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ABSTRACT 31 

As the environment is getting warmer and species are redistributed, consumers can be forced to 32 

adjust their interactions with available prey, and this could have cascading effects within food 33 

webs. To better understand the capacity for foraging flexibility, our study aimed to determine the 34 

diet variability of an ectotherm omnivore inhabiting kelp forests, the sea urchin Echinus esculentus, 35 

along its entire latitudinal distribution in the northeast Atlantic. Using a combination of gut content 36 

and stable isotope analyses, we determined the diet and trophic position of sea urchins at sites in 37 

Portugal (42°N), France (49°N), southern Norway (63°N), and northern Norway (70°N), and 38 

related these results to the local abundance and distribution of putative food items. With mean 39 

estimated trophic levels ranging from 2.4 to 4.6, omnivory and diet varied substantially within and 40 

between sites but not across latitudes. Diet composition generally reflected prey availability within 41 

epiphyte or understorey assemblages, with local affinities demonstrating that the sea urchin adjusts 42 

its foraging to match the small-scale distribution of food items. A net “preference” for epiphytic 43 

food sources was found in northern Norway, where understorey food was limited compared to 44 

other regions. We conclude that diet change may occur in response to food source redistribution at 45 

multiple spatial scales (microhabitats, sites, regions). Across these scales, the way that key 46 

consumers alter their foraging in response to food availability can have important implication for 47 

food web dynamics and ecosystem functions along current and future environmental gradients.  48 
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INTRODUCTION 53 

Consumptive interactions (i.e., predation) can have major implications for the structure and 54 

dynamics of communities (Chase et al. 2009; Vergés et al. 2019) and there are urgent needs for 55 

determining their variations under changing climate and biodiversity redistribution (Sentis et al. 56 

2014; Bruno et al. 2015; Rosenblatt and Schmitz 2016). In response to changes in prey abundances, 57 

consumers can switch to alternative food items and/or readjust the strength of their interactions 58 

with the prey (Sentis et al. 2014; Gilljam et al. 2015). In addition, and especially in the case of 59 

ectotherms, some consumptive interactions can be strengthened due to changes in metabolic 60 

requirements imposed by changing climate (Bruno et al. 2015; Rosenblatt and Schmitz 2016; 61 

Anderson et al. 2017). The magnitude of these changes may, however, vary asymmetrically 62 

between predators and prey depending on the differential thermal responses of both resource and 63 

consumer traits, such as mobility and strategy to acquire resources (Dell et al. 2014). The diversity 64 

of these scenarios is challenging predictions of future food webs and ecosystem functioning (Bruno 65 

et al. 2015; Rosenblatt and Schmitz 2016; Kortsch et al. 2019; Vergés et al. 2019). 66 

Latitudinal variation in species interactions has provided critical information on potential 67 

future changes with climate warming (Wernberg et al. 2010; Bennett et al. 2015a; Vergés et al. 68 

2019). Large scale comparative experiments from various habitats have strongly improved our 69 

general understanding of both the structuring role of consumers on biodiversity gradients (Chase 70 

et al. 2009; Freestone et al. 2011; Bennett et al. 2015b; Roslin et al. 2017; Whalen et al. in press) 71 

and of the global evolutionary patterns of plant defences and plant-herbivore interactions (Pennings 72 

and Silliman 2005; Demko et al. 2017). To our knowledge, however, only a few studies have 73 

investigated intra-specific patterns in the activity of consumers across broad climatic gradients. In 74 

their latitudinal comparison of the feeding behaviour of the isopod Idotea balthica, Bell and Sotka 75 



 

 

(2012) revealed that this generalist grazer displayed local preferences for some of the food sources 76 

available in different regions. In northeastern America, Anstett et al. (2014) compared the intensity 77 

of grazing by different insects on the plant Oenothera biennnis and observed every possible 78 

relationship (positive, non-significant or negative) with increasing latitude, likely due to plant-79 

herbivore specialization (versus generalism) and herbivore traits. Whether local adaptation or 80 

phenotypic plasticity is to be invoked, these two examples support the idea that the trophic position 81 

of resident consumers can vary across spatial scales. Notwithstanding its pervasiveness, our current 82 

understanding of omnivory (i.e. wherein a consumer feeds on several trophic levels) within taxa 83 

across such scales remains highly limited (Clay et al. 2017).  84 

There is a growing interest in understanding how omnivory varies with environmental 85 

conditions, especially temperature, which has so far demonstrated mixed results (Rosenblatt and 86 

Schmitz 2016; Anderson et al. 2017). The prevailing paradigm that the dietary proportion of 87 

carbohydrates increases more than proteins with increasing temperature (because carbon-rich 88 

compounds are more readily processed to meet energy demands via respiration), has received 89 

experimental support from a range of different ectotherms (marine copepods, caterpillars, 90 

freshwater crayfish, tadpoles and insect larvae; Croll and Watts 2004; Lee et al. 2015; Boersma et 91 

al. 2016; Carreira et al. 2016). Out of three tadpole species tested by Carreira et al. (2016), however, 92 

the most carnivorous species were incapacitated when fed macrophytes in warming conditions. 93 

This last result contrasts with the paradigm and suggests that omnivory responses to temperature 94 

may instead depend on initial species-specific diets (nutrient limitations), as also supported by 95 

stoichiometric models (Anderson et al. 2017) (cf. Sperfeld et al. 2017 for further confrontation of 96 

related theorotical frameworks). Increased consumption of protein over carbohydrates with 97 

increasing temperature, in order to promote growth, development and survival, has been 98 



 

 

experimentally shown in a grasshopper fed artificial diets (Schmitz et al. 2016) and more indirectly 99 

(through varied C:N) in a beetle fed various plant species (Lemoine et al. 2013). Conversely, in 100 

cold conditions, carbohydrate consumption may be enhanced to compensate for reduced energy 101 

intake, as also suggested from experiments on the mealworm beetle fed synthetic diets (Rho and 102 

Lee 2017). Based on such premises, it is of little surprise to find inconsistent seasonal variations in 103 

omnivory across field studies (Miyasaka and Genkai-Kato 2009; Boersma et al. 2016), and calls 104 

for additional comparative studies across multiple spatial scales and environments. 105 

In this study, we examined the omnivory of a broadly distributed ectotherm consumer - the 106 

sea urchin Echinus esculentus (hereafter Echinus) - across latitudes that are representative of 107 

different climatic conditions. Echinus inhabits kelp forests along the latitudinal distribution of the 108 

kelp Laminaria hyperborea, ranging from Portugal (~ 41°N) to northern Norway (71°N) (Tyler et 109 

al. 1995). A substantially varied diet has generally been reported for the species, but has to the best 110 

of our knowledge, never been compared across larger spatial scales and environments, in spite of 111 

interesting patterns suggested by local-scale studies (see methods). Importantly, animal proteins 112 

(and possibly lipids) are seemingly required in Echinus’ diet to promote its somatic growth and 113 

reproductive output (Bonsdorff and Vahl 1982; Kelly et al. 2001). This is also observed in other 114 

sea urchins (e.g., Lares and McClintock 1991; Fernandez and Boudouresque 2000). In marine 115 

systems, the amounts (per unit of dry mass) of proteins and lipids in sessile fauna are on average 116 

3.2 and 5.5 times higher in than in seaweeds, which contain 3.9 times more carbohydrates than 117 

fauna (Brey et al. 2010). Assuming the energy investment in foraging on the two food categories 118 

is identical (both being sessile, Dell et al. 2014), we first hypothesized that (1) the sessile fauna 119 

intake would be greater in warmer conditions, therefore producing an omnivory gradient across 120 

latitudes. While absolute consumption rate could also vary with temperature (Bruno et al. 2015) 121 



 

 

and thus counterbalance temperature-driven metabolic nutrient limitation (Anderson et al. 2017), 122 

we also had the alternative hypothesis that (2) the balance between animal and algal food would 123 

vary according to the local availability of food items, hence indicating an entirely opportunistic 124 

behaviour uncoupled, at least directly, from climatic conditions. Should omnivory be driven by 125 

opportunism, we further hypothesized that (3) the consumer would locally adjust its foraging 126 

strategy at multiple spatial scales.  127 

 128 

METHODS 129 

Model species 130 

Although the vast array of putative prey of Echinus is generally acknowledged and supported by 131 

qualitative observations of gut contents made in Western Scotland (Comely and Ansell 1988; 132 

Emson and Moore 1998), the Isle of Man (Moore 1934) and the English Channel (Leclerc et al. 133 

2015), information regarding broad spatial variations in diet is generally lacking. Differences in 134 

gonad condition across shallow and deep sites reported in previous studies have often been 135 

attributed to contrasting diversity and availability of food items (Moore 1934; Nichols et al. 1985). 136 

In addition, local-scale studies using stable isotopes have indicated that Echinus has a substantially 137 

varied diet largely dominated by kelp in Norway (Fredriksen 2003) and by sessile fauna in France 138 

(Leclerc et al. 2015). Whether these differences in diet reflect local response to available food 139 

sources, changes relating to metabolic requirements or is incidental (e.g., as a function of different 140 

temperature regimes) is unresolved. 141 

Study sites and sampling 142 



 

 

The sampling design consisted of four regions (separated by 1000s of kilometres), with two sites 143 

(separated by 1-10s km) nested within each region. The study area ranged from northern Portugal 144 

(41.6°N) to northern Norway (69.6°N), hence covering 28° of latitude (Table S1). Mean sea surface 145 

temperatures (extracted from the Bio-Oracle database; Tyberghein et al. 2012; Assis et al. 2018 for 146 

the period 2000-2014, Table S2) ranged from 7.0°C in northern Norway (average minimum and 147 

maximum between 3.3 and 11.3°C) to 15.6°C in Portugal (between 13.0 and 18.2°C). Over the 148 

same period, long-term temperature variations were weak in Portugal (range of ~ 5°C) and France 149 

(6°C), under the direct influence of the Gulf Stream, moderate in northern Norway (8°C) and 150 

comparatively greater in southern Norway (10°C). Each study site was haphazardly selected among 151 

Laminaria hyperborea forests at a depth of 5-12 m below chart datum. Adult Echinus were 152 

‘frequent’ (SACFOR scale) at all study sites (1-9 ind. 10 m–2). Within each study site, 16 to 20 sea 153 

urchins, 6 young (stipe < ca. 5cm) and adult (stipe > ca. 5 cm) kelps were haphazardly collected 154 

by divers, kept on ice and then processed in the laboratory within 12 hours. Within the framework 155 

of distinct field campaigns, sampling was done in spring 2014 in France and southern Norway, in 156 

spring 2015 in Portugal and in summer 2016 in northern Norway.  157 

The abundance of primary producers and all potential urchin food sources (including sessile 158 

fauna) were assessed using two distinct methods. At the site scale, the fleshy seaweed biomass (wet 159 

weight: blotted with paper tissue and weighed) was determined at the lowest taxonomic level 160 

possible (generally species) from destructively sampled 0.25 m2 quadrats. In the laboratory, 161 

seaweed biomass was further subdivided into two categories, either epilithic (on bedrock) or 162 

epiphytic (on kelp stipe). In addition, a series of independent photos were taken to determine the 163 

abundance of all potential food sources (including fauna) within the main strata of the kelp forest: 164 

bedrock (n = 5-11) and stipe (n = 5-11). These potential food sources were classified using morpho-165 



 

 

functional groups of seaweeds and sessile fauna, which have proven relevant to address ecological 166 

functions of complex stratified systems such as Laminaria hyperborea forests (see Appendix S1). 167 

Percentage covers of morpho-functional groups of seaweeds and sessile fauna were visually 168 

estimated by the same observer (JCL) from photos for each potential food source. These 169 

estimations followed the Dethier et al. (1993) framework, by summing semi-abundance either over 170 

sub-quadrats of the quadrats (0-4 × 25) or over linear (vertical) portions of the stipe  (0-10 × 10).  171 

Most fleshy seaweeds and their epiphytes (notably sessile fauna) were generally visible in photos, 172 

making easier their abundance estimation easier. In both habitats, however, most understorey taxa 173 

(crusts and small sessile fauna) or habitat features (sediment) could not be quantified and were thus 174 

likely underestimated. While percentage cover were assessed with a fixed scale of 0.1 m² on the 175 

bedrock, stipe area available to colonization by epiphytes varied across kelp individuals and was 176 

not quantified. Nonetheless, differences in surface area (among stipes or between stipes and 177 

quadrats) were not considered an issue in the context of our study since relative values of cover, 178 

based on similar sampling intensity and broad functional groups (rather than species) were only 179 

compared among these strata and gut contents (see section on data analyses). 180 

 181 

Urchin diet and trophic position 182 

In the laboratory, sea urchins were processed for a series of morphological parameters, such as 183 

their size (maximum test width) and gonad index (ratio between gonad and total wet biomass). 184 

Aristotle’s lanterns and guts were dissected and stored in separate Ziploc bags at - 30°C until further 185 

analysis. Unlike stable isotopes which give a time-integrative estimation of diet, gut contents give 186 

a snapshot of feeding choices but are more robust to determine preferences and opportunism. Gut 187 



 

 

contents also provide accurate information about prey species which have been ingested and are 188 

therefore useful in determining individual habitat use and foraging strategies, within and among 189 

sites (Vanderklift et al. 2006).  190 

Gut contents from individual sea urchins were analysed in order to determine any food 191 

preferences. To facilitate identification, gut contents were washed thoroughly with freshwater 192 

through an 80 µm mesh sieve. Each gut sample was then placed within a Dollfus’s dish (50 × 100 193 

× 8 mm), where the bottom was divided into 200 square compartments (5 × 5 × 2 mm). Although 194 

crushed by the sea urchin teeth over ingestion and reduced to < 2-5 mm pieces within faecal pellets, 195 

most prey items are readily identifiable using a series of morphological and histological traits (e.g. 196 

Emson and Moore 1998). For each food item category (morpho-functional group, Appendix S1), a 197 

score was given according to its occurrence over the total number of occupied squares. Each food 198 

item score was finally reported as a percentage, the sum of which frequently exceeded 100% given 199 

the over-layering of food item categories within the bulk sample. 200 

 Stable isotope analyses were conducted on individual urchins and on the biomass-dominant 201 

primary food source in order to estimate urchin trophic level. Laminaria hyperborea was expected 202 

to be the most abundant fleshy seaweed (except in Portugal, see results) and the only seaweed 203 

shared across all study sites. Within kelp forests, L. hyperborea also represents the dominant 204 

trophic resource of sessile suspension-feeders (e.g. barnacles, bivalves, bryozoans), which can be 205 

a major component of Echinus diet (Leclerc et al. 2013; 2015). Given these reasons and in the 206 

absence of suspension-feeders isotope values (see also Post 2002) collected for this study, L. 207 

hyperborea was chosen as baseline, using average δ15N values of adult and young kelp individuals, 208 

generally in the range of other seaweeds (Leclerc et al. 2013). Clean sections of kelp (ca. 4 × 4 cm) 209 



 

 

were dissected from newly-formed lamina on freshly collected adult kelp and around the meristem 210 

(stipe and lamina) on young kelp. For Echinus, muscle tissues, reflecting time-integrative 211 

assimilation of sources (e.g. Pinnegar and Polunin 1999), were dissected from the Aristotle’s 212 

lantern. Each sample was checked and when necessary cleaned from epiphytes using a scalpel, 213 

thoroughly rinsed with filtered seawater, then oven-dried at 55°C for 48 h. Because δ15N values 214 

were targeted, no further treatment was deemed necessary. Dried samples were ground using an 215 

agate mortar and a pestle, then put in tin capsules for mass-spectrometry analyses. 216 

Nitrogen isotope-ratios were determined using a Flash EA-CN analyser coupled with a 217 

Finnigan Delta Plus mass spectrometer, via a Finnigan Con-Flo III interface. Data are expressed in 218 

the standard δ unit, calculated in relation to the certified reference material atmospheric dinitrogen 219 

(at-air): δ15N = [(15N/14Nsample / 
15N/14Nreference) – 1] × 103. The at-air scale was calibrated against 220 

IAEA-N2 and USGS34 international standards, using a two-point normalisation (Paul et al. 2007). 221 

In addition, a laboratory standard (casein IRMS certified standard, B2155 Elemental Microanalysis 222 

Ltd, UK) is used throughout the analyses, as quality check. The standard deviation of repeated 223 

measurements of δ15N values of a laboratory standard was 0.05 ‰ versus at-air. 224 

 225 

Data analyses 226 

Estimation of trophic level using stable isotopes 227 

Isotopic analyses helped to estimate trophic levels of each individual urchin (TLurchin): TLurchin = 1 228 

+ (δ15Nurchin – δ15Nbaseline) / DDDF, where δ15Nbaseline corresponds to the mean δ15N of kelp 229 

(averaged over adult and young kelps per site) and DDDF corresponds to diet-dependent 230 



 

 

discrimination factor (Δ15N) calculated for each site according to Caut et al. (2009). This method 231 

was chosen due to the omnivory of Echinus and given the large variability in kelp δ15N observed 232 

among sites (see also Figure S4). No discrimination factor has been proposed for sea urchins 233 

(e.g.,Vanderklift et al. 2006) and the use of a fixed δ15N led to contradictory results in comparison 234 

with gut contents analyses (overestimation of TL at sites where kelp were poorly enriched in 15N). 235 

In addition, dependency between diet δ15N and discrimination factor has been experimentally 236 

demonstrated in other echinoderms (Blanchet-Aurigny et al. 2012). 237 

 238 

Statistical analyses 239 

All univariate and multivariate data were analysed using the same two-way nested 240 

PERMANOVAs, with 4999 permutations and the random factors ‘region’ and ‘site’. Univariate 241 

and multivariate analyses were respectively based on Euclidean distance and Bray-Curtis similarity 242 

matrices. Univariate data included urchin size, gonad index and trophic level as well as the 243 

abundances of the dominant groups of putative food items (biomass of kelp and other seaweeds, 244 

percentage cover of seaweeds and sessile fauna), on either bedrock or stipe. Multivariate data 245 

consisted of the relative abundances of each food item categories within gut contents. Prior to 246 

analyses, the homogeneity in univariate or multivariate dispersion was checked among the levels 247 

of the factor ‘region’ using PERMDISP (Anderson et al. 2008). When assumption of 248 

homoscedasticity was not met after any transformation of univariate data, the analysis was 249 

conducted on untransformed data following Underwood (1997) and a more conservative level of 250 

significance (α = 0.01) was taken into account. For multivariate structure, samples were also 251 

ordinated using non-metric multidimensional scaling (nMDS) to support PERMANOVA results 252 

(Anderson et al. 2008). In order to strengthen all these analyses, we also examined how the 253 



 

 

variation was distributed across all three nested levels tested (region site, residual). When a 254 

negative component of variations was found, it was set to zero and the model was adjusted in order 255 

to re-calculate the remaining estimates (Fletcher and Underwood 2002).   256 

Foraging strategies were determined from gut content similarities with prey distribution in 257 

the sea urchin environment. At the site scale, the natural habitat-complexity of L. hyperborea 258 

forests challenges the collection of abundance data for all possible food sources (Christie et al. 259 

2003; Leclerc et al. 2016). More information can, however, be obtained from the abundances of 260 

resource on two kelp forest strata known to be visited by Echinus: the understorey (on the bedrock) 261 

and the epiphytes (on the stipe). We thus developed a relative and binary feeding behaviour index 262 

for each of these two strata. First, abundance (cover) data of the main food item categories (except 263 

kelp) in different habitats (bedrock and stipe) and within urchin guts were all compiled in a unique 264 

matrix. We did not include kelp in the analyses because they were often observed in the urchin diet 265 

as a varying mixture of fragment types (ranging from a relative scale of soft to hard tissues, with 266 

or without cortex, etc.), which could hardly be assigned to understorey or stipe. Indeed, these 267 

diverse type of tissues can be found in varying abundances within either canopy kelp individuals 268 

(Kain 1963), understorey young individuals, or detritus (Filbee-Dexter et al. 2018). Second, a 269 

matrix of dissimilarity between all pairs of samples was created using the Bray-Curtis index 270 

calculated from untransformed data. Third, for each site, principal coordinates were calculated 271 

from the Bray-Curtis dissimilarity (non-metric) matrices in order to extract Euclidean distances 272 

(metric) between all pairs of samples, while preserving the properties of the Bray-Curtis index. 273 

Fourth, for each individual urchin, the average distance between its diet and the food item 274 

abundances in each of its putatively targeted habitats (stipe or bedrock) was then calculated. Fifth, 275 

the relative and binary feeding behaviour index (FBI) was subsequently calculated for each 276 



 

 

individual, based upon Armas et al. (2004), as follow: FBI = (Dd-h1 – Dd-h2)/ (Dd-h1 + Dd-h2), where 277 

Dd-h1 = multivariate distance between individual diet and the habitat 1 (here bedrock) and Dd-h2 = 278 

distance between individual diet and the habitat 2 (stipe). This FBI presents a continuous scale and 279 

ranges between – 1 and + 1 indicating a marked (and theoretical) affinity for habitats 1 and 2, 280 

respectively. Finally, in order to determine whether urchins present a significant “preference” for 281 

one habitat or another at the local scale, PI values were compared to 0 using one-sample t-tests 282 

within each site. The latter analysis was performed using SigmaPlot, while PERMANOVAs, 283 

nMDS and PERMDISPs were performed using PRIMER 7 with PERMANOVA add-on (Anderson 284 

et al. 2008). 285 

 286 

RESULTS 287 

Across sites and regions, a total of 131 sea urchins were analysed and presented consistent regional 288 

differences in both size (test diameter) and wet weight (ww) between core (France, southern 289 

Norway) and edge (Portugal, northern Norway) regions (Table 1, Fig. S1). Sea urchins were 290 

significantly smaller in Portugal (85.3 ± 7.4 mm, mean ± SD) and northern Norway (78.1 ± 12.3 291 

mm) than in France (113.3 ± 10.1 mm) and southern Norway (110.8 ± 15.7 mm). Likewise, and in 292 

spite of within-region significant effects, sea urchins were three times lighter (85.3 ± 7.4 gww) in 293 

Portugal (274.4 ± 62.5 gww) and northern Norway (224.6 ± 107.6 gww) than in France (778.3 ± 294 

222.8 gww) and southern Norway (673.5 ± 217.3 g). Their gonad index varied substantially within 295 

sites (72% of variation due to residuals in the model, Table 1) but did not vary among regions (on 296 



 

 

average 7.2 ± 4.04, Fig. S1). Interestingly though, this index displayed significant site-to-site 297 

differences in both Portugal and northern Norway (Table 1, Fig. S1). 298 

Contrasting patterns in food availability at multiple spatial scales 299 

Food availability varied markedly across different spatial scales (among regions, sites, micro-300 

habitats), and depended on food type. Laminaria hyperborea dominated the seaweed biomass from 301 

France (5.6 ± 4.5 kgww m-2, mean ± SD) to northern Norway (13.7 ± 11.3 kgww m-2, Fig. 1A, Table 302 

1), where similar values were observed, but its biomass was much lower (< 0.1 kgww m-2) in 303 

Portugal, where the canopy was dominated by the pseudo-annual kelp Sacchoriza polyschides (0.9 304 

± 0.3 kgww m-2, Fig. 1B). The epiphyte biomass was statistically similar among regions (Fig. 1C, 305 

Table 1), and highly variable within and among sites (cf. %var. in Table 1). It is noteworthy that 306 

epiphyte biomass was virtually zero at all sites in Portugal and at the Hekkingen site (cf. Table S1) 307 

in northern Norway. Significant regional differences were detected for the understorey biomass 308 

(Fig. 1D). In northern Norway, the fleshy algal understorey was patchy, monospecific 309 

(Desmarestia aculeata and the biomass was negligible (5.1 ± 15.6 gww m-2) when compared to 310 

other regions (Table 1, Fig. 1D). Understorey biomass was similar in France (80.4 ± 78.1 gww m-2) 311 

and southern Norway (84.6 ± 831 gww m-2) and about ten-fold lower than in Portugal (775.9 ± 665.5 312 

gww m-2, Table 1, Fig. 1D). Similar spatial patterns were shown when fleshy seaweeds were 313 

quantified using percentage cover with only the epilithic algae differing significantly between 314 

northern Norway (10.0 ± 7.1%, dominated by crusts, Fig. 2) and the other regions (on average 55.9 315 

± 16.1%, Table 1, Fig. 2). In contrast, neither the percent cover of sessile fauna associated with the 316 

stipes or with the bedrock differed among regions, but both displayed substantial site-to-site 317 

variations in France and northern Norway (Table 1, Fig. 2).  318 



 

 

Diet and omnivory vary substantially in space, but not with latitude 319 

Both stable isotope and gut content analyses were indicative of omnivory, without preference for 320 

a specific food source (Fig. 3, Fig. S4). A total of 22 food items could be identified in the sea urchin 321 

guts, including diverse morpho-functional groups of seaweeds (including kelp across all study 322 

sites), sessile and mobile fauna (Fig. S3). Within faunal groups, barnacles (Cirripeda) and 323 

bryozoans displayed the greatest contribution to the urchin diet (Fig. 3B). In spite of a great site 324 

within region effect, the multivariate structure of the diet varied significantly among regions (cf. 325 

PERMANOVA). However, pairwise tests only reveal statistical difference between Portugal, 326 

southern Norway and northern Norway; all diets were similar to samples from France (Table 1, 327 

Fig. 3C). The trophic level varied substantially between sites within region in Portugal, France and 328 

northern Norway, and no difference was detected among regions (Table 1, Fig. 3A). For instance, 329 

the trophic level in France  330 

 331 

Adjustment of foraging strategy at multiple spatial scales 332 

Analysing the similarity between the generalist diet and the distribution of its putative food items 333 

proved efficient to infer spatial patterns in foraging strategies in space, here between two kelp forest 334 

strata: the bedrock and the stipe (Fig. 4). Although broad groups of sessile taxa were considered, 335 

the community (or functional) structure of these strata differed significantly within and across study 336 

sites (Table S3, Fig. S2). Based on these cover data, sea urchins displayed significant net affinity 337 

for one habitat or another in 6 out of the total 8 sites (Fig. 4). Within regions, consistent affinities 338 

for the understorey habitats were observed in Portugal whereas consistent affinities for the epiphyte 339 



 

 

habitats were found in northern Norway. Site-specific affinities for the understorey were also 340 

observed in France and southern Norway (cf. also site within region effect, Table 1), but it is 341 

noteworthy that many individuals (15.5%) from southern Norway displayed a net affinity for the 342 

epiphytes (PI ranging from + 0.05 to + 0.18, Fig. 4A). 343 

 344 

DISCUSSION 345 

Consumers are expected to adjust their diet and/or the strength of their interactions in response to 346 

the redistribution of their food items and to metabolic changes imposed by global warming (Bruno 347 

et al. 2015; Gilljam et al. 2015; Rosenblatt and Schmitz 2016; Anderson et al. 2017). Our results 348 

show that neither diet nor trophic level of an omnivore sea urchin inhabiting kelp forests varied 349 

significantly among regions across approximately 28° latitude on the NE Atlantic, suggesting that 350 

temperature or other covariates of latitude did not influence, at least directly, the feeding 351 

preferences of this ectotherm. With respect to variations among sites, however, the diet of sea 352 

urchins varied according to local availability of food items. By using a feeding behaviour index, 353 

our results further indicate that sea urchins locally adjusted their foraging strategy among kelp 354 

forest strata, consistent with great functional plasticity. 355 

 356 

Consistent omnivory across latitudes 357 

Metabolic scaling theory (Bruno et al. 2015), the foraging strategy towards sessile prey (Dell et al. 358 

2014) and previous published diets of Echinus from local studies (Fredriksen 2003; Leclerc et al. 359 

2015) suggest that animal (protein rich) food intake of this sea urchin should decrease with ocean 360 

warming, and therefore with increasing latitude. Although we do not provide evidence on possible 361 



 

 

individual diet adjustments with temperature (within populations), the latitudinal hypothesis 362 

(among populations) is generally rejected by this study. By analysing both gut contents and stable 363 

isotopes, our results indicate that Echinus maintains omnivory (algal versus animal contribution to 364 

the diet) across its latitudinal range. Should temperatures experienced by the sea urchin across its 365 

latitudinal range have any influence on its metabolic requirements, our results would align best 366 

with models in which stoichiometric imbalance, and dietary preferences, can be preserved by 367 

overall increased intake with temperature (Anderson et al. 2017).  While temperature is most likely 368 

to affect per capita interaction strength, it does not seem to affect Echinus food preference at the 369 

latitudinal scale studied. Diverse groups of algae and animals were consistently identified as part 370 

of the urchin diet at all study sites (e.g. bryozoans, barnacles, kelp and fleshy seaweeds) and nothing 371 

indicated a latitudinal shift in their respective abundance. Using stable isotopes (δ15N), estimates 372 

of trophic level generally aligned with the relative abundance of food items in digestive contents 373 

and previous local studies. For instance, the highest trophic level (4.6 ± 0.2) observed in Roscoff 374 

(France) is consistent with Leclerc et al. (2015) estimations in a nearby locality (TL = 4.0), wherein 375 

a similar diet was observed. The lowest trophic level (2.4 ± 0.2) estimated in Hekkingen (northern 376 

Norway) was also consistent with a kelp-dominated diet shown by gut content analyses. While the 377 

trophic level was consistent across regions, it varied markedly among sites within region, providing 378 

support to alternative hypotheses, notably related with food availability (see following sections). 379 

 380 

Omnivory reflects local food availability across multiple spatial scales 381 

The overall site-to-site variability in both δ15N and gut contents suggests that spatial patterns 382 

in omnivory may be driven mainly by opportunism (in response to food availability) as opposed to 383 



 

 

latitudinal characteristics of the environment. While feeding trials would have provided empirical 384 

evidence for this hypothesis (Bell and Sotka 2012; Demko et al. 2017), qualitative site-to-site 385 

comparisons of the heat-maps illustrating the abundances of putative food sources within the 386 

understorey (Fig. S2) and the contributions of each food item to the diet of Echinus (Fig. 2-3, Fig. 387 

S3) shed some light on this pattern. For instance, filamentous algae were virtually absent from gut 388 

contents in all sites, except in southern Norway where they dominated the understorey and 389 

represented a major component of the urchin diet, regardless of likely limited benefits for macro-390 

consumers (Steneck and Watling 1982). As previously suggested in local studies (Emson and 391 

Moore 1998), our results support that site-to-site differences in diets are mostly driven by food 392 

availability. These differences could also be reflected in Echinus phenology (Moore 1934; Nichols 393 

et al. 1985; Comely and Ansell 1988) but we note in that context that relationships between the 394 

spawning cycle and diet are generally unresolved for Echinus, unlike other well-studied sea urchins 395 

(Minor and Scheibling 1997; Fernandez and Boudouresque 2000). Spatial variations in gonad 396 

index and food availability can either be consistent (e.g. between young individuals living in 397 

faunal-dominated deep reefs and adults living in seaweed rich-shallow reefs, Moore 1934; Nichols 398 

et al. 1985) or counter-intuitive (e.g. with considerable variations in the timing of spawning events 399 

between apparently similar sites, Comely and Ansell 1988). Likewise, much site-to-site variations 400 

in gonad index were observed in both Portugal and northern Norway. While this variation coincides 401 

with site-to-site differences in sea urchin size in Portugal (see also Moore 1934), it rather coincides 402 

with substantial site-to-site differences in diet and availability of attached fleshy seaweeds 403 

(seasonally consistent, KFD, pers. obs.) in northern Norway. These complex relationships certainly 404 

deserves attention beyond the scope of this study.  405 



 

 

The extent to which the urchin diet and omnivory depend on food availability is further 406 

indicated by our feeding behaviour index, which may help to inform of the underlying processes 407 

and ecological implications of such flexibility at multiple spatial scales. The consistent occurrence 408 

of certain food items in diets at all sites suggests that some of them could be important to the urchin 409 

fitness (e.g. kelp, fleshy seaweeds colonized by crustose bryozoans, Bonsdorff and Vahl 1982). In 410 

order to obtain these food items in heterogeneous habitats, the sea urchins may be forced to adjust 411 

their foraging strategies at the local scale (cf. Paracentrotus lividus in seagrass meadows, Camps-412 

Castellà et al. 2020). Because the abundance and distribution of food items across kelp forest strata 413 

can vary consistently across broad diversity gradients (e.g. some broadly distributed taxa are 414 

exclusive to kelp stipes, Kain-Jones 1971), local adjustments in foraging strategies are likely to 415 

create gradients in Echinus function at a larger scale. 416 

At the southern (warm) edge of Laminaria hyperborea distribution (Portugal), kelp were 417 

reduced to small individuals with little to no epiphytes, and there was virtually no stratification 418 

(i.e., canopy/sub-canopy) of the kelp forests. In the same region, our index revealed a net affinity 419 

for the understorey, where the seaweed biomass was concentrated (Fig. 3B, Fig. S3) and included 420 

the few species observed on the stipe (e.g. Rhodymenia sp.). Range centre populations of Echinus 421 

in France and southern Norway were in different kelp forest conditions compared to Portugal, and 422 

had access to both epiphytes and understorey seaweeds. Laminaria hyperborea forests were similar 423 

within and between these two regions, with the prevalence of large kelp individuals (main biomass) 424 

loaded by abundant epiphytes (including kelp). The same sites in France and southern Norway 425 

were also accompanied by diverse seaweeds and sessile animals growing on the surrounding 426 

bedrock. In these kelp forests, our feeding behaviour index suggests that Echinus can encounter 427 

most of the needed food items in the understorey habitat, although net affinities for either habitat 428 



 

 

were not significant at two of these sites (Fig. 4). These patterns contrast with northern Norway, 429 

where a net affinity for epiphytes was observed. Although abundant epiphytes were found at one 430 

site, the understorey habitat at both these sites was generally depauperate and mainly covered by 431 

crustose seaweeds, when compared to other regions. If food becomes limited in the understorey, 432 

climbing up kelp stipes is probably the best way for a sea urchin to diversify its diet (Bekkby et al. 433 

2015). Consumers venturing on the upper part of stipe can actually access Palmaria palmata, which 434 

is probably the most palatable red seaweed in the subtidal NE Atlantic kelp forests (Guiry and 435 

Blunden 1991; Schaal et al. 2010). Commonly encrusted by the bryozoan Electra pilosa, P. 436 

palmata was herein observed in varying abundance as (and only as) epiphytes from France to 437 

northern Norway, and this combination of food items made up the entire diet of some individuals 438 

from several of the studied localities (JCL, pers. obs.). Further work would be needed to determine 439 

the prevalence of possible individual preferences within the sea urchin populations. More 440 

interestingly, it is worth noting that Echinus is coexisting with Strongylocentrotus droebachiensis 441 

(at densities of ca. 0.5 to 1.2 m–², Filbee-Dexter et al. 2020) in northern Norway. Should that 442 

voracious sea urchin be involved in the control of understorey algae (cf. Christie et al. 2019 and 443 

references therein), our feeding behaviour index would thus mirror that competition for food 444 

resource affect the foraging flexibility of Echinus, and force it to browse another habitat (Fig. 4B). 445 

This point deserves further attention.  446 

 447 

Potential implications of the scale-dependent foraging strategies of Echinus esculentus for kelp 448 

forest functioning along NE Atlantic. 449 



 

 

While the importance of habitat-forming species, such as kelp, for biodiversity is generally 450 

acknowledged, it is noteworthy that not all kelp species share the same habitat-forming traits (e.g. 451 

Wernberg et al. 2019 and references therein). Compared to other kelp, the stipe of L. hyperborea 452 

possess a series of traits conducive to colonization by abundant perennial and semi-annual 453 

epiphytes (reviewed in Teagle and Smale 2018), within which diverse and abundant assemblages 454 

of fauna can develop and fuel local and adjacent food webs (Norderhaug et al. 2005; Leclerc et al. 455 

2013). Across diverse taxa or morpho-functional groups, sessile epiphytes are indeed characterized 456 

by varied structural complexity which have been shown to influence macrofaunal diversity and 457 

community structure, at multiple spatial scales (Norderhaug 2004; Norderhaug et al. 2014). A 458 

single stipe of kelp can be inhabited by up to 85 macrofaunal species (Leclerc et al. 2016), with 459 

abundances that can exceed 80,000 individuals (Christie et al. 2003) and may constitute a 460 

microscale diversity refuge in disturbed areas (Leclerc et al. 2015). Although the present data do 461 

not provide quantitative evidence for urchin-epiphyte interactions, they align with Bekkby et al. 462 

(2015) who demonstrated that Echinus can significantly reduce the abundance of kelp epiphytes in 463 

mid-Norway, and thus alter the function of this microhabitat. Interestingly, those authors observed 464 

a stronger control of epiphytes in ‘young’ kelp forests undergoing a process of recolonization post-465 

overgrazing by Strongylocentrotus droebachiensis, compared to Echinus, which were likely more 466 

limited by food availability. The paucity of understorey seaweeds in northern Norway as compared 467 

to other regions, regardless of the underlying processes (light limitation, grazing by S. 468 

droebachiensis), is thus likely to exacerbate Echinus effects upon the diversity and community 469 

structure at local scale in these kelp forests. 470 

 Kelp was a minor component of the sea urchin diet at all but one site. Kelp contributed to 471 

30.6% at the northernmost site (Hekkingen, northern Norway), where alternative food items were 472 



 

 

poorly represented. The most probable explanation for this pattern is that Echinus switches to a 473 

kelp-dominated diet only when other food items are limited (even epiphytes were virtually absent 474 

locally). This has been seen in previous studies conducted in both UK and Norway: negative effects 475 

of Echinus on kelp – and more specifically recruits – are generally observed in “transition” areas, 476 

including the lower vertical (i.e. depth) distribution limit of kelp (Jones and Kain 1967), overgrazed 477 

areas (Hagen 1983), and localities or patches undergoing a recovery post-harvesting (Steen et al. 478 

2016). On the other hand, our results revealed that kelp presented similar contributions to the urchin 479 

diet in Portugal as compared to other regions, although their biomass in the urchin habitat was ten-480 

fold lower. Even as a minor component, kelp are rich in carbohydrates and may actually be essential 481 

to the mixed diet of the sea urchin. Whether the stronger effect of Echinus on kelp observed in 482 

transition areas and lower depth limit can hold for the southern edge of L. hyperborea distribution 483 

may be worthy of further investigation (Fig. 4).  484 

In conclusion, we show that the diet and trophic level of an omnivore inhabiting kelp 485 

forests, are consistent across four NE Atlantic regions spanning approximately 28°latitude, despite 486 

large differences in habitat structure, temperature, and prey availability. Our results however 487 

suggest that generalist consumers can adjust their diet and foraging strategies in response to 488 

resource availability at multiple scales. While such plasticity may confer to widely distributed 489 

generalist consumers (incl. omnivores) a certain resistance to changing environments and habitats, 490 

context dependent feeding behaviour challenges our understanding of associated food webs in 491 

response to multiple stressors and biodiversity redistribution. 492 
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Table & figure captions 726 

 727 

Table 1. Results of PERMANOVA tests for differences in general response variables among levels 728 

of the nested factors (region and site). Degrees of freedom (df) and components of variation (var, 729 

expressed as percentages) are indicated for each factor and response variable. Transformations 730 

(Transf) and PERMDISP tests (Disp, for the factor region) are summarized. ns: non-significant, m: 731 

marginally significant at α = 0.07, *: P < 0.05, **: P < 0.01, ***: P < 0.001. Based upon more or 732 

less conservative levels (see “Methods” section), significant values are in bold. 733 

Response variable Transf Disp PERMANOVA Factor     

      F Region (Re) F Site (Si) df Re, Si, Res 
%var Re, 

Si, Res 

Seaweed biomass (kg m-2)      
 

Laminaria hyperborea FORT ns 74.70** 0.60ns 3, 4, 38 79, 00, 21 

Other kelp none * 16.61** 8.50*** 3, 4, 38 83, 09, 08 

Epiphytes none *** 1.68ns 2.56* 3, 4, 38 11, 19, 70 

Understorey LOG ns 60.75** 0.76ns 3, 4, 38 80, 00, 20 

Seaweed cover (%)      
 

Epiphytes ASIN ns 3.75ns 1.33ns 3, 4, 62 17, 03, 80 

Understorey none * 32.25** 1.41ns 3, 4, 62 75, 01, 24 

Sessile fauna cover (%)      
 

Epiphytes ASIN m 1.31ns 8.28*** 3, 4, 62 07, 42, 51 

Understorey none ns 0.46ns 4.69** 3, 4, 62 00, 34, 76 

C:N  

    

 
Laminaria hyperborea adults SQRT ns 21.75* 3.32* 3, 4, 40 80, 05, 15 

Laminaria hyperborea young LOG m 22.39** 2.26ns 3, 4, 40 77, 04, 19 

E. esculentus none *** 90.38* 0.48ns 3, 4, 122 78, 00, 22 

d15N  

    

 
Laminaria hyperborea adults none ns 56.36*** 0.79ns 3, 4, 40 78, 00, 22 

Laminaria hyperborea young none *** 1.68ns 18.26*** 3, 4, 40 21, 59, 20 

E. esculentus none *** 1.71ns 147.75*** 3, 4, 122 24, 68, 08 

Urchin morphometry  

 

  

 

 
Diameter (width) none m 37.53** 2.10ns 3, 4 ,123 69, 02, 29 

Wet weight none *** 20.55** 5.09*** 3, 4 ,123 71, 06, 23 

Gonad index ASIN ns 0.89ns 9.23*** 3, 4 ,123 00, 28, 72 

Diet composition SQRT *** 3.947** 8.2437*** 3, 4 ,120 34, 21, 45 

Trophic level  none *** 2.40ns 164.02*** 3, 4, 122 39, 55, 06 

Feeding behaviour Index  none ** 9.17* 11.12*** 3, 4, 120 64, 14, 22 



 

 

SQRT: Square root transformed, FORT: Fourth root transformed, ASIN: Arcsine transformed, LOG: Transformation 

Ln (X +1) 

 734 

Figure 1. Mean biomass (kg m-2) of kelp (A, B) and other seaweed categories (C, D) across study 735 

sites. Around the median (horizontal line), the box plots show the quartiles, the 95% confidence 736 

intervals (whiskers) and the outliers. Letters, superscript stars (*) indicate pair-wise differences (P 737 

< 0.05) among regions and among sites within regions, respectively. Note that the scale differs 738 

among panels.  739 

 740 

Figure 2. Fleshy seaweed (kelp and crustose algae excluded) and sessile fauna percentage cover 741 

(%) estimated upon stipe (epiphytes) and bedrock habitats (understory). The box plots show the 742 

total covers (with Q1, Median, Q3, 95% C.I.s and outliers). The heat maps illustrate the covers of 743 

the dominant morpho-functional groups (average SIMPER contribution > 5%) of fleshy seaweeds, 744 

sessile fauna and others. For each category, letters indicate differences among regions, within 745 

which superscript stars indicate differences among sites according to PERMANOVA pairwise 746 

tests. 747 

 748 

Figure 3. Trophic level (A), contribution of the main food items (B, average SIMPER contribution 749 

> 5%) to the diet composition (C) of Echinus within and across study sites. Around the median 750 

(horizontal line), the box plots show the quartiles, the 95% confidence intervals (whiskers) and the 751 

outlier. Letters and superscript stars indicate pair-wise differences among regions and among sites, 752 

respectively.  753 



 

 

 754 

Figure 4. Feeding behaviour index (A) indicating affinities for epiphytes vs. understorey calculated 755 

from the functional similarities between Echinus diet and availability of food items (including 756 

seaweeds and fauna) upon kelp stipe and on the bedrock, and illustration of its meaning in the local 757 

context (B). Differences between the index values and 0 at the site level are summarized as follow: 758 

* = P < 0.05, **: P < 0.01, ***: P < 0.001. 759 

 760 
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