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INTRODUCTION

Consumptive interactions (i.e., predation) can have major implications for the structure and dynamics of communities [START_REF] Chase | Predators temper the relative importance of stochastic processes in the assembly of prey metacommunities[END_REF][START_REF] Vergés | Tropicalisation of temperate reefs: implications for ecosystem functions and management actions[END_REF]) and there are urgent needs for determining their variations under changing climate and biodiversity redistribution [START_REF] Sentis | Towards a mechanistic understanding of temperature and enrichment effects on species interaction strength, omnivory and food-web structure[END_REF][START_REF] Bruno | Exploring the role of temperature in the ocean through metabolic scaling[END_REF][START_REF] Rosenblatt | Climate change, nutrition, and bottom-up and top-down food web processes[END_REF]. In response to changes in prey abundances, consumers can switch to alternative food items and/or readjust the strength of their interactions with the prey [START_REF] Sentis | Towards a mechanistic understanding of temperature and enrichment effects on species interaction strength, omnivory and food-web structure[END_REF][START_REF] Gilljam | Adaptive rewiring aggravates the effects of species loss in ecosystems[END_REF]. In addition, and especially in the case of ectotherms, some consumptive interactions can be strengthened due to changes in metabolic requirements imposed by changing climate [START_REF] Bruno | Exploring the role of temperature in the ocean through metabolic scaling[END_REF][START_REF] Rosenblatt | Climate change, nutrition, and bottom-up and top-down food web processes[END_REF][START_REF] Anderson | Will invertebrates require increasingly carbon-rich food in a warming world?[END_REF]. The magnitude of these changes may, however, vary asymmetrically between predators and prey depending on the differential thermal responses of both resource and consumer traits, such as mobility and strategy to acquire resources [START_REF] Dell | Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy[END_REF]. The diversity of these scenarios is challenging predictions of future food webs and ecosystem functioning [START_REF] Bruno | Exploring the role of temperature in the ocean through metabolic scaling[END_REF][START_REF] Rosenblatt | Climate change, nutrition, and bottom-up and top-down food web processes[END_REF][START_REF] Kortsch | Food-web structure varies along environmental gradients in a high-latitude marine ecosystem[END_REF][START_REF] Vergés | Tropicalisation of temperate reefs: implications for ecosystem functions and management actions[END_REF].

Latitudinal variation in species interactions has provided critical information on potential future changes with climate warming [START_REF] Wernberg | Decreasing resilience of kelp beds along a latitudinal temperature gradient: potential implications for a warmer future[END_REF]Bennett et al. 2015a;[START_REF] Vergés | Tropicalisation of temperate reefs: implications for ecosystem functions and management actions[END_REF]. Large scale comparative experiments from various habitats have strongly improved our general understanding of both the structuring role of consumers on biodiversity gradients [START_REF] Chase | Predators temper the relative importance of stochastic processes in the assembly of prey metacommunities[END_REF][START_REF] Freestone | Stronger predation in the tropics shapes species richness patterns in marine communities[END_REF]Bennett et al. 2015b;[START_REF] Roslin | Higher predation risk for insect prey at low latitudes and elevations[END_REF]Whalen et al. in press) and of the global evolutionary patterns of plant defences and plant-herbivore interactions [START_REF] Pennings | Linking biogeography and community ecology: latitudinal variation in plant-herbivore interaction strength[END_REF][START_REF] Demko | Declines in plant palatability from polar to tropical latitudes depend on herbivore and plant identity[END_REF]). To our knowledge, however, only a few studies have investigated intra-specific patterns in the activity of consumers across broad climatic gradients. In their latitudinal comparison of the feeding behaviour of the isopod Idotea balthica, [START_REF] Bell | Local adaptation in adult feeding preference and juvenile performance in the generalist herbivore Idotea balthica[END_REF] revealed that this generalist grazer displayed local preferences for some of the food sources available in different regions. In northeastern America, [START_REF] Anstett | Latitudinal gradients in herbivory on Oenothera biennis vary according to herbivore guild and specialization[END_REF] compared the intensity of grazing by different insects on the plant Oenothera biennnis and observed every possible relationship (positive, non-significant or negative) with increasing latitude, likely due to plantherbivore specialization (versus generalism) and herbivore traits. Whether local adaptation or phenotypic plasticity is to be invoked, these two examples support the idea that the trophic position of resident consumers can vary across spatial scales. Notwithstanding its pervasiveness, our current understanding of omnivory (i.e. wherein a consumer feeds on several trophic levels) within taxa across such scales remains highly limited [START_REF] Clay | Towards a geography of omnivory: Omnivores increase carnivory when sodium is limiting[END_REF].

There is a growing interest in understanding how omnivory varies with environmental conditions, especially temperature, which has so far demonstrated mixed results [START_REF] Rosenblatt | Climate change, nutrition, and bottom-up and top-down food web processes[END_REF][START_REF] Anderson | Will invertebrates require increasingly carbon-rich food in a warming world?[END_REF]. The prevailing paradigm that the dietary proportion of carbohydrates increases more than proteins with increasing temperature (because carbon-rich compounds are more readily processed to meet energy demands via respiration), has received experimental support from a range of different ectotherms (marine copepods, caterpillars, freshwater crayfish, tadpoles and insect larvae; [START_REF] Croll | The effect of temperature on feed consumption and nutrient absorption in Procambarus clarkii and Procambarus zonangulus[END_REF][START_REF] Lee | Macronutrient balance modulates the temperaturesize rule in an ectotherm[END_REF][START_REF] Boersma | Temperature driven changes in the diet preference of omnivorous copepods: no more meat when it's hot?[END_REF][START_REF] Carreira | Warm vegetarians? Heat waves and diet shifts in tadpoles[END_REF]. Out of three tadpole species tested by [START_REF] Carreira | Warm vegetarians? Heat waves and diet shifts in tadpoles[END_REF], however, the most carnivorous species were incapacitated when fed macrophytes in warming conditions. This last result contrasts with the paradigm and suggests that omnivory responses to temperature may instead depend on initial species-specific diets (nutrient limitations), as also supported by stoichiometric models [START_REF] Anderson | Will invertebrates require increasingly carbon-rich food in a warming world?[END_REF]) (cf. Sperfeld et al. 2017 for further confrontation of related theorotical frameworks). Increased consumption of protein over carbohydrates with increasing temperature, in order to promote growth, development and survival, has been experimentally shown in a grasshopper fed artificial diets [START_REF] Schmitz | Temperature dependence of predation stress and the nutritional ecology of a generalist herbivore[END_REF]) and more indirectly (through varied C:N) in a beetle fed various plant species [START_REF] Lemoine | Increased temperature alters feeding behavior of a generalist herbivore[END_REF]. Conversely, in cold conditions, carbohydrate consumption may be enhanced to compensate for reduced energy intake, as also suggested from experiments on the mealworm beetle fed synthetic diets [START_REF] Rho | Temperature-driven plasticity in nutrient use and preference in an ectotherm[END_REF]. Based on such premises, it is of little surprise to find inconsistent seasonal variations in omnivory across field studies [START_REF] Miyasaka | Shift between carnivory and omnivory in stream stonefly predators[END_REF][START_REF] Boersma | Temperature driven changes in the diet preference of omnivorous copepods: no more meat when it's hot?[END_REF], and calls for additional comparative studies across multiple spatial scales and environments.

In this study, we examined the omnivory of a broadly distributed ectotherm consumer -the sea urchin Echinus esculentus (hereafter Echinus) -across latitudes that are representative of different climatic conditions. Echinus inhabits kelp forests along the latitudinal distribution of the kelp Laminaria hyperborea, ranging from Portugal (~ 41°N) to northern Norway (71°N) [START_REF] Tyler | Distribution, diet and reproduction in the genus Echinus: evidence for recent diversification?[END_REF]. A substantially varied diet has generally been reported for the species, but has to the best of our knowledge, never been compared across larger spatial scales and environments, in spite of interesting patterns suggested by local-scale studies (see methods). Importantly, animal proteins (and possibly lipids) are seemingly required in Echinus' diet to promote its somatic growth and reproductive output [START_REF] Bonsdorff | Food preference of the sea urchins Echinus acutus and E. esculentus[END_REF][START_REF] Kelly | The commercial potential of the common sea urchin Echinus esculentus from the west coast of Scotland[END_REF]. This is also observed in other sea urchins (e.g., [START_REF] Lares | The effects of food quality and temperature on the nutrition of the carnivorous sea urchin Eucidaris tribuloides (Lamarck)[END_REF][START_REF] Fernandez | Nutrition of the sea urchin Paracentrotus lividus (Echinodermata: Echinoidea) fed different artificial food[END_REF]. In marine systems, the amounts (per unit of dry mass) of proteins and lipids in sessile fauna are on average 3.2 and 5.5 times higher in than in seaweeds, which contain 3.9 times more carbohydrates than fauna [START_REF] Brey | Body composition in aquatic organisms -A global data bank of relationships between mass, elemental composition and energy content[END_REF]. Assuming the energy investment in foraging on the two food categories is identical (both being sessile, [START_REF] Dell | Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy[END_REF], we first hypothesized that (1) the sessile fauna intake would be greater in warmer conditions, therefore producing an omnivory gradient across latitudes. While absolute consumption rate could also vary with temperature [START_REF] Bruno | Exploring the role of temperature in the ocean through metabolic scaling[END_REF] and thus counterbalance temperature-driven metabolic nutrient limitation [START_REF] Anderson | Will invertebrates require increasingly carbon-rich food in a warming world?[END_REF], we also had the alternative hypothesis that (2) the balance between animal and algal food would vary according to the local availability of food items, hence indicating an entirely opportunistic behaviour uncoupled, at least directly, from climatic conditions. Should omnivory be driven by opportunism, we further hypothesized that (3) the consumer would locally adjust its foraging strategy at multiple spatial scales.

METHODS

Model species

Although the vast array of putative prey of Echinus is generally acknowledged and supported by qualitative observations of gut contents made in Western Scotland [START_REF] Comely | Population density and growth of Echinus esculentus L. on the Scottish west coast[END_REF][START_REF] Emson | Diet and gonad size in three populations of Echinus esculentus[END_REF], the Isle of Man [START_REF] Moore | A comparison of the biology of Echinus esculentus in different habitats[END_REF]) and the English Channel [START_REF] Leclerc | Community, trophic structure and functioning in two contrasting Laminaria hyperborea forests[END_REF], information regarding broad spatial variations in diet is generally lacking. Differences in gonad condition across shallow and deep sites reported in previous studies have often been attributed to contrasting diversity and availability of food items [START_REF] Moore | A comparison of the biology of Echinus esculentus in different habitats[END_REF][START_REF] Nichols | Reproductive and nutritional periodicities in populations of the European sea-urchin, Echinus Esculentus (Echinodermata: Echinoidea) from the English Channel[END_REF].

In addition, local-scale studies using stable isotopes have indicated that Echinus has a substantially varied diet largely dominated by kelp in Norway [START_REF] Fredriksen | Food web studies in a Norwegian kelp forest based on stable isotope (δ 13 C and δ 15 N) analysis[END_REF] and by sessile fauna in France [START_REF] Leclerc | Community, trophic structure and functioning in two contrasting Laminaria hyperborea forests[END_REF]. Whether these differences in diet reflect local response to available food sources, changes relating to metabolic requirements or is incidental (e.g., as a function of different temperature regimes) is unresolved.

Study sites and sampling

The sampling design consisted of four regions (separated by 1000s of kilometres), with two sites (separated by 1-10s km) nested within each region. The study area ranged from northern Portugal (41.6°N) to northern Norway (69.6°N), hence covering 28° of latitude (Table S1). Mean sea surface temperatures (extracted from the Bio-Oracle database; [START_REF] Tyberghein | Bio-ORACLE: a global environmental dataset for marine species distribution modelling[END_REF][START_REF] Assis | Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling[END_REF] for the period 2000-2014, Table S2) ranged from 7.0°C in northern Norway (average minimum and maximum between 3.3 and 11.3°C) to 15.6°C in Portugal (between 13.0 and 18.2°C). Over the same period, long-term temperature variations were weak in Portugal (range of ~ 5°C) and France (6°C), under the direct influence of the Gulf Stream, moderate in northern Norway (8°C) and comparatively greater in southern Norway (10°C). Each study site was haphazardly selected among Laminaria hyperborea forests at a depth of 5-12 m below chart datum. Adult Echinus were 'frequent' (SACFOR scale) at all study sites (1-9 ind. 10 m -2 ). Within each study site, 16 to 20 sea urchins, 6 young (stipe < ca. 5cm) and adult (stipe > ca. 5 cm) kelps were haphazardly collected by divers, kept on ice and then processed in the laboratory within 12 hours. Within the framework of distinct field campaigns, sampling was done in spring 2014 in France and southern Norway, in spring 2015 in Portugal and in summer 2016 in northern Norway.

The abundance of primary producers and all potential urchin food sources (including sessile fauna) were assessed using two distinct methods. At the site scale, the fleshy seaweed biomass (wet weight: blotted with paper tissue and weighed) was determined at the lowest taxonomic level possible (generally species) from destructively sampled 0.25 m 2 quadrats. In the laboratory, seaweed biomass was further subdivided into two categories, either epilithic (on bedrock) or epiphytic (on kelp stipe). In addition, a series of independent photos were taken to determine the abundance of all potential food sources (including fauna) within the main strata of the kelp forest: bedrock (n = 5-11) and stipe (n = 5-11). These potential food sources were classified using morpho-functional groups of seaweeds and sessile fauna, which have proven relevant to address ecological functions of complex stratified systems such as Laminaria hyperborea forests (see Appendix S1).

Percentage covers of morpho-functional groups of seaweeds and sessile fauna were visually estimated by the same observer (JCL) from photos for each potential food source. These estimations followed the [START_REF] Dethier | Visual versus random-point percent cover estimations:'objective'is not always better[END_REF] framework, by summing semi-abundance either over sub-quadrats of the quadrats (0-4 × 25) or over linear (vertical) portions of the stipe (0-10 × 10).

Most fleshy seaweeds and their epiphytes (notably sessile fauna) were generally visible in photos, making easier their abundance estimation easier. In both habitats, however, most understorey taxa (crusts and small sessile fauna) or habitat features (sediment) could not be quantified and were thus likely underestimated. While percentage cover were assessed with a fixed scale of 0.1 m² on the bedrock, stipe area available to colonization by epiphytes varied across kelp individuals and was not quantified. Nonetheless, differences in surface area (among stipes or between stipes and quadrats) were not considered an issue in the context of our study since relative values of cover, based on similar sampling intensity and broad functional groups (rather than species) were only compared among these strata and gut contents (see section on data analyses).

Urchin diet and trophic position

In the laboratory, sea urchins were processed for a series of morphological parameters, such as their size (maximum test width) and gonad index (ratio between gonad and total wet biomass).

Aristotle's lanterns and guts were dissected and stored in separate Ziploc bags at -30°C until further analysis. Unlike stable isotopes which give a time-integrative estimation of diet, gut contents give a snapshot of feeding choices but are more robust to determine preferences and opportunism. Gut contents also provide accurate information about prey species which have been ingested and are therefore useful in determining individual habitat use and foraging strategies, within and among sites [START_REF] Vanderklift | Differences in trophic position among sympatric sea urchin species[END_REF].

Gut contents from individual sea urchins were analysed in order to determine any food preferences. To facilitate identification, gut contents were washed thoroughly with freshwater through an 80 µm mesh sieve. Each gut sample was then placed within a Dollfus's dish (50 × 100 × 8 mm), where the bottom was divided into 200 square compartments (5 × 5 × 2 mm). Although crushed by the sea urchin teeth over ingestion and reduced to < 2-5 mm pieces within faecal pellets, most prey items are readily identifiable using a series of morphological and histological traits (e.g. [START_REF] Emson | Diet and gonad size in three populations of Echinus esculentus[END_REF]. For each food item category (morpho-functional group, Appendix S1), a score was given according to its occurrence over the total number of occupied squares. Each food item score was finally reported as a percentage, the sum of which frequently exceeded 100% given the over-layering of food item categories within the bulk sample.

Stable isotope analyses were conducted on individual urchins and on the biomass-dominant primary food source in order to estimate urchin trophic level. Laminaria hyperborea was expected to be the most abundant fleshy seaweed (except in Portugal, see results) and the only seaweed shared across all study sites. Within kelp forests, L. hyperborea also represents the dominant trophic resource of sessile suspension-feeders (e.g. barnacles, bivalves, bryozoans), which can be a major component of Echinus diet [START_REF] Leclerc | Temporal variation in organic matter supply in kelp forests: linking structure to trophic functioning[END_REF]2015). Given these reasons and in the absence of suspension-feeders isotope values (see also [START_REF] Post | Using stable isotopes to estimate trophic positions: models, methods, and assumptions[END_REF] collected for this study, L. hyperborea was chosen as baseline, using average δ 15 N values of adult and young kelp individuals, generally in the range of other seaweeds [START_REF] Leclerc | Temporal variation in organic matter supply in kelp forests: linking structure to trophic functioning[END_REF]. Clean sections of kelp (ca. 4 × 4 cm) were dissected from newly-formed lamina on freshly collected adult kelp and around the meristem (stipe and lamina) on young kelp. For Echinus, muscle tissues, reflecting time-integrative assimilation of sources (e.g. [START_REF] Pinnegar | Differential fractionation of δ 13 C and δ 15 N among fish tissues: implications for the study of trophic structure[END_REF], were dissected from the Aristotle's lantern. Each sample was checked and when necessary cleaned from epiphytes using a scalpel, thoroughly rinsed with filtered seawater, then oven-dried at 55°C for 48 h. Because δ 15 N values were targeted, no further treatment was deemed necessary. Dried samples were ground using an agate mortar and a pestle, then put in tin capsules for mass-spectrometry analyses.

Nitrogen isotope-ratios were determined using a Flash EA-CN analyser coupled with a Finnigan Delta Plus mass spectrometer, via a Finnigan Con-Flo III interface. Data are expressed in the standard δ unit, calculated in relation to the certified reference material atmospheric dinitrogen (at-air): δ 15 N = [( 15 N/ 14 Nsample / 15 N/ 14 Nreference) -1] × 10 3 . The at-air scale was calibrated against IAEA-N2 and USGS34 international standards, using a two-point normalisation [START_REF] Paul | Normalization of measured stable isotopic compositions to isotope reference scales-a review. Rapid Communications in Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of Up-to-the-Minute[END_REF]).

In addition, a laboratory standard (casein IRMS certified standard, B2155 Elemental Microanalysis Ltd, UK) is used throughout the analyses, as quality check. The standard deviation of repeated measurements of δ 15 N values of a laboratory standard was 0.05 ‰ versus at-air.

Data analyses

Estimation of trophic level using stable isotopes

Isotopic analyses helped to estimate trophic levels of each individual urchin (TLurchin): TLurchin = 1 + (δ 15 Nurchin -δ 15 Nbaseline) / DDDF, where δ 15 Nbaseline corresponds to the mean δ 15 N of kelp (averaged over adult and young kelps per site) and DDDF corresponds to diet-dependent discrimination factor (Δ 15 N) calculated for each site according to [START_REF] Caut | Variation in discrimination factors (Δ 15 N and Δ 13 C): the effects of diet isotopic values and applications for diet reconstruction[END_REF]. This method was chosen due to the omnivory of Echinus and given the large variability in kelp δ 15 N observed among sites (see also Figure S4). No discrimination factor has been proposed for sea urchins (e.g., [START_REF] Vanderklift | Differences in trophic position among sympatric sea urchin species[END_REF]) and the use of a fixed δ 15 N led to contradictory results in comparison with gut contents analyses (overestimation of TL at sites where kelp were poorly enriched in 15 N).

In addition, dependency between diet δ 15 N and discrimination factor has been experimentally demonstrated in other echinoderms [START_REF] Blanchet-Aurigny | Tissue-diet discrimination factors of isotopic ratios (∆δ 13 C and ∆δ 15 N) in two brittle star species: Effect of reproductive state, diet and tissue composition[END_REF].

Statistical analyses

All univariate and multivariate data were analysed using the same two-way nested PERMANOVAs, with 4999 permutations and the random factors 'region' and 'site'. Univariate and multivariate analyses were respectively based on Euclidean distance and Bray-Curtis similarity matrices. Univariate data included urchin size, gonad index and trophic level as well as the abundances of the dominant groups of putative food items (biomass of kelp and other seaweeds, percentage cover of seaweeds and sessile fauna), on either bedrock or stipe. Multivariate data consisted of the relative abundances of each food item categories within gut contents. Prior to analyses, the homogeneity in univariate or multivariate dispersion was checked among the levels of the factor 'region' using PERMDISP [START_REF] Anderson | PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods[END_REF]. When assumption of homoscedasticity was not met after any transformation of univariate data, the analysis was conducted on untransformed data following [START_REF] Underwood | Experiments in ecology: their logical design and interpretation using analysis of variance[END_REF] and a more conservative level of significance (α = 0.01) was taken into account. For multivariate structure, samples were also ordinated using non-metric multidimensional scaling (nMDS) to support PERMANOVA results [START_REF] Anderson | PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods[END_REF]. In order to strengthen all these analyses, we also examined how the variation was distributed across all three nested levels tested (region site, residual). When a negative component of variations was found, it was set to zero and the model was adjusted in order to re-calculate the remaining estimates [START_REF] Fletcher | How to cope with negative estimates of components of variance in ecological field studies[END_REF].

Foraging strategies were determined from gut content similarities with prey distribution in the sea urchin environment. At the site scale, the natural habitat-complexity of L. hyperborea forests challenges the collection of abundance data for all possible food sources [START_REF] Christie | Species distribution and habitat exploitation of fauna associated with kelp (Laminaria hyperborea) along the Norwegian coast[END_REF][START_REF] Leclerc | Contrasting temporal variation in habitat complexity and species abundance distributions in four kelp forest strata[END_REF]). More information can, however, be obtained from the abundances of resource on two kelp forest strata known to be visited by Echinus: the understorey (on the bedrock) and the epiphytes (on the stipe). We thus developed a relative and binary feeding behaviour index for each of these two strata. First, abundance (cover) data of the main food item categories (except kelp) in different habitats (bedrock and stipe) and within urchin guts were all compiled in a unique matrix. We did not include kelp in the analyses because they were often observed in the urchin diet as a varying mixture of fragment types (ranging from a relative scale of soft to hard tissues, with or without cortex, etc.), which could hardly be assigned to understorey or stipe. Indeed, these diverse type of tissues can be found in varying abundances within either canopy kelp individuals [START_REF] Kain | Aspects of the Biology of Laminaria hyperborea II. Age, weight and length[END_REF], understorey young individuals, or detritus [START_REF] Filbee-Dexter | Movement of pulsed resource subsidies from kelp forests to deep fjords[END_REF]. Second, a matrix of dissimilarity between all pairs of samples was created using the Bray-Curtis index calculated from untransformed data. Third, for each site, principal coordinates were calculated from the Bray-Curtis dissimilarity (non-metric) matrices in order to extract Euclidean distances (metric) between all pairs of samples, while preserving the properties of the Bray-Curtis index.

Fourth, for each individual urchin, the average distance between its diet and the food item abundances in each of its putatively targeted habitats (stipe or bedrock) was then calculated. Fifth, the relative and binary feeding behaviour index (FBI) was subsequently calculated for each individual, based upon [START_REF] Armas | Measuring plant interactions: a new comparative index[END_REF], as follow: FBI = (Dd-h1 -Dd-h2)/ (Dd-h1 + Dd-h2), where Dd-h1 = multivariate distance between individual diet and the habitat 1 (here bedrock) and Dd-h2 = distance between individual diet and the habitat 2 (stipe). This FBI presents a continuous scale and ranges between -1 and + 1 indicating a marked (and theoretical) affinity for habitats 1 and 2, respectively. Finally, in order to determine whether urchins present a significant "preference" for one habitat or another at the local scale, PI values were compared to 0 using one-sample t-tests within each site. The latter analysis was performed using SigmaPlot, while PERMANOVAs, nMDS and PERMDISPs were performed using PRIMER 7 with PERMANOVA add-on [START_REF] Anderson | PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods[END_REF].

RESULTS

Across sites and regions, a total of 131 sea urchins were analysed and presented consistent regional differences in both size (test diameter) and wet weight (ww) between core (France, southern Norway) and edge (Portugal, northern Norway) regions (Table 1, Fig. S1). Sea urchins were significantly smaller in Portugal (85.3 ± 7.4 mm, mean ± SD) and northern Norway (78.1 ± 12.3 mm) than in France (113.3 ± 10.1 mm) and southern Norway (110.8 ± 15.7 mm). Likewise, and in spite of within-region significant effects, sea urchins were three times lighter (85.3 ± 7.4 gww) in Portugal (274.4 ± 62.5 gww) and northern Norway (224.6 ± 107.6 gww) than in France (778.3 ± 222.8 gww) and southern Norway (673.5 ± 217.3 g). Their gonad index varied substantially within sites (72% of variation due to residuals in the model, Table 1) but did not vary among regions (on average 7.2 ± 4.04, Fig. S1). Interestingly though, this index displayed significant site-to-site differences in both Portugal and northern Norway (Table 1, Fig. S1).

Contrasting patterns in food availability at multiple spatial scales

Food availability varied markedly across different spatial scales (among regions, sites, microhabitats), and depended on food type. Laminaria hyperborea dominated the seaweed biomass from France (5.6 ± 4.5 kgww m -2 , mean ± SD) to northern Norway (13.7 ± 11.3 kgww m -2 , Fig. 1A, Table 1), where similar values were observed, but its biomass was much lower (< 0.1 kgww m -2 ) in Portugal, where the canopy was dominated by the pseudo-annual kelp Sacchoriza polyschides (0.9 ± 0.3 kgww m -2 , Fig. 1B). The epiphyte biomass was statistically similar among regions (Fig. 1C, Table 1), and highly variable within and among sites (cf. %var. in Table 1). It is noteworthy that epiphyte biomass was virtually zero at all sites in Portugal and at the Hekkingen site (cf. Table S1) in northern Norway. Significant regional differences were detected for the understorey biomass (Fig. 1D). In northern Norway, the fleshy algal understorey was patchy, monospecific (Desmarestia aculeata and the biomass was negligible (5.1 ± 15.6 gww m -2 ) when compared to other regions (Table 1, Fig. 1D). Understorey biomass was similar in France (80.4 ± 78.1 gww m -2 ) and southern Norway (84.6 ± 831 gww m -2 ) and about ten-fold lower than in Portugal (775.9 ± 665.5 gww m -2 , Table 1, Fig. 1D). Similar spatial patterns were shown when fleshy seaweeds were quantified using percentage cover with only the epilithic algae differing significantly between northern Norway (10.0 ± 7.1%, dominated by crusts, Fig. 2) and the other regions (on average 55.9 ± 16.1%, Table 1, Fig. 2). In contrast, neither the percent cover of sessile fauna associated with the stipes or with the bedrock differed among regions, but both displayed substantial site-to-site variations in France and northern Norway (Table 1, Fig. 2).

Diet and omnivory vary substantially in space, but not with latitude

Both stable isotope and gut content analyses were indicative of omnivory, without preference for a specific food source (Fig. 3, Fig. S4). A total of 22 food items could be identified in the sea urchin guts, including diverse morpho-functional groups of seaweeds (including kelp across all study sites), sessile and mobile fauna (Fig. S3). Within faunal groups, barnacles (Cirripeda) and bryozoans displayed the greatest contribution to the urchin diet (Fig. 3B). In spite of a great site within region effect, the multivariate structure of the diet varied significantly among regions (cf. PERMANOVA). However, pairwise tests only reveal statistical difference between Portugal, southern Norway and northern Norway; all diets were similar to samples from France (Table 1, Fig. 3C). The trophic level varied substantially between sites within region in Portugal, France and northern Norway, and no difference was detected among regions (Table 1, Fig. 3A). For instance, the trophic level in France

Adjustment of foraging strategy at multiple spatial scales

Analysing the similarity between the generalist diet and the distribution of its putative food items proved efficient to infer spatial patterns in foraging strategies in space, here between two kelp forest strata: the bedrock and the stipe (Fig. 4). Although broad groups of sessile taxa were considered, the community (or functional) structure of these strata differed significantly within and across study sites (Table S3, Fig. S2). Based on these cover data, sea urchins displayed significant net affinity for one habitat or another in 6 out of the total 8 sites (Fig. 4). Within regions, consistent affinities for the understorey habitats were observed in Portugal whereas consistent affinities for the epiphyte habitats were found in northern Norway. Site-specific affinities for the understorey were also observed in France and southern Norway (cf. also site within region effect, Table 1), but it is noteworthy that many individuals (15.5%) from southern Norway displayed a net affinity for the epiphytes (PI ranging from + 0.05 to + 0.18, Fig. 4A).

DISCUSSION

Consumers are expected to adjust their diet and/or the strength of their interactions in response to the redistribution of their food items and to metabolic changes imposed by global warming [START_REF] Bruno | Exploring the role of temperature in the ocean through metabolic scaling[END_REF][START_REF] Gilljam | Adaptive rewiring aggravates the effects of species loss in ecosystems[END_REF][START_REF] Rosenblatt | Climate change, nutrition, and bottom-up and top-down food web processes[END_REF][START_REF] Anderson | Will invertebrates require increasingly carbon-rich food in a warming world?[END_REF]. Our results

show that neither diet nor trophic level of an omnivore sea urchin inhabiting kelp forests varied significantly among regions across approximately 28° latitude on the NE Atlantic, suggesting that temperature or other covariates of latitude did not influence, at least directly, the feeding preferences of this ectotherm. With respect to variations among sites, however, the diet of sea urchins varied according to local availability of food items. By using a feeding behaviour index, our results further indicate that sea urchins locally adjusted their foraging strategy among kelp forest strata, consistent with great functional plasticity.

Consistent omnivory across latitudes

Metabolic scaling theory [START_REF] Bruno | Exploring the role of temperature in the ocean through metabolic scaling[END_REF], the foraging strategy towards sessile prey [START_REF] Dell | Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy[END_REF]) and previous published diets of Echinus from local studies [START_REF] Fredriksen | Food web studies in a Norwegian kelp forest based on stable isotope (δ 13 C and δ 15 N) analysis[END_REF][START_REF] Leclerc | Community, trophic structure and functioning in two contrasting Laminaria hyperborea forests[END_REF] suggest that animal (protein rich) food intake of this sea urchin should decrease with ocean warming, and therefore with increasing latitude. Although we do not provide evidence on possible individual diet adjustments with temperature (within populations), the latitudinal hypothesis (among populations) is generally rejected by this study. By analysing both gut contents and stable isotopes, our results indicate that Echinus maintains omnivory (algal versus animal contribution to the diet) across its latitudinal range. Should temperatures experienced by the sea urchin across its latitudinal range have any influence on its metabolic requirements, our results would align best with models in which stoichiometric imbalance, and dietary preferences, can be preserved by overall increased intake with temperature [START_REF] Anderson | Will invertebrates require increasingly carbon-rich food in a warming world?[END_REF]). While temperature is most likely to affect per capita interaction strength, it does not seem to affect Echinus food preference at the latitudinal scale studied. Diverse groups of algae and animals were consistently identified as part of the urchin diet at all study sites (e.g. bryozoans, barnacles, kelp and fleshy seaweeds) and nothing indicated a latitudinal shift in their respective abundance. Using stable isotopes (δ 15 N), estimates of trophic level generally aligned with the relative abundance of food items in digestive contents and previous local studies. For instance, the highest trophic level (4.6 ± 0.2) observed in Roscoff (France) is consistent with [START_REF] Leclerc | Community, trophic structure and functioning in two contrasting Laminaria hyperborea forests[END_REF] estimations in a nearby locality (TL = 4.0), wherein a similar diet was observed. The lowest trophic level (2.4 ± 0.2) estimated in Hekkingen (northern Norway) was also consistent with a kelp-dominated diet shown by gut content analyses. While the trophic level was consistent across regions, it varied markedly among sites within region, providing support to alternative hypotheses, notably related with food availability (see following sections).

Omnivory reflects local food availability across multiple spatial scales

The overall site-to-site variability in both δ 15 N and gut contents suggests that spatial patterns in omnivory may be driven mainly by opportunism (in response to food availability) as opposed to latitudinal characteristics of the environment. While feeding trials would have provided empirical evidence for this hypothesis [START_REF] Bell | Local adaptation in adult feeding preference and juvenile performance in the generalist herbivore Idotea balthica[END_REF][START_REF] Demko | Declines in plant palatability from polar to tropical latitudes depend on herbivore and plant identity[END_REF], qualitative site-to-site comparisons of the heat-maps illustrating the abundances of putative food sources within the understorey (Fig. S2) and the contributions of each food item to the diet of Echinus (Fig. 23, Fig. S3) shed some light on this pattern. For instance, filamentous algae were virtually absent from gut contents in all sites, except in southern Norway where they dominated the understorey and represented a major component of the urchin diet, regardless of likely limited benefits for macroconsumers [START_REF] Steneck | Feeding capabilities and limitations of herbivorous molluscs: a functional group approach[END_REF]. As previously suggested in local studies [START_REF] Emson | Diet and gonad size in three populations of Echinus esculentus[END_REF], our results support that site-to-site differences in diets are mostly driven by food availability. These differences could also be reflected in Echinus phenology [START_REF] Moore | A comparison of the biology of Echinus esculentus in different habitats[END_REF][START_REF] Nichols | Reproductive and nutritional periodicities in populations of the European sea-urchin, Echinus Esculentus (Echinodermata: Echinoidea) from the English Channel[END_REF][START_REF] Comely | Population density and growth of Echinus esculentus L. on the Scottish west coast[END_REF] but we note in that context that relationships between the spawning cycle and diet are generally unresolved for Echinus, unlike other well-studied sea urchins [START_REF] Minor | Effects of food ration and feeding regime on growth and reproduction of the sea urchin Strongylocentrotus droebachiensis[END_REF][START_REF] Fernandez | Nutrition of the sea urchin Paracentrotus lividus (Echinodermata: Echinoidea) fed different artificial food[END_REF]. Spatial variations in gonad index and food availability can either be consistent (e.g. between young individuals living in faunal-dominated deep reefs and adults living in seaweed rich-shallow reefs, [START_REF] Moore | A comparison of the biology of Echinus esculentus in different habitats[END_REF][START_REF] Nichols | Reproductive and nutritional periodicities in populations of the European sea-urchin, Echinus Esculentus (Echinodermata: Echinoidea) from the English Channel[END_REF] or counter-intuitive (e.g. with considerable variations in the timing of spawning events between apparently similar sites, [START_REF] Comely | Population density and growth of Echinus esculentus L. on the Scottish west coast[END_REF]. Likewise, much site-to-site variations in gonad index were observed in both Portugal and northern Norway. While this variation coincides with site-to-site differences in sea urchin size in Portugal (see also [START_REF] Moore | A comparison of the biology of Echinus esculentus in different habitats[END_REF], it rather coincides with substantial site-to-site differences in diet and availability of attached fleshy seaweeds (seasonally consistent, KFD, pers. obs.) in northern Norway. These complex relationships certainly deserves attention beyond the scope of this study.

The extent to which the urchin diet and omnivory depend on food availability is further indicated by our feeding behaviour index, which may help to inform of the underlying processes and ecological implications of such flexibility at multiple spatial scales. The consistent occurrence of certain food items in diets at all sites suggests that some of them could be important to the urchin fitness (e.g. kelp, fleshy seaweeds colonized by crustose bryozoans, [START_REF] Bonsdorff | Food preference of the sea urchins Echinus acutus and E. esculentus[END_REF]. In order to obtain these food items in heterogeneous habitats, the sea urchins may be forced to adjust their foraging strategies at the local scale (cf. Paracentrotus lividus in seagrass meadows, [START_REF] Camps-Castellà | Trophic plasticity in the sea urchin Paracentrotus lividus, as a function of resource availability and habitat features[END_REF]. Because the abundance and distribution of food items across kelp forest strata can vary consistently across broad diversity gradients (e.g. some broadly distributed taxa are exclusive to kelp stipes, [START_REF]Synopsis of biological data on Laminaria hyperborea[END_REF], local adjustments in foraging strategies are likely to create gradients in Echinus function at a larger scale.

At the southern (warm) edge of Laminaria hyperborea distribution (Portugal), kelp were reduced to small individuals with little to no epiphytes, and there was virtually no stratification (i.e., canopy/sub-canopy) of the kelp forests. In the same region, our index revealed a net affinity for the understorey, where the seaweed biomass was concentrated (Fig. 3B, Fig. S3) and included the few species observed on the stipe (e.g. Rhodymenia sp.). Range centre populations of Echinus in France and southern Norway were in different kelp forest conditions compared to Portugal, and had access to both epiphytes and understorey seaweeds. Laminaria hyperborea forests were similar within and between these two regions, with the prevalence of large kelp individuals (main biomass) loaded by abundant epiphytes (including kelp). The same sites in France and southern Norway were also accompanied by diverse seaweeds and sessile animals growing on the surrounding bedrock. In these kelp forests, our feeding behaviour index suggests that Echinus can encounter most of the needed food items in the understorey habitat, although net affinities for either habitat were not significant at two of these sites (Fig. 4). These patterns contrast with northern Norway, where a net affinity for epiphytes was observed. Although abundant epiphytes were found at one site, the understorey habitat at both these sites was generally depauperate and mainly covered by crustose seaweeds, when compared to other regions. If food becomes limited in the understorey, climbing up kelp stipes is probably the best way for a sea urchin to diversify its diet [START_REF] Bekkby | Red sea urchins (Echinus esculentus) and water flow influence epiphytic macroalgae density[END_REF]. Consumers venturing on the upper part of stipe can actually access Palmaria palmata, which is probably the most palatable red seaweed in the subtidal NE Atlantic kelp forests [START_REF] Guiry | Seaweed resources in Europe: uses and potential, Chichester Hagen NT (1983) Destructuve grazing of kelp beds by sea urchins in Vestfjorden, Northern Norway[END_REF][START_REF] Schaal | Trophic ecology in a Northern Brittany (Batz Island, France) kelp (Laminaria digitata) forest, as investigated through stable isotope and chemical assays[END_REF]. Commonly encrusted by the bryozoan Electra pilosa, P. palmata was herein observed in varying abundance as (and only as) epiphytes from France to northern Norway, and this combination of food items made up the entire diet of some individuals from several of the studied localities (JCL, pers. obs.). Further work would be needed to determine the prevalence of possible individual preferences within the sea urchin populations. More interestingly, it is worth noting that Echinus is coexisting with Strongylocentrotus droebachiensis (at densities of ca. 0.5 to 1.2 m -², Filbee-Dexter et al. 2020) in northern Norway. Should that voracious sea urchin be involved in the control of understorey algae (cf. [START_REF] Christie | Can multitrophic interactions and ocean warming influence large-scale kelp recovery?[END_REF] and references therein), our feeding behaviour index would thus mirror that competition for food resource affect the foraging flexibility of Echinus, and force it to browse another habitat (Fig. 4B). This point deserves further attention.

Potential implications of the scale-dependent foraging strategies of Echinus esculentus for kelp forest functioning along NE Atlantic.

While the importance of habitat-forming species, such as kelp, for biodiversity is generally acknowledged, it is noteworthy that not all kelp species share the same habitat-forming traits (e.g. Wernberg et al. 2019 and references therein). Compared to other kelp, the stipe of L. hyperborea possess a series of traits conducive to colonization by abundant perennial and semi-annual epiphytes (reviewed in Teagle and Smale 2018), within which diverse and abundant assemblages of fauna can develop and fuel local and adjacent food webs [START_REF] Norderhaug | Fish-macrofauna interactions in a kelp (Laminaria hyperborea) forest[END_REF][START_REF] Leclerc | Temporal variation in organic matter supply in kelp forests: linking structure to trophic functioning[END_REF]. Across diverse taxa or morpho-functional groups, sessile epiphytes are indeed characterized by varied structural complexity which have been shown to influence macrofaunal diversity and community structure, at multiple spatial scales [START_REF] Norderhaug | Use of red algae as hosts by kelp-associated amphipods[END_REF][START_REF] Norderhaug | Importance of wave and current exposure to fauna communities in Laminaria hyperborea kelp forests[END_REF]. A single stipe of kelp can be inhabited by up to 85 macrofaunal species [START_REF] Leclerc | Contrasting temporal variation in habitat complexity and species abundance distributions in four kelp forest strata[END_REF], with abundances that can exceed 80,000 individuals [START_REF] Christie | Species distribution and habitat exploitation of fauna associated with kelp (Laminaria hyperborea) along the Norwegian coast[END_REF] and may constitute a microscale diversity refuge in disturbed areas [START_REF] Leclerc | Community, trophic structure and functioning in two contrasting Laminaria hyperborea forests[END_REF]. Although the present data do not provide quantitative evidence for urchin-epiphyte interactions, they align with [START_REF] Bekkby | Red sea urchins (Echinus esculentus) and water flow influence epiphytic macroalgae density[END_REF] who demonstrated that Echinus can significantly reduce the abundance of kelp epiphytes in mid-Norway, and thus alter the function of this microhabitat. Interestingly, those authors observed a stronger control of epiphytes in 'young' kelp forests undergoing a process of recolonization postovergrazing by Strongylocentrotus droebachiensis, compared to Echinus, which were likely more limited by food availability. The paucity of understorey seaweeds in northern Norway as compared to other regions, regardless of the underlying processes (light limitation, grazing by S. droebachiensis), is thus likely to exacerbate Echinus effects upon the diversity and community structure at local scale in these kelp forests.

Kelp was a minor component of the sea urchin diet at all but one site. Kelp contributed to 30.6% at the northernmost site (Hekkingen, northern Norway), where alternative food items were poorly represented. The most probable explanation for this pattern is that Echinus switches to a kelp-dominated diet only when other food items are limited (even epiphytes were virtually absent locally). This has been seen in previous studies conducted in both UK and Norway: negative effects of Echinus on kelpand more specifically recruits -are generally observed in "transition" areas, including the lower vertical (i.e. depth) distribution limit of kelp [START_REF] Jones | Subtidal algal colonization following the removal of Echinus[END_REF], overgrazed areas (Hagen 1983), and localities or patches undergoing a recovery post-harvesting [START_REF] Steen | Regrowth after kelp harvesting in Nord-Trøndelag, Norway[END_REF]). On the other hand, our results revealed that kelp presented similar contributions to the urchin diet in Portugal as compared to other regions, although their biomass in the urchin habitat was tenfold lower. Even as a minor component, kelp are rich in carbohydrates and may actually be essential to the mixed diet of the sea urchin. Whether the stronger effect of Echinus on kelp observed in transition areas and lower depth limit can hold for the southern edge of L. hyperborea distribution may be worthy of further investigation (Fig. 4).

In conclusion, we show that the diet and trophic level of an omnivore inhabiting kelp forests, are consistent across four NE Atlantic regions spanning approximately 28°latitude, despite large differences in habitat structure, temperature, and prey availability. Our results however suggest that generalist consumers can adjust their diet and foraging strategies in response to resource availability at multiple scales. While such plasticity may confer to widely distributed generalist consumers (incl. omnivores) a certain resistance to changing environments and habitats, context dependent feeding behaviour challenges our understanding of associated food webs in response to multiple stressors and biodiversity redistribution. 
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 1 Figure 1. Mean biomass (kg m -2 ) of kelp (A, B) and other seaweed categories (C, D) across study
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 2 Figure 2. Fleshy seaweed (kelp and crustose algae excluded) and sessile fauna percentage cover

Figure 3 .

 3 Figure 3. Trophic level (A), contribution of the main food items (B, average SIMPER contribution

Figure 4 .

 4 Figure 4. Feeding behaviour index (A) indicating affinities for epiphytes vs. understorey calculated

Table 1 .

 1 Results of PERMANOVA tests for differences in general response variables among levels 728 of the nested factors (region and site). Degrees of freedom (df) and components of variation (var, 729 expressed as percentages) are indicated for each factor and response variable. Transformations 730 (Transf) and PERMDISP tests (Disp, for the factor region) are summarized. ns : non-significant, m : 731 marginally significant at α = 0.07, *: P < 0.05, **: P < 0.01, ***: P < 0.001. Based upon more or 732 less conservative levels (see "Methods" section), significant values are in bold. 733 Square root transformed, FORT: Fourth root transformed, ASIN: Arcsine transformed, LOG: Transformation Ln (X +1)

	Response variable	Transf	Disp	PERMANOVA Factor		
				F Region (Re) F Site (Si) df Re, Si, Res	%var Re, Si, Res
	Seaweed biomass (kg m-2)						
	Laminaria hyperborea	FORT	ns	74.70**	0.60ns	3, 4,	79, 00, 21
	Other kelp	none	*	16.61**	8.50***	3, 4,	83, 09, 08
	Epiphytes	none	***	1.68ns	2.56*	3, 4,	11, 19, 70
	Understorey	LOG	ns	60.75**	0.76ns	3, 4,	80, 00, 20
	Seaweed cover (%)						
	Epiphytes	ASIN	ns	3.75ns	1.33ns	3, 4,	17, 03, 80
	Understorey	none	*	32.25**	1.41ns	3, 4,	75, 01, 24
	Sessile fauna cover (%)						
	Epiphytes	ASIN	m	1.31ns	8.28***	3, 4,	07, 42, 51
	Understorey	none	ns	0.46ns	4.69**	3, 4,	00, 34, 76
	C:N						
	Laminaria hyperborea adults	SQRT	ns	21.75*	3.32*	3, 4,	80, 05, 15
	Laminaria hyperborea young	LOG	m	22.39**	2.26ns	3, 4,	77, 04, 19
	E. esculentus	none	***	90.38*	0.48ns	3, 4, 122	78, 00, 22
	d15N						
	Laminaria hyperborea adults	none	ns	56.36***	0.79ns	3, 4,	78, 00, 22
	Laminaria hyperborea young	none	***	1.68ns	18.26***	3, 4,	21, 59, 20
	E. esculentus	none	***	1.71ns	147.75***	3, 4, 122	24, 68, 08
	Urchin morphometry						
	Diameter (width)	none	m	37.53**	2.10ns	3, 4 ,123	69, 02, 29
	Wet weight	none	***	20.55**	5.09***	3, 4 ,123	71, 06, 23
	Gonad index	ASIN	ns	0.89ns	9.23***	3, 4 ,123	00, 28, 72
	Diet composition	SQRT	***	3.947**	8.2437***	3, 4 ,120	34, 21, 45
	Trophic level	none	***	2.40ns	164.02***	3, 4, 122	39, 55, 06
	Feeding behaviour Index	none	**	9.17*	11.12***	3, 4, 120	64, 14, 22

Acknowledgements. We thank all the people who assisted with diving and logistics at the different localities: L. Lévêque, Y. Fontana, M. Camusat, W. Thomas, N. Guidal and F. Le Ven in Roscoff (Marine operations staff, SBR), N. L. Frisk in Tromsø (Roskilde University, KELPEX). We are grateful to M. Thiel and two anonymous reviewers, whose comments helped substantially to improve the manuscript. JCL further thanks the Centre IDEAL (Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes, Universidad Austral de Chile) for kind hospitality over the manuscript preparation. Funding for this work was provided by the Australian Research Council (TW: FT110100174, TW, KFD: DP190100058), the University of Western Australia Research Collaboration Awards (TW, TdB, JCL, DD, JNF, HC), the France-Australia Science Innovation Collaboration 2014 program (TdB, TW, JCL, DD), Metabomer and Corsaire Core Facility (CL), the French Government run by the National Research Agency with regards to the investment expenditure programme IDEALG ANR-10-BTBR-04 (JCL, DD) and the Norwegian Research Council (TW, MFP, KFD, KELPEX 255085/E40). Data accessibility: Most of the data are provided in the supplementary material associated with the manuscript. Detailed data are available from the corresponding author upon reasonable request.

processed isotope samples and JCL and FdB analysed the sea urchin guts. JCL analysed the data and led the writing.