�cient to analyze
only two quadrants

in the inter-particle force network rather than in the
supporting and force-balancing of the structure.

4 Conclusions

We have numerically investigated the microscopic e�ects
preventing wire-reinforced jammed granular structures
from collapsing and allowing them to support mechan-
ical loads using a hybrid DEM model that has been
previously developed. Characteristic features observed
experimentally [11], such as shear band formation and
concentration of strong force chains near the vicinity
of the column center were qualitatively reproduced and
reported.

It is of main interest to understand the structural
backbone of the granular material not only during load-
ing but also with only gravitational forces acting on the
structure, by calculating and analyzing the fabric ten-
sor “eld. In contrast to an equivalent system con“ned
by a rigid cylinder, the principal vectors of the fab-
ric tensor for the wire-reinforced material are oriented
toward the column center instead of pointing outward
toward the cylinder walls. From this result, we conclude
that the load redistribution is fundamentally di�erent
for the two systems and for the latter we explain this
observation by an anchoring e�ect of the wire, acting
as intrinsic con“nement. Additionally, we suggest that
a study on the dependence of the height/radius ratio of
the fabric tensor “eld could further extend the under-
standing of the e�ect reported by Mahajan et al. [19].

Furthermore, the radial dependence of the aver-
age inter-particle normal contact force magnitude con-
“rmed the existence of a peak at the center column
when a vertical load is applied to the structure. Inter-
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estingly, a small second peak in the distribution is also
observed for all loading states, caused by the branch-
ing of the strongest force chain. Lastly, by looking at
the orientation of wire-particle forces, we conclude that
most of the wire elements are compressed between gran-
ular particles, which as a result activates the tensile
forces in the wire. The collective e�ect of these mech-
anisms manifests itself in freestanding and even load-
bearing granular structures without any cohesive forces.

Acknowledgements We acknowledge “nancial support
from the ETH Research Grant ETHIIRA Grant No. ETH-
04 14-2 and from CAPES and FUNCAP.

Funding Information Open Access funding provided by
ETH Zurich.

Author contribution statement

Conceptualization was done by P.I., F.K.W., and
H.J.H.; methodology was done by P.I. and F.K.W.;
numerical simulations, data evaluation, and visualiza-
tion were done by P.I.; writing was done by P.I. and
F.K.W.; corrections and editing were carried out by all
authors; funding acquisition was done by F.K.W. and
H.J.H.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to
the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this arti-
cle are included in the article•s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If
material is not included in the article•s Creative Commons
licence and your intended use is not permitted by statu-
tory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/ .

References

1. N. Gravish et al., Phys. Rev. Lett. 108 (2012)
2. K. Dierichs, A. Menges, Granul. Matter 18, 25 (2016)
3. K.A. Murphy et al., Granul. Matter 18, 26 (2016)
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25. E. Azéma, F. Radjäš, G. Saussine, Mech. Mater.41, 729

(2009)
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