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Abstract16

Recent results comparing the temporal program of genome replication of yeast species belonging17

to the Lachancea clade support the scenario that the evolution of replication timing program could18

be mainly driven by correlated acquisition and loss events of active replication origins. Using19

these results as a benchmark, we develop an evolutionary model defined as birth-death process for20

replication origins, and use it to identify the evolutionary biases that shape the replication timing21

profiles. Comparing different evolutionary models with data, we find that replication origin birth22

and death events are mainly driven by two evolutionary pressures, the first imposes that events23

leading to higher double-stall probability of replication forks are penalized, while the second makes24

less efficient origins more prone to evolutionary loss. This analysis provides an empirically grounded25

predictive framework for quantitative evolutionary studies of the replication timing program.26
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I. INTRODUCTION27

Eukaryotes, from yeast to mammals, rely on pre-defined “replication origins” along the28

genome to initiate replication [1–4], but we still ignore most of the evolutionary principles29

shaping the biological properties of these objects. Binding by initiation complexes defines30

origins as discrete chromosomal loci, which are characterized by multiple layers of genomic31

properties, including the necessary presence of autonomously replicating sequences, nucle-32

osome depletion, and absence of transcription[5, 6]. Initiation at origins is stochastic, so33

that different cells of the same population undergoing genome replication in S-phase will34

typically initiate replication from different origins [7, 8].35

Initiation from a single origin can be described by intrinsic rates and/or licensing36

events [9]. Indeed, the genome-wide replication kinetics of a population of cells can be37

accessed experimentally by different techniques [9–11]. Recent techniques also allow to38

measure replication progression at the single-cell level [12, 13]. The estimation of key origin39

parameters from data requires minimal mathematical models describing stochastic origin40

initiation and fork progression [10, 14–16]. Typically, one can extract from the data origin41

positions, as well as estimated origin-intrinsic characteristic firing times or rates. Knowledge42

of origins positions and rates makes it possible to estimate the “efficiency” of an origin, i.e.43

its probability of actively firing during S-phase, rather than being passively replicated.44

Over evolution, a genome modifies its replication timing profile by “reprogramming”45

origin positions and rates in order to maximize fitness, under the constraints of the possible46

changes of these parameters that are physically and biologically accessible. Little is known47

about this process, and finding basic rules that drive origin evolution is our main focus48

here [17]. The main recognized constraint determining negative selection is due to replication49

forks stalling between adjacent origins [18–20]. If two converging replication forks stall with50

no origins in between them, it is generally agreed that replication cannot be rescued, and the51

event leads to cell death. Such deadly “double stalls” can only happen with two converging52

forks generated from consecutive origins. A pioneering study by Newman and coworkers [18]53

used a combination of data analysis and mathematical models to understand the role of lethal54

double stall events on origin placement. They found that the fork per-base stall probability55

affects the distance between neighbor origins, and the optimal distance distribution tends56

to a regular spacing, which is confirmed by experimental data. Thus, origin placement is far57
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from a uniform random distribution (which would translate into an exponential distribution58

of neighbor origin distances). Instead, the regular lattice-like spacing that origin tend to59

take is reminiscent of particles repelling each other.60

Due to the streamlined genome and the experimental accessibility, yeasts are interesting61

systems to study experimentally the evolution of replication programs. However, at the level62

of the Saccharomyces genus, the replication program is highly conserved [21]. Hence, until63

recently, no experimental account of the evolution of the replication program was available.64

Our collaboration has recently produced data of this kind [22], by comparing replication65

dynamics and origin usage of 10 distant Lachancea yeast species. This study highlights the66

dominance of origin birth-death events (rather than e.g. chromosomal rearrangements) as67

main evolutionary drive of the replication program changes, and characterizes the main prin-68

ciples underlying origin birth-death events. Briefly, the fate of an origin strongly depends69

on its neighbourhood, in particular the distance from neighbor origins and their efficiency.70

Indeed, proximity to efficient origins correlates with weaker origin loss events. An evolu-71

tionary bias against weak origins could be due to the fact that their presence is neutral72

or even advantageous (e.g., in terms of reducing double stalls), but their advantage is not73

sufficiently high for them to survive drift. These findings open the question of capturing the74

relevant evolutionary biases acting on replication profiles in the framework of the empirical75

birth-death evolutionary dynamics, for which the data set [22] provides an empirical testing76

ground.77

Here, we define a minimal evolutionary birth-death model for replication program evolu-78

tion encompassing all the empirical observations made by Agier and coworkers [22], and we79

use it to investigate the main evolutionary trade-offs that could explain the data.80

II. RESULTS81

Experimental data motivate an evolutionary model for origins turnover82

This section presents a reanalysis of the experimental data from ref. [22]. We summarize83

the main results of that study, and present additional considerations on the same data,84

which motivate the evolutionary model framework used in the following.85

Fig. 1 - Supplement 1 recapitulates the Lachancea clade phylogenetic tree used in the86
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FIG. 1. Experimental data motivate an evolutionary model for replication origins

turnover. A: Distribution of the distance between neighbor origins in ten Lachancea species,

each histogram refers to a different species (data from ref. [22]), and all the plots show a marked

peak around 35 Kbp. B: Distribution of the efficiency (calculated from a fit, using Eq. 4) for all

origins in ten Lachancea yeast species [22]. C: From ref. [22], box plot of the distribution of the

distance from the nearest origin split by evolutionary events, for conserved (dark red), newly gained

(red) and lost origins (black), estimated comparing six sister species of the Lachancea clade [22].

D: Analysis of the origins that are nearest to conserved, newly gained and lost, compared to the

expected result if events were uncorrelated [22]. E: Distribution of the efficiency of lost, conserved

and newly gained origins (respectively in black, dark red and red) and their neighbors (grey). Note

that the efficiency of lost origins is lower than average, while the efficiency of origins flanking a

lost origin is higher. F: Box plot of efficiency of all conserved and newly gained origins compared

to those flanking a lost origin, which tend to be more efficient. Braces indicate sub-sampling (the

box plots on the right side are defined by a subset of points of the box plots on the left). Box plots

show the median (bar), 25-75 (box), and 10-90 (whiskers) percentiles. The data in panel C, D, E

and F refers to the six sister species of the Lachancea tree.
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analysis. The evolution of the temporal program of genome replication can be quantified by87

the divergence of the replication timing profiles across different species. Agier and coworkers88

found that timing profiles diverge gradually with increasing evolutionary divergence between89

species [22]. In principle, such divergence could be attributed to changes in the number,90

placement, and biological properties of all origins. However, a careful analysis of correlations91

(comparing the timing profiles and the activity of orthologous origins) shows that the main92

driver of program differentiation across species is the acquisition and loss of active replication93

origins. Specifically, the number of conserved origins decreases with increasing phylogenetic94

distance between species, following the same trend as the conservation of the timing profiles.95

This trend is the same in regions that are close to or away from breakpoints, pointing to96

a secondary role of genome rearrangements. In addition, the authors of ref. [22] show that97

the differences in the mere number of origins and the median difference in origin replication98

timing between pairs of species are nearly constant with phylogenetic distance, leading to99

exclude that origin reprogramming (rather than birth-death) plays a primary role in the100

evolution of the timing program.101

Any model for the evolution of the replication program must (i) reproduce the empiri-102

cal distribution of the inter-origin distances, (ii) reproduce the empirical distribution of the103

origin efficiencies, and (iii) account for the observed origin turnover dynamics. Previous104

analyses [18, 22] have shown that origins are far from following a uniform distribution along105

the genome. Fig. 1A shows that the inter-origin distance distribution robustly shows a uni-106

modal shape across the ten Lachancea species studied in ref. [22]. Specifically, distributions107

for each species show a marked peak around 35 Kbp. This peak corresponds to a typical108

inter-origin distance, which is strikingly invariant across all Lachancea species. Fig. 1B shows109

the distribution of the efficiencies, which is defined as the probability to actively fire during110

the S phase, estimated for each origin in the Lachancea clade using Eq. 4 and a fit inferring111

the firing rates of all origins assuming a standard nucleation-growth model (see Methods112

and ref [16]). The single-species efficiency distributions show more variability across species113

than the inter-origin distance distributions, but they are consistent with a common shape114

and support.115

As mentioned above, a key result of Agier and coworkers is the insight that the evolution116

of the replication program is mainly shaped by the birth-death process of replication origins.117

Fig. 1C-F recapitulate the main quantitative results that characterize this process. Note that118
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the analyses in Fig. 1C-F have been performed on the six sister species of Lachancea clade,119

since the other species pairs are too distant to perform a reliable identification of conserved,120

newly gained and lost origins [22].121

Fig. 1C shows a box plot of the distance from the nearest origin for all the conserved (dark122

red), newly gained (red) and lost (black) origins. Lost replication origins tend to be closer123

to their neighbors, much more so than newly gained or conserved origins. This observation124

reveals that the distance of an origin from its nearest neighbor is correlated to the loss rate125

of the same origin over evolution. This is an essential feature that any evolutionary model126

of this process must take into account [18, 22]. More in detail, Fig. 1D further quantifies the127

correlation between gain and loss events of neighboring origins, by comparing the fraction of128

observed events of loss, gain, or conservation, given the state of the nearest origin (conserved,129

lost, or gained). The distribution of event types for origins that are nearest neighbors of a130

newly gained origin deviates significantly from the null expectation of random uncorrelated131

events (i.e., in a simple scenario where the fractions of conserved, newly gained, and lost132

origins are fixed to the empirical values, and birth and death events of neighboring origins are133

independent). The same non-null behavior is observed for origins that are nearest to a lost134

origin, with the roles of gain and loss events exchanged. In summary, successive birth/death135

or death/birth events happen more frequently in the same genomic location than expected136

by chance. Beyond such a spatial correlation along the chromosomal coordinate, the analysis137

illustrates that birth and death events are correlated in time as well (in fact, the analyzed138

evolutionary events took place in the terminal branches of the phylogenetic tree, and thus139

they must have been close in term of evolutionary time).140

Finally, Fig. 1E and 1F show that origins lying near loci where origins were recently lost141

are typically in the high-efficiency range of the distribution, and that lost origins tend to142

be less efficient than conserved origins. Fig. 1E compares the distribution of the efficiency143

of lost, conserved and newly gained origins with the distribution of efficiency of the nearest144

origins. The efficiency of origins neighboring a loss event is higher than average, while the145

efficiency of lost origins is lower than average. These results clearly support the influence146

of origin efficiency on origin death events. This is confirmed by Fig. 1F, which shows147

the distribution of efficiency of all conserved and newly gained origins. For both classes,148

considering only those origins that are nearest neighbors to a recently lost origin yields an149

increase in the efficiency.150
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Different mechanisms could lead to the correlations described above. Overall, it is clear151

that origin strength is somehow “coupled” to birth-death events. For example, conserved152

origins may become more efficient after the loss of neighbor origins, or the birth of new highly153

efficient origins could facilitate the loss of neighbors, or losing an origin could expedite the154

acquisition of a new origin nearby. Overall, these results reveal that the origin birth-death155

process is following some specific “rules” that involve both inter-origin distances and origin156

efficiency.157

Note that the results of Fig. 1E might appear to be incompatible with Fig. 1D, but they158

are not. Fig. 1E shows that the efficiency of newly gained origins is lower than average, and159

Fig. 1D shows that the majority of origins that are nearest to a locus with a recent loss160

event are newly gained. The apparent contradiction arises from Fig. 1E, which shows that161

the average efficiency of origins close to a lost one is higher than average. This inconsistency162

is resolved by the analysis shown in Fig. 1F, which shows that origins appearing close to163

recently lost ones are among the most efficient.164

A birth-death model including evolutionary bias from inter-origin replication fork165

double stalling recapitulates the main features of replication origin turnover166

The joint stalling of two replication forks in the same inter-origin region along the genome167

is a well-characterized fatal event that may occur during S-phase. The frequency of this event168

in a clonal population clearly affects fitness. A previous modeling study [18] focusing on yeast169

demonstrated that, in order to minimize the probability of a double stall anywhere along the170

chromosome, origins must be placed in the most ordered spatial configuration, namely all171

the consecutive origins must be equidistant from each other. However, the previous study172

did not incorporate this principle into an evolutionary dynamics of origin turnover. Thus,173

the important question arises of whether the tendency to avoid double stalls is related to174

origin gain and loss. To address this question, we defined a birth-death model, rooted in175

the experimental observations discussed in the previous section. This “double-stall aversion176

model”, described in detail below, biases the turnover of replication origins in such a way177

that events (in particular birth events) leading to a decreasing double-stall probability are178

promoted, because they increase the fitness of the cell.179

In the double-stall aversion model, the extent to which the acquisition of a new origin180
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FIG. 2. The double-stall aversion model reproduces origin turnover and distributions

but fails to capture correlations between origin turnover and origin strength. The plots

show the simulations of the best-fitting double stall aversion model compared with empirical data.

A: Inter-origin distance distribution in simulated species (blue bars) compared to the empirical

distribution for the ten Lachancea species (red diamonds). B: Origin efficiency distribution in

simulated (blue bars) vs empirical species (red diamonds). C: Box plot of the distance from the

nearest origin split by evolutionary events, i.e. for conserved (dark blue), newly gained (blue) and

lost origins (black), for simulated species. D: Fraction of origins that are nearest to conserved,

newly gained and lost, for simulated species, compared to the expected result for uncorrelated

events. E: Box plot of efficiency of lost, conserved and newly gained origins (respectively in black,

dark blue and blue) and their neighbors (grey), in simulated species. The six distributions show

very little variation. F: The efficiency of all conserved and newly gained origins compared to the

ones flanking a lost origin. Braces indicate sub-sampling. Box plots show the median (bar), 25-75

(box), and 10-90 (whiskers) percentiles. Simulation parameters (see methods): γ = 2.4, overall

birth and death rate b̄ = 13.6Mbp−1t−1, d̄ = 0.61t−1 and firing-rate resampling rate R = 0.92t−1,

where t is measured by protein-sequence divergence. The panels A and B are generated using data

from approximately 320.000 simulated origins, while panels C, D, E and F are built using data

from about 60.000 birth and death events and 240.000 conservation events.
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changes the probability of a double stall PDS
i depends on the length li of the inter-origin181

region where the event occurred. This probability is therefore coordinate-dependent, and182

can be derived by a procedure similar to the one carried out in [18] (see more details in183

Methods),184

PDS
i = 1− (1 + πli) exp(−πli) , (1)

where li is the length of the genome region between the (i+ 1)-th and the i-th origin and π185

is the mean per-nucleotide fork stall rate; we use the value from ref. [18], π = 5× 10−8 per186

nucleotide. Note that the double stall probability is completely independent from the origin187

firing rates and efficiency, and depends only on the distance between the origins.188

In our simulations of the model (see Methods for a more detailed explanation), the genome189

was represented as a vector of origins, identified by the position and the firing rate. The190

model is a discrete-time Markov chain, and for the double-stall aversion variant the chain is191

specified by the following update rules,192

• In each inter-origin region, the origin birth rate is biased by the value of the double-193

stall probability in that region. Specifically, the origin birth rate (per unit time) in194

the region i, of length li between the i-th and (i+ 1)-th origin is given by195

bi = Nb̄(PDS
i )γli , (2)

where PDS
i is the (constant) double stall probability density in region i (Eq.1), b̄ is196

the birth rate (per Mbp and per unit time) extracted from experimental data (see197

Methods), and γ is a positive real parameter that controls the strength of the bias. N198

is a normalization factor added to match the empirical birth rate b̄. Newborn origins199

are placed in the middle of the inter-origin region i.200

• Death (i.e., loss of origins) is unbiased, and occurs at random origins with rate d̄201

(estimated from experimental data, see Methods), regardless of their efficiency or202

their neighbor’s efficiency.203

The justification for the assumption that newborn origins are placed at midpoints in the204

model ultimately comes from data (Fig. 1 - Supplement 2) where a strong bias in this205

direction is found. Relaxing this assumptions has consequences on the distance distribution206

and leads to poorer-performing models. We interpret this bias as the result of a faster207
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(hence undetectable in our data) evolutionary process that counter-selects origins far from208

midpoints.209

Firing rates in the model evolve by reshuffling of the empirical firing rate distribution,210

with a time scale that is set empirically (see Methods and Figures 1 - Supplement 3 and 1 -211

Supplement 4). On shorter time scales, firing rate changes are likely more gradual, making212

firing-rate evolution similar to a diffusion process. However, such changes are not quantifiable213

in our data set, which would leave the model with many extra parameters (a firing rate214

diffusion constant and bounds to set the empirical distributions) that are very difficult to215

estimate. Additionally, the firing-rate distributions of the conserved (thus older) origins and216

of newborn (younger) ones are quite similar (Fig. 1 - Supplement 3B), and this condition is217

not generally met under a simple diffusive process.218

Fig. 2 shows the simulation results of the model with best-fitting parameter values (see219

Methods and Fig. 2 for other parameter values). Fig. 2A and B, show that the double-stall220

aversion model reproduces the two main “structural” features of yeast genome, namely the221

inter-origin distance distribution and the origin efficiency distribution. Additionally, Fig. 2C222

and D show that the same model reproduces the observed correlations between the inter-223

origin distance and origin birth-death events, as well as the correlation between birth-death224

events and nature of the neighbor origins observed in the data (conserved, newly gained, or225

lost).226

The double stall hypothesis alone fails to capture correlations of origin turnover227

with efficiency228

In spite of the good performance of the double-stall aversion model in explaining the229

empirical marginal distributions, we find that it fails to reproduce the observed correlations230

between the efficiency of an origin and the recent history of the nearest ones. Fig. 2E shows231

very faint variations in efficiency of origins that are nearest neighbors to origins of different232

evolutionary fate. In particular, the observed huge divergence in efficiency between lost233

origins and their neighbors is absent in the model simulations. Note that Fig. 4 and Fig. 2F234

show that in the double-stall aversion model origins nearest to a loss event are slightly more235

efficient than average. This trend is due to the fact that after an origin is lost, its neighbours236

are subject to lower interference, and automatically become more efficient. However, Fig. 4237
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shows that this null trend is too weak to explain the experimental data. These considerations238

indicate that a model without a direct mechanism linking the efficiency of an origin to the239

birth-death events of its neighbors cannot reproduce the data.240

Double-stall aversion and interference between proximate origins explain the cor-241

related evolution of origin presence and efficiency242

Based on the above considerations, we defined a joint model that takes into account both243

the evolutionary pressure given by the double-stall probability and the direct effect of origin244

efficiency on birth-death events.245

Specifically, this model is defined as follows.246

• The birth process is the same as in the double-stall aversion model described above: the247

birth rate is biased by the double-stall probability in each inter-origin region [eq. (1)],248

and newborn origin are placed in the middle of the region.249

• Death of an origin is biased by its efficiency: less efficient origins are more easily lost.250

Specifically, the death rate (per unit time) for the i-th origin is251

di = Nd̄ exp(−β effi), (3)

where effi is the efficiency of the i-th origin, Eq. (4), d̄ is the mean death rate extracted252

from experimental data (see Methods). The positive parameter β tunes the interaction253

strength: the larger β, the steeper the dependence of di on effi. The normalizing factor254

N is chosen so as to match the empirical total death rate.255

We note that the bias parameters β and γ are not inferred based on branch data, but on256

distributions of extant species (see Methods).257

Fig. 3 gathers plots of the structural features (distribution of inter-origin distances and258

efficiencies, Fig. 3A-B) and the evolutionary correlations involving efficiency, evolutionary259

fate, distance to nearest neighbor, and fate of nearest neighbor (Fig. 3C-D-E-F). Overall, the260

joint model reproduces all the observations considered here regarding the layout of origins261

and their evolutionary dynamics, indicating that the experimental data can be rationalized262

by a fitness function that includes both the detrimental effects of non replicated regions and263

the evolutionary cost of maintaining inefficient replication origins.264
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FIG. 3. A model where both fork stalling and interference affect fitness explains

the correlations between origins evolutionary events. Result of the joint model best-

fitting simulation compared with empirical data. A: Inter-origin distance distribution in simulated

species (blue bars) vs empirical distribution for the ten Lachancea species (red diamonds). B:

Origin efficiency distribution in simulated (blue bars) vs empirical species (red diamonds). The

agreement between simulation and experimental data shows that this joint evolutionary model

reproduces the typical structural features of a yeast genome. C: Box plot of the distance from the

nearest origin split by evolutionary events, i.e. for conserved (dark blue), newly gained (blue) and

lost origins (black), for simulated species. D: Fraction of origins that are nearest to conserved,

newly gained and lost, for simulated species, compared to the expected result for uncorrelated

events. E: Box plot of efficiency of lost, conserved and newly gained origins (respectively in black,

dark blue and blue) and their neighbors (grey), in simulated species. F: The efficiency of all

conserved and newly gained origins compared to the ones flanking a lost origin. Braces indicate

sub-sampling. Box plots show the median (bar), 25-75 (box), and 10-90 (whiskers) percentiles.

Panels D - F show that the model correctly reproduces the correlation between origin birth-death

events over evolution and efficiency of the nearest origin. Simulation parameters (see Methods):

γ = 2.2, β = 1.9, overall birth and death rate b̄ = 13.6Mbp−1t−1, d̄ = 0.61t−1 and rate of origin

firing-rate reshuffling R = 0.92t−1, where t is measured by protein-sequence divergence. The panels

A and B show data from approximately 600.000 simulated origins, while panels C, D, E and F

data from about 100.000 birth and death events and 500.000 conservation events.
12



FIG. 4. Comparison of model predictions for the correlations of origin birth-death

events. The plots in the red upper box compare efficiency distributions of the best-fitting simula-

tion of the two different models (bottom and central panels) with experimental data (top panel).

Comparison of the box plot of efficiency of lost, conserved and newly gained origins (red for the

data, blue for the models) shows better agreement of the joint efficiency/double-stall aversion

model (bottom panel) with the experimental data. Hence, the joint model reproduces well the

correlation between evolutionary birth-death events of origins and efficiency of the nearest origin,

while the double-stall aversion model fails. Box plots show the median (bar), 25-75 (box), and

10-90 (whiskers) percentiles. Simulation parameters for the joint model (see Methods): γ = 2.2,

β = 1.9, and for the double-stall aversion one: γ = 2.4. General parameters: overall birth and

death rate b̄ = 13.6Mbp−1t−1, d̄ = 0.61t−1 and rate of origin firing-rate reshuffling R = 0.92t−1,

where t is measured by protein-sequence divergence. In the green lower box we compare the pre-

dictive power of the two models for each of the tested feature of the experimental data. The box

highlights that both the double stall-aversion model and the joint efficiency - double stall model

are able to reproduce the structural features of the genome. Also the correlation between events -

distance from the nearest and event - event of the nearest are correctly predicted by both models.

The important difference between the two proposed models is found for the correlation between

evolutionary events and origin efficiency, which is predicted and can be explained solely by the

joint model. 13



In particular, the coupling between the efficiency of an origin and the death rate of its265

neighbors, through the probability of passive replication, reproduces the empirical correla-266

tions shown in Fig. 1. Figure 4 summarizes this crucial point of comparison between the267

joint efficiency/double-stall aversion model and the pure double-stall aversion case. The268

three plots compare efficiency distributions of lost, conserved and newly gained origins (red269

for the data, blue for the models) with those of their neighbors (grey). Comparison of these270

plots shows that only the joint model reproduces the differences in efficiency of lost origins271

and their neighbors.272

In order to show that the stall-aversion and interference model has better quantitative273

agreement with the data, we also performed a simplified likelihood ratio analysis. The full274

likelihood of the model is complex, but we have defined “partial” likelihoods for the joint and275

the double stall aversion model just taking into account the marginal probabilities shown as276

box plots in Fig. 4 and Fig. 4 - Supplement 1 (see Methods). Fig. 1 shows that the joint277

model performs better for all the four chosen features. In our view, the qualitative difference278

shown in Fig. 4 may be taken as a stronger argument in favor of the combined model, in279

the sense that, beyond any quantitative agreement relying on parameters, the additional280

ingredient of a coupling between origin birth-death dynamics and origin rates is needed to281

explain the data.282

The joint efficiency / double-stall aversion model correctly predicts origin family283

divergence284

Having established that the joint model is required to reproduce observations on single285

lineages, we turned to its predictions on observations that require knowledge of the whole286

phylogenetic tree, such as origin evolutionary families, defined as sets of orthologous ori-287

gins [22].288

We thus set up a simulation of the model on a cladogenetic structure, fixed by the observed289

structure of the Lachancea clade phylogenetic tree (see Methods for the simulations details).290

The output of each run in such simulations are nine different simulated genomes whose291

lineages are interconnected in the same way as the empirical species, and each branch follows292

the empirical divergence. We stress that these simulations just include intersecting lineages293

whose branched structure corresponds precisely to the lineages of the empirical tree. The294
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FIG. 5. The efficiency/double-stall aversion model predicts origin divergence. The plots

compare predictions of the evolutionary model on the extent of origin divergence (simulations of the

Lachancea phylogenetic tree) with empirical data. A: Box plot of origins efficiency distributions

split by family size. The plot compares origin families (sets of orthologous origins) in the nine

Lachancea species (white line and red shaded areas) and in simulated species (blue boxes, for

100 simulation runs). Medians are shown as white line for data, black bar for simulation, 25-75

percentiles as shaded area for data, box for simulation, and 10-90 percentiles as coarse shaded area

for data, whiskers for simulation. B: Origin divergence measured by the number of origins in the

common ancestor that were lost in a pair of species, plotted as a function of total origin loss events.

The plot compares model simulations (blue circles, 100 simulation runs), the experimental data

(red squares) and a null model that shuffles the empirical birth - death events in each branch (green

triangles, 1000 simulation runs). Error bars are standard deviations on y−axis values. Simulation

parameters (for the evolutionary model, see Methods): γ = 2.2, β = 1.9, overall birth and death

rate b̄ = 13.6Mbp−1t−1, d̄ = 0.61t−1 and rate of origin firing-rate reshuffling R = 0.92t−1, where t

is measured by protein-sequence divergence.

phylogenetic structure does not emerge from the simulation, as our model does not describe295

speciation. The model for the tree can simulate nine species, all the species except for L.296

kluyveri, as this species was used as outgroup for the computation of the length of the tree297

branches [22]. We have repeated all the analyses on these simulations, and verified that298

all the previous results hold, Fig. 5 - Supplement 1. We then turned to other independent299

predictions of the joint model, which could be compared to measurements in ref. [22].300

Fig. 5A reports the dynamics of origin families. As reported in ref. [22], origins that301

belong to larger evolutionary families tend to have a higher efficiency compared to origins302

in smaller families, which is possibly due to the fact that, on average, high efficiency origins303
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tend to survive longer. Note however that there is no deterministic relation between family304

size and origin age because the relationship between these two is determined by the structure305

of the phylogenetic tree. Indeed, two families of the same size may have roots in different306

points of the tree, and thus the origins belonging to them may have very different ages. Thus,307

the prediction of the relation between origin efficiency and origin-family size is not trivial.308

Fig. 5A shows the results for the origin efficiency for families of varying size, comparing the309

experimental data and 100 different runs of the simulation.310

As a second step, we have considered the model prediction for the divergence of the shared311

origins in two species descending from a common ancestor. Specifically, we asked whether312

the number of origin death events occurring in two branches of the tree could justify the313

number of common origins in the two species. Indeed, whenever in a pair of species the314

number of shared origins is lower than the number of origins belonging to their common315

ancestor, this discrepancy must be due to the evolutionary loss events. These events are316

predicted by our model to be correlated in diverging species, due to the common ancestry317

and the coupling of loss events to origin efficiency and distance. This correlation should318

lower the number of shared origins losses compared to a null expectation where loss events319

are not correlated. Fig. 5B shows that the model correctly predicts the divergence in the320

number of shared origins lost during evolution, without any parameter adjustment. We also321

verified that, as expected, a null evolutionary model is not able to reproduce this feature.322

The null model fixes in each branch of the simulated tree the same number of birth and323

death events that are present in the corresponding branch of Lachancea tree, but these324

events occur uniformly along the genome. The difference between the null model and the325

evolutionary model predictions shown in Fig. 5B is a consequence of correlated origins losses326

due to the common genome structure, in terms of origins positions and efficiencies, that each327

pair of species inherit from their common ancestor.328

We note that birth and death rate are inferred as global parameters, ignoring correlations.329

Despite this, Fig. 5B shows that the model reproduces the higher correlation in birth and330

death events in closer-related branches than in distant branches as a consequence of the331

common positions and firing rates of the origins in the ancestor.332
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DISCUSSION AND CONCLUSIONS333

Overall, this study provides a framework to study replication-program evolution driven334

by replication-origin birth-death events, and demonstrates that both fork stalling and ef-335

ficiency shape the adaptive evolution of replication programs. The model framework is336

predictive and falsifiable and it can be used to formulate predictions on the phylogenetic337

tree. In future studies, it would be interesting to explore the predictions for the evolution-338

ary dynamics under perturbations, such as evolution under increased replication stress or339

conditions where fork stalling becomes more frequent. Additionally, the framework can be340

used to discover specific trends, such as different evolutionary dynamics of specific genomic341

regions (subtelomeres [23], regions containing repeats, etc. [24, 25]), role of genome spatial342

organization [26], and correlated firing of nearby origins.343

A general question concerns the predictive value of the model proposed here on out-of-344

sample data. Fig. 5 shows that fit-independent predictions apply across the tree. Impor-345

tantly, the model is based on simple global parameters, and not fine tuned on local features346

of the tree. To underline this point, we verified that a model fit using only the subtree347

between LADA a LAWA yielded similar paramerets. Clearly, we cannot exclude that the348

values of the birth and death rate, and also the bias parameters γ and β could be Lachancea-349

specific, while we speculate that the conclusions on the relevant evolutionary mechanisms350

might apply more generally.351

The previous approach by Newman and coworkers [18] described the evolution of origin352

distance as an optimization process that minimizes double fork-stall events, without at-353

tempting to characterize explicitly the evolutionary dynamics. Such approaches are limited354

compared to the framework presented here, because they can predict only the origin-distance355

distribution, and they do not allow any prediction regarding origin and replication-program356

evolution along lineages and across phylogenetic trees. In accordance with the results of357

Newman et al., we confirm that double-stall events are a primary driver of the evolution of358

replication programs, and we frame this finding into the empirically measured birth-death359

evolutionary dynamics of replication origins. Additionally, we show that next to fork-stall360

events, origin efficiency plays an important role into shaping the evolutionary landscape seen361

by a replication timing profile.362

What could be the mechanisms coupling efficiency to origin birth death? The actual pro-363

17



cess of origin death could be nearly neutral [27], as low-efficiency origins, are - by definition -364

rarely used, and unused origins, over evolutionary times are more prone to decay in sequence,365

and consequently in firing-rate until they disappear. Equally, a new-born origin close to a366

very strong one (which would make the new-born origin relatively inefficient) could be used367

rarely. This would make this origin relatively less likely to establish over evolutionary times368

compared to an isolated new-born origin. However, rarely used origins could be essential369

in situations of stress (and in particular they could resolve double-stall events). Finally,370

a fitness cost for maintaining too many origins might set up an overall negative selection371

preventing a global increase in origin number [16, 28, 29].372

III. MATERIALS AND METHODS373

Data374

The experimental data used in this work come from ref. [22]. In particular, we made use375

of the data regarding the replication origins. For each origin in each of the ten Lachancea376

species, this dataset includes the chromosome coordinate and firing rate, and the inferred377

birth and death events occurred in the branches of the phylogenetic tree shown in Fig. 1 -378

Supplement 1. Focusing on the terminal branches of the tree and on the extant replication379

origins, this study defines three categories of origins: (i) “conserved” origins (which survived380

from the last ancestor) (ii) “newly gained” origins gained in the last branch of the phylo-381

genetic tree, (iii) “lost” origins, which were present in the last ancestor species and are not382

present in the terminal branch. Properties of the lost origins (e.g. position and firing rate)383

are inferred from the projection of the corresponding ones on the closest species, keeping into384

account synteny. Since the synteny map is less precise in distant species, the information on385

the origins events is only available for the six sister species in the tree, which belong to the386

three closest species pairs, highlighted with the red shaded area in Fig. 1 - Supplement 1.387

Computation of the efficiency388

Origin efficiency was defined as the probability of actively firing during S phase (or,389

equivalently, the probability of not being passively replicated by forks coming from nearby390
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origins). In practice we computed it by the following formula391

effi = (1− Pi,i−1)(1− Pi,i+1) , (4)

where Pi,i+1 and Pi,i−1 are the probabilities for the i-th origin of passive replication respec-392

tively from the (i + 1)-th and (i − 1)-th origins. Note that this efficiency formula Eq. 4,393

is an approximation that only takes into account the possibility to be passively replicated394

by neighbor origins, neglecting the influence of other nearby origins. Following ref [22], for395

computing the efficiency we assumed that the origin firing process has constant rate [16], and396

we thus obtain the following closed expressions for the probabilities of passive replication397

Pi,i+1 =
λ

′
i+1

λ
′
i+1 + λ

′
i

exp

[
−λ′

i

|xi+1 − xi|
v

]
, (5)

and398

Pi,i−1 =
λ

′
i−1

λ
′
i−1 + λ

′
i

exp

[
−λ′

i

|xi−1 − xi|
v

]
. (6)

In the above equations, v is the typical velocity of replication forks, xi is the i-th origin399

chromosome coordinate, and λ
′
i is the i-th origin firing rate divided by the mean firing400

rate of the species the origin belong to. The raw firing rates in the data are affected by401

the different physiology of the nine Lachancea species in the experimental growth conditions402

(which were the same for all the species). In order to reduce these differences, we normalized403

the rates by their average for each given species. For this reason, we did not make use of404

the origin efficiency data already present in [22].405

Computation of the double-stall probability406

The probability PDS
i that two converging forks stall is easily computed in the limit where407

the stall probability per base-pair is small and the number of base-pairs is large. Under these408

assumptions, stalling is a Poisson process with rate (per base-pair) π. PDS
i can be written409

in terms of the probability P S(x) that a single fork stalls after replicating x nucleotides,410

PDS
i =

∫ li

0

dx

∫ li−x

0

dy P S(x)P S(y) , (7)

where li is the length (number of base-pairs) of the i-th inter-origin region. Imagine two411

converging replication forks starting from origins i and i+ 1: the two integration variables x412

and y represent the number of base-pairs that each fork replicates before stalling. By using413

19



the Poisson-process result P S(x) = π exp(−πx) and performing the integration, one obtains414

the result in Eq. (1).415

Evolutionary model416

We defined origin birth-death models incorporating different evolutionary biases. In these417

models, the genome is described as a one-dimensional circle with discrete origin location xi,418

where the length of the genome is equal to the average genome length in Lachancea clade419

(10.7Mbp). We made use of a circular genome in order to avoid border effects. In the420

model, the set of origins change over evolution by three basic (stochastic) processes, birth of421

an origin in a certain genome region, origin death and change of origins firing rate. We have422

verified that choosing linear chromosome does not alter significantly our findings, although423

it affects the distances between origins close to chromosome ends (Fig. 3 - Supplement 1).424

Overall origin birth/death rates were estimated from the data as follows. To estimate the425

overall birth rate b̄ we considered, for all the terminal branches of the phylogenetic tree, the426

number of birth events Nb, the genome length of the corresponding species L and the length427

of the tree branch T , and divided Nb by LT . Then we averaged over all terminal branches.428

To estimate the overall death rate d̄, we followed a similar approach, taking the number429

of death events Nd in the terminal branches, the length of the branch T and the number430

of origins in the corresponding species nori, then computing NdT
−1n−1

ori for all the terminal431

branches and averaging these values. The final results for overall birth and death rates from432

the origin birth death events across the Lachancea clade are b̄ = 13.5627Mbp−1t−1 and433

d̄ = 0.612287t−1.434

We verified that the assumption of constant rates was consistent with the the empirical435

variability of the numbers of birth and death events per unit time along different branches of436

the tree, by comparing simulations with data. Fig. 5 - Supplement 2 shows that simulations437

and empirical data present similar spreading,438

The process by which origin firing rates change over evolution was described as stochastic,439

with every origin having a fixed probability per unit time of changing its firing rate, given by440

R = 0.92t−1, a value fixed from experimental data (see appendix and Fig. 1 - Supplement 4).441

When a firing rate changes, it is resampled from the distribution of all the empirical normal-442

ized firing rates, computed using the data in [22] (see appendix and Fig. 1 - Supplement 3443
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for more details).444

Simulations445

Code Availability. The code used to run the simulations, together with instructions to446

run it, was shared as a repository on Mendeley data, and is available at the url https:447

//data.mendeley.com/datasets/vg3r5355bj/2. Algorithm. The prediction of the dif-448

ferent evolutionary models were derived numerically, making use of custom simulations449

written in C++, which implement the origin birth-death dynamics as a Gillespie algo-450

rithm [30]. Every model variant was required to reproduce the experimental overall rates,451

b̄ = 13.5627Mbp−1t−1 for origin birth, d̄ = 0.612287t−1 for origin death and R = 0.92t−1
452

for firing rate change. We simulated the three processes defining the model as follows. (i)453

The birth process has a common definition for the stall aversion and joint model. The al-454

gorithm first tests each subsequent inter-origin region, calculates the birth probability from455

Eq. 2 and stores the results. Subsequently, it computes the normalization factor N , in order456

to match the empirical birth rate per nucleotide b̄. Finally, it samples all the inter-origin457

regions drawing birth events from the computed birth probability (Eq. 2). New origins are458

placed the mid points of the tested intervals. (ii) The death process is different for the459

stall-aversion model (unbiased) and the joint model (related to the origin efficiency). In the460

joint model, the algorithm first calculates the death rate for each origin using Eq. 3 and461

stores the results. Subsequently, it computes the normalization factor N , in order to match462

the empirical mean death rate d̄. Finally, it samples all origin drawing death events from the463

computed death probability. For the unbiased process (stall-aversion model) the dynamics464

is identical, but all the origins have the same death rate d̄, so that the algorithm can skip465

the calculation of N . (iii) The process updating origin firing rates over evolutionary times466

is common to all model variants. The probability of update per origin per unit time is R.467

Origins are sampled for each time step and assigned a new rate uniformly extracted from468

the empirical distribution of all normalized firing rates with probability Rdt.469

During the simulation the genome configuration (chromosome position, firing rate, effi-470

ciency for each origin) is known at each time step, which matches the empirical time (tree-471

branch length, measured by protein-sequence divergence). For simulating single lineages, we472

started with a collection of 50 origins, with positions and firing rate uniformly drawn from473
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all the possible ones. Rapidly, the inter-origin distances distribution, the efficiency one and474

the number of origins reach a steady state (for the number of origins, set by the balance475

of birth and death rate, and characterized by approximately 225 origins). Configurations,476

including birth-death events, were printed at regular time intervals after steady state is477

reached. The time interval between prints is chosen to be equal to the average length of the478

Lachancea phylogenetic tree terminal branches, in order to compare single-lineage simula-479

tions with empirical data. For simulations on a phylogenetic tree, after one species reaches480

the steady state, it is used as a root. To reproduce the empirical branching structure of the481

tree, we run the simulation, one for each branch of the phylogenetic tree, each time starting482

from the species at the previous branching point, for a period that matches the length of the483

branch. If the simulated branch is terminal then the configuration corresponds to one of the484

empirical species, otherwise it corresponds to a “branching-point species” and it can be used485

as starting point for other simulations. Each simulation run gives nine different simulated486

species with the same cladogenetic structure as the empirical species (Fig. 1 - Supplement 1).487

Fitting procedure. The biased birth-death processes in the simulations rely on some param-488

eters to tune the strength of the bias, these are the only parameters to fix by a fit, since489

all the other parameter values are fixed empirically. In the joint model there are two free490

parameters, γ and β that tune respectively the strength of the bias on the origin birth and491

on the origin death process. For a discrete set of parameter pairs spanning realistic intervals492

we run hundred different simulations, each starting with a randomized genome. Considering493

the simulated species for all the pairs of parameter values, we quantify the discrepancy with494

experimental data by evaluating the L1 distance of the normalized histogram of efficiency495

and inter-origin distances. This quantity is a number between 0 and 2, 0 if the histograms496

perfectly overlap and 2 if they have completely different supports. For each pair of param-497

eters the analysis gives two values of discrepancy. We choose the value of γ (the parameter498

that tunes the bias on the birth rate based on double-stall aversion) by taking the smaller499

discrepancy from the inter-origin distances distribution. For the value of β (which tunes the500

interference bias on the death rate in joint model), we chose the one that gave us the smaller501

area on the efficiency distribution. For the double-stall aversion model the fitting procedure502

is the identical, and only requires to fix γ.503

Simplified Likelihood analysis. We performed a (simplified) likelihood ratio analysis in order504

to test the better quantitative performance of the combined model. The full likelihood of the505
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models analyzed here is complex, but we have defined “partial” likelihoods for the joint and506

the double stall aversion model only taking into account the marginal probabilities shown507

in Fig. 4 and 4 - Supplement 1. Hence the test evaluates for both models the goodness of508

the predicted correlation between the efficiency and firing rate of the lost origins and the509

ones of their neighbors. The likelihood ratio test quantifies how much the prediction of510

a certain model is better than a reference (“null”) model. We chose the the double stall511

aversion model as reference (equivalent to setting β = 0 in the joint model). Specifically,512

one evaluates513

Lr = 2 log

(
Ljoint(γ, β)

LDS(γ, β = 0)

)
= 2 (ljoint(γ, β)− lDS(γ, β = 0)) , (8)

where LX are the likelihoods of the two models and lX are the log-likelihoods. Assuming that514

Lr is χ-squared distributed (this is generally the case for large samples), we could compute515

a P-value associated to this test.516

Null birth-death model517

We defined a null birth-death model where origin birth-death events in sister species518

are uncorrelated, in order to analyze the divergence of shared origins and compare it with519

the prediction of the evolutionary model. This model implements birth and death events520

uniformly, regardless of origin position and firing rate, fixing the number of events for each521

branch of the simulated phylogenetic tree. These values are taken from the inference reported522

in ref. [22] (shown in Fig. 3A of that study and in Fig. 1 - Supplement 1). The simulation of523

this model starts with 220 origins (the number of origins inferred for to LA2, the species at524

the root of the tree). Subsequently, following the structure of the Lachancea phylogenetic525

tree, the simulation proceeds as follows: (i) at each branching point the genome is copied526

into two daughters, (ii) for each daughter the prescribed number of random death and birth527

events (in this order) is generated on random origins (iii) the simulation stops when it reaches528

the leaves of the Lachancea tree.529
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Figure supplements for Droghetti et al.
“An evolutionary model identifies the main evolutionary biases for

the evolution of genome-replication profiles.”
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FIG. 1 - Supplement 1. The phylogenetic tree of the ten Lachancea yeasts clade. taken

from ref [22], Fig.3A. L. kluyveri was used as the outgroup species. Hence evolutionary events

that occurred on both the L. kluyveri and the b2 branches (grey lines) could not be retraced. As a

consequence, our simulations of the model were not possible for the b2 and L. kluyveri branches,

and it was possible to simulate nine species instead of ten. Internal branches, labeled b3 to b9,

and terminal branches are drawn in black and red, respectively. The number of origin gains (with

plus sign) and losses (with minus sign) were estimated for each branch of the tree in ref. [22]. The

six sister species, which belong to the three closest pairs of species, are highlighted with the red

shaded areas.
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FIG. 1 - Supplement 2. The majority of new origins are born within a 20% distance

from the midpoint of the associated interval. The plot shows the empirical distribution of

the fractional distance from the midpoints of nearby origins for newborn origins of the Lachancea

clade. More than half of all the new born origins is less than 20% far away from the midpoint of the

inter-origin interval where they are born. This means that for an ideal 50 Kbp interval, more than

half of the birth events would occur in positions between 20 and 30 Kbp, which is remarkably close

to the midpoint position of 25Kbp. This result justifies the simplified choice of placing newborn

origins at midpoints in our models.
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FIG. 1 - Supplement 3. Experimental data on the evolutionary change of firing rates

process. A: The firing rates Spearman correlation coefficient ρ between sets of corresponding

origins decreases with increasing phylogenetic distance between species. Each point in the plot

represents a pair of species. The x axis reports the phylogenetic distance between the two species,

while the y axis reports the Spearman correlation between the sets of normalized firing rates for

corresponding origins between the two species. Empty squares represent the analysis carried out

with Lachancea clade yeasts, while the symbol with coordinates (0,1) represents the fact that that

non-distant species must have ρ = 1 B: Cumulative probability distribution of the normalized

firing rates of newly-gained origins (green triangles, for the six sister species) compared to the all

the extant origins (red squares, for the six sister species). This plot shows that all the functions

are very similar. This results is compatible with the assumption of resampling of firing rates over

evolution taken for the model (see appendix).
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FIG. 1 - Supplement 4. The decaying trend of the spearman correlation coefficient

define a characteristic time for the firing rate resample. For each pair of species we

compute the spearman correlation coefficient between the set of normalized firing rates belonging

to corresponding origins. The figure shows the results of this analysis. The red empty points refer

to experimental data, each dot is a pair of species, the x coordinate is the phylogenetic distance

between them while the y one is the value of the spearman correlation coefficient. The squared dot

in (0,1) is a fictitious point placed to remark that the spearman coefficient between non-distant

species must be 1. The blue line represent the results of a simulation (1000 runs, where we only

implemented an unbiased death process) with R = 0.92t−1 and the light blue area the standard

deviation. We fixed the value of R by fitting this specific trend, and indeed the simulations that

use this value of R show a remarkable agreement with the experimental trend. For the algorithm

details see methods and appendix.
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FIG. 3 - Supplement 1. Linear chromosomes do not alter significantly the model out-

comes. We simulated eight linear chromosomes (the number of chromosomes of the majority of

Lachancea species), with length equal to one eighth of the average genome size. We have modi-

fied the model so that the birth probability at the chromosomes ends is biased by the single stall

probability (as double stalls are not possible). The plot shows the results of the simulations (100

runs) of the model. The main difference is visible in the distance distribution shown in panel A.

The correlations shown in panels C-F only display minor quantitative changes. In the model, the

accumulation of origins towards the chromosome ends is due to the fact that single stall events are

more prone to happen than double stalls. Biologically, the region involving the last origin before

telomeres is specific, and additional mechanisms such as telomerase or homologous recombination

could repair stalled forks [31].
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FIG. 4 - Supplement 1. The efficiency mechanism is necessary to reproduce the cor-

relation between firing rates and evolutionary events. Comparison between the firing

rates-events correlation for experimental data, double stall aversion model and joint model. Only

the joint model can reproduce this correlation, which is observed in experimental data. The reason

is that in the double-stall aversion model the evolution of firing rates is uncoupled from the origins

birth-death dynamics.
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FIG. 4 - Supplement 2. Analytical predictions for the inter-origins distance distribution

falsify the scenario whereby interference alone drives replication-program evolution.

The plot shows a comparison between the empirical inter-origin distance distribution (red line,

diamonds) and the analytical prediction from the scenario of origin birth-death driven by interfer-

ence alone (blue dotted line, see appendix for the calculation). The predicted distribution does not

match the empirical one, thus the scenario can be rejected because it fails to reproduce a crucial

feature of the data.
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FIG. 5 - Supplement 1. The joint efficiency/double-stall aversion model simulated on

a cladogenetic structure reproduces all the results found for a single lineage. The

results refer to 100 different runs of the simulation of the joint model on the empirical tree structure,

compared with empirical data. A: Inter-origin distance distribution in simulated species (blue bars)

compared to the empirical distribution for the ten Lachancea species (red diamonds). B: Origin

efficiency distribution in simulated (blue bars) vs empirical species (red diamonds). C: Box plot

of the distance from the nearest origin split by evolutionary events, i.e. for conserved (dark blue),

newly gained (blue) and lost origins (black), for simulated species. D: Fraction of origins that

are nearest to conserved, newly gained and lost, for simulated species, compared to the expected

result for uncorrelated events. E: Box plot of efficiency of lost, conserved and newly gained origins

(respectively black, dark blue and blue) and their neighbors (grey), in simulated species. F: The

efficiency of all conserved and newly gained origins compared to the ones flanking a lost origin.

Box plots show the median (bar), 25-75 (box), and 10-90 (whiskers) percentiles. Panels D and F

show that the model correctly reproduces the correlation between origin birth-death events over

evolution and efficiency of the nearest origin. Simulation parameters (see methods): γ = 2.2,

β = 1.9, overall birth and death rate b̄ = 13.6Mbp−1t−1, d̄ = 0.61t−1 and rate of origin firing-rate

reshuffling R = 0.92t−1, where t is measured by protein-sequence divergence.
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FIG. 5 - Supplement 2. Simulations and empirical data show a similar variability in number of

death and birth events across branches of the tree. In each plot, a symbol corresponds to one branch

of the phylogenetic tree, empty squares represent the simulations of the cladogenentic structure

(100 different runs) and round black circles the experimental data. The x axis represents the

branch length, while the y axis is the number of death events (panel A) or birth events (panel B)

that occur in that branch. Both plots show a similar spread, supporting the idea that a fixed birth

(death) rate in the simulations represents sufficiently well the fluctuations of the number of birth

(death) events observed in the data.

10



Supplementary Files

Supplementary File 1. Results of the simplified log-likelihood tests of the joint and the double

stall aversion model with the associated P-values. Positive log-Likelihood differences favor the joint

model (see Methods).
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Appendix

A. Estimating parameters for the evolution of origin firing rates

This section motivates the model implementation of the evolutionary dynamics of fir-

ing rates. In order to quantify the change of origin firing rates over evolutionary times,

we studied how the correlation between firing rates of conserved origins behave as species

diverge (Fig. 1 - Supplement 3A). To quantify the divergence, for each pair of species in

the Lachancea clade we calculated the Spearman correlation coefficient between the sets of

firing rates belonging to corresponding origins in the two species considered (normalized by

the species mean firing rate). We found that the more the species are distant, the less these

two sets are correlated, which means that origin initiation rates diverge during evolution

and origins lose memory of their initial firing rate. The model describes the evolution of

firing rates as follows. Every origin changes its firing rate by extracting a new value from

the distribution of empirical normalized ones, regardless of their previous firing rate. This

process is characterize by a resampling rate R, common to all the origins, which defines the

probability per unit time that an origin resamples its firing rate. The slope of the correlation

coefficient in empirical data defines the speed at which the origin firing rates evolve. Hence,

it is possible to fit this specific slope and extract the value of R.

In order to do that, we simulated the evolutionary process with unbiased origin death

and update of the firing rate. This simulation can be performed without the birth process,

because the only origins that one needs to consider in computing the Spearman coefficient

between two species are the conserved ones. Each simulation started from 225 origins, with

firing rates randomly sampled from the empirical set of firing rates, evolved the genomes

changing the firing rates with the resampling process described above and removing the ori-

gins according to the death rate estimated from the data. By performing several simulations

with different values of the extracting rate R, it is possible to fit its best value. For each R

tested, we ran 1000 simulations for an evolutionary time corresponding to 1.6.

After computing the Spearman correlations between snapshots at different evolutionary

times, we performed an exponential fit, in order to see which value of the R parameter

gave the best agreement with the experimental data, finding the best-fit value R = 0.92.

Fig. 1 - Supplement 4 shows the trend achieved by the simulation using R = 0.92, and it
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shows a very good agreement between experimental data and simulations.

Note that in ref. [22], a similar analysis was carried out in order to verify if the reprogram-

ming of the origins firing rate has an impact on the differentiation of replication timing. The

authors analyzed the origin firing time differences between conserved replication origins in

all pairs of species, and found that this difference does not correlate with the phylogenetic

distance between species. This finding is apparently in contrast with our results, which

suggest that origin reprogramming increases with distance between species. We believe that

this discrepancy is due to the higher sensitivity of the Spearman correlation and of the use

of species-average normalized firing rates in this study.

B. The empirical data falsify the scenario where interference alone drives origin

evolution

This section presents a theoretical analysis of the scenario where solely origin interference

sets the evolutionary pressure on replication timing profiles. This analysis shows that a de-

scription that only takes into account the evolutionary pressure that acts on origin efficiency

is not able to reproduce the origins spatial arrangement, a crucial feature in empirical yeast

data. To carry out this analysis, we take a “maximum entropy” approach (see Banavar JR,

Maritan A, Volkov I. Applications of the principle of maximum entropy: from physics to

ecology. J Phys Condens Matter. 2010;22(6):063101. doi:10.1088/0953-8984/22/6/063101)

and infer an effective “force potential” acting on inter-origin distance by looking at its (as-

sumed equilibrium) distribution. Specifically, the effective potential acting on the origin

efficiency starting from the empirical efficiency distribution, can be analytically computed

from the following formula

Heff(eff) = − log(P (eff)) (S1)

where eff is the efficiency, eff ∈ [0, 1], and P (eff) the efficiency probability density function.

The above potential, once given the relation between efficiency and distance between

origins, Eq. 4, defines another potential Hd(d) that act on the inter-origin distances. By

taking the exponential of Hd(d) one obtains the expected probability distribution predicted

for the distances at equilibrium.

In order to find Hd(d) one must to invert Eq. 4 and find d(eff). To accomplish this task,

we have approximated the three-body interaction that gives the efficiency with a two-body
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interaction. This assumption implies that each origin feels the interference of only one of

his two neighbors, and is effective as long as three-origin interactions can be decomposed in

two-origin components. Under this assumption, Eq. 4 becomes

di,i+1 = −v
λ

log

[
λi + λi+1

λi
(ei − 1)

]
. (S2)

Note that origin efficiency, Eq. 4 also depends on the firing rates of the origin and its

neighbor, hence, strictly speaking, one has that

Hd(di,i+1) = Hd(di,i+1, λi, λi+1) . (S3)

To eliminate the firing rates dependence we computed an effective potential H ′d on the

distance, which averages the effect of the different firing rates. To this end, we used the

mean value theorem for integrals, as follows,

H ′d(d) =

∫
dλidλi+1P (λi)P (λi+1)Hd(di,i+1, λi, λi+1) = Hd(di,i+1, < λ >,< λ >) . (S4)

In other words we substituted all the firing rates with the average one < λ >= 1, since the

rates are normalized on the species average. With this simplification, going from Heff(eff)

to H ′d(d) is straightforward, and gives

d(e) = − v

< λ >
log[2(eff − 1)] , (S5)

and

H ′d(d) = Heff(d(eff)) . (S6)

From the potential H ′d, we can compute the prediction for the equilibrium probability

distribution of inter-origin distances

P (d) = N exp(−H ′d(d)) , (S7)

whereN is a normalization factor. In order to use this calculation on the the data, we inferred

the expected potential from the efficiency distribution, assuming that the interaction only

depends on efficiency, and we then obtained the model prediction for the expected inter-

origin distribution based on the efficiency profile. Comparison of this prediction with the

empirical inter-origin distance distribution provides a test of the model. This procedure does

not require to adjust any model parameter. Figure 4 - Supplement 2 shows the result of this
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analysis. The predicted distribution does not match the empirical one. This means that any

evolutionary model that assumes a bias based only on the efficiency (in other words, one

that takes into account only the evolutionary pressure given by origin interference) cannot

reproduce (at steady state) the correct spatial organization of replication origins.
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