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Abstract
Membrane Type 1 Matrix Metalloprotease (MT1-MMP) contributes to the invasive progression of breast cancers by
degrading extracellular matrix tissues. Nucleoside diphosphate kinase, NME1/NM23-H1, has been identified as a metastasis
suppressor; however, its contribution to local invasion in breast cancer is not known. Here, we report that NME1 is up-
regulated in ductal carcinoma in situ (DCIS) as compared to normal breast epithelial tissues. NME1 levels drop in
microinvasive and invasive components of breast tumor cells relative to synchronous DCIS foci. We find a strong anti-
correlation between NME1 and plasma membrane MT1-MMP levels in the invasive components of breast tumors,
particularly in aggressive histological grade III and triple-negative breast cancers. Knockout of NME1 accelerates the
invasive transition of breast tumors in the intraductal xenograft model. At the mechanistic level, we find that MT1-MMP,
NME1 and dynamin-2, a GTPase known to require GTP production by NME1 for its membrane fission activity in the
endocytic pathway, interact in clathrin-coated vesicles at the plasma membrane. Loss of NME1 function increases MT1-
MMP surface levels by inhibiting endocytic clearance. As a consequence, the ECM degradation and invasive potentials of
breast cancer cells are enhanced. This study identifies the down-modulation of NME1 as a potent driver of the in situ-to
invasive transition during breast cancer progression.

Introduction

Ductal carcinoma in situ (DCIS) correspond to the pro-
liferation of neoplastic breast epithelial cells contained
within a layer of myoepithelial cells and an intact basement
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membrane [1]. If untreated, some DCIS (20–50%) will
progress to invasive breast cancer (IBC) with characteristic
tumor cell dissemination and poor outcome [1]. Synchro-
nous adjacent DCIS and IBC foci show similar tran-
scriptomic and genomic profiles, and few progression
markers have been identified so far [2, 3]. Thus, a better
understanding of the mechanisms and players underlying
the progression to the invasive disease is needed in order to
improve treatment decision and outcome.

Nucleoside diphosphate kinases (NDPKs), the products
of the evolutionary conserved NME/NM23 gene family,
catalyze phosphate transfer from nucleoside triphosphates
(mostly ATP) to nucleoside diphosphates [4]. Interestingly,
NME1/NM23-H1 has been identified as the first metastasis
suppressor, showing reduced expression in highly mela-
noma metastatic cells and as a suppressor of breast, liver,
and colon carcinoma metastasis [5, 6]. At the mechanistic
level, mutations in the drosophila nme homolog, abnormal
wing discs (awd), are associated with developmental
defects, and genetic studies have linked awd with shibire
(shi), the gene encoding dynamin GTPase, required for
membrane fission in the endocytic pathway [7]. We recently
reported that human NME1 interacts with and supplies
dynamin with high GTP levels required for membrane fis-
sion and, consequently, promotes endocytosis and clearance
of cell surface receptors [8, 9].

A hallmark of metastasis is the acquisition of an invasive
program enabling cancer cells to remodel the extracellular
matrix (ECM) and disseminate. MT1-MMP (aka MMP-14),
a trans-membrane matrix metalloproteinase, is required for
DCIS-to-IBC progression and local invasion in the mam-
mary gland. In addition, MT1-MMP up-regulation has been
associated with higher metastatic risk in breast cancer
[10–13]. It is well established that MT1-MMP is essential
for carcinoma cell invasion by allowing the pericellular
degradation of basement membrane and collagen-rich
interstitial tissue barriers by cancer cells [14, 15]. A bal-
ance of endocytic and exocytic fluxes is thought to ensure a
constant supply of active MT1-MMP at the plasma mem-
brane [15–19]. MT1-MMP can be efficiently internalized by
clathrin-mediated endocytosis and it is essential to better
understand the molecular mechanisms that control its
clearance from the cell surface.

The metastasis-suppressor role of NME1 together with
its promoting function of dynamin activity in endocytosis,
as well as the regulation of MT1-MMP surface exposure
through endocytosis raise the intriguing possibility of a
control of MT1-MMP activity by NME1 NDPK in cancer
cells. The potential implication of NME1 and its close
relative NME2 protein, during the invasive DCIS-to-IBC
switch during breast cancer progression has been over-
looked. Here, we investigated the expression of NME1 and
NME2 in synchronous DCIS and IBC foci in breast tumors.

We found an up-regulation of NME1 in DCIS as compared
to normal peritumoral breast tissues and further down-
regulation in invasive disease components. NME2 expres-
sion, which was similarly up-regulated in DCIS, remained
high in IBCs. The ability of NME1 or NME2 to influence
tumor invasion was evaluated using the intraductal xeno-
graft model involving the injection of human MCF10DCIS.
com cells into the primary duct of mouse mammary glands
[11, 20]. Suppression of NME1, but not that of NME2,
accelerated the invasive switch of MCF10DCIS.com tumor
xenografts in the intraductal injection model. Finally, we
found a specific association of NME1 with endocytic
clathrin-coated structures and a regulation of MT1-MMP
surface levels by dynamin downstream of NME1, clarifying
the mechanism underlying the increased invasive potential
of breast cancer cells during the DCIS-to-IBC transition.

Experimental procedures

Cell culture

See SI Experimental Procedures.

Materials

For DNA constructs, antibodies, production and purification
of recombinant proteins, see SI Experimental Procedures.

RNA interference and CRISPR/Cas9 technology

See SI Experimental Procedures and SI Table S1.

Human breast tumor samples and tissue microarray
construction

Approximately 160 samples of primary breast tumors har-
boring synchronous DCIS and IBC, and 37 microinvasive
breast carcinomas were collected at Institut Curie (SI Table
S2). Analysis of the human samples by immunohistochemistry
was performed, as detailed in SI Experimental Procedures.

Immunohistochemical (IHC) staining of breast tumor
tissue microarray

IHC was performed using validated highly selective NME1
and NME2 polyclonal antibodies, as detailed in SI
Experimental Procedures.

Unsupervised hierarchical clustering

The membranous H-score of MT1-MMP and the total
H-score of NME1 from in situ and infiltrating tumor
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samples were scaled and then analyzed by unsupervised
hierarchical clustering, as detailed in SI Experimental
Procedures.

Intraductal transplantation method

The intraductal xenograft model was carried out as pre-
viously described [11, 20]. For details, see SI Experimental
Procedures.

Histological and immunofluorescence analysis of
mouse tissue sections

See SI Experimental Procedures.

3D collagen I invasion assay, quantification of
pericellular collagenolysis, multicellular spheroid
outgrowth in 3D matrigel, analysis of MT1-MMP cell
surface expression, MT1-MMP internalization

See SI Experimental Procedures.

In situ proximity ligation assay (PLA)

See SI Experimental Procedures.

Immunoprecipitation

See SI Experimental Procedures.

Subcellular fractionation

See SI Experimental Procedures.

Pull-down assay

See SI Experimental Procedures.

Statistical analysis

See SI Experimental Procedures.

Results

Down-regulation of NME1 in microinvasive breast
cancers and in IBCs

NME expression was investigated by IHC analysis on
whole sections and on a tissue microarray (TMA) of syn-
chronous DCIS and IBC foci from 156 breast cancer patient
samples using specific NME1 pAb and NME2 mAb with no
cross-reactivity (Supplementary Fig. S1 and Table S2).

Contrasting with low or undetectable NME1 levels in
healthy breast epithelial cells, NME1 was significantly up-
regulated in DCIS cells, in which a strong cytoplasmic and
peripheral staining was observed (Fig. 1A–C and E, G and
Supplementary Fig. S2). In addition, NME1 levels were
lower in IBCs relative to synchronous DCIS foci con-
sidering either total or separated cytoplasmic and membra-
nous NME1 staining (Fig. 1D, F, H and Supplementary
Fig. S2). When tumors were stratified into luminal A/B,
HER2+ and triple-negative breast cancer (TNBC) sub-
types, cytoplasmic and membranous NME1 levels remained
significantly lower in the invasive component as compared
to the adjacent DCIS foci, irrespective of the molecular
subtype (Supplementary Fig. S3A–C). In addition, NME1
expression was lower in TNBC relative to luminal tumors,
the former being aggressive and poor outcome tumors,
irrespective of the in situ or invasive contingents (Supple-
mentary Fig. S3D, E). Identical results were obtained using
mouse NME1 mAb (Supplementary Fig. S1A and Fig. S4).
Strikingly, NME1 level was also strongly decreased in
microinvasive foci (a relatively rare tumor subset corre-
sponding to early loco-regional invasion with no invasive
focus > 1 mm [21, 22]), relative to the in situ component
from the same specimen (Supplementary Fig. S5). Collec-
tively, these findings indicate that down-regulation of
NME1 NDPK correlates with the onset of breast cancer
invasion.

NME2 up-regulation during breast cancer
progression

NME2 staining using a validated, highly selective mAb
(Supplementary Fig. S1B–D) was visible at the apical sur-
face of luminal epithelial cells in normal breast tissues
(Supplementary Fig. S6A, B, left row, arrows). Similar to
NME1, NME2 cytoplasmic staining was strongly up-
regulated in DCIS as compared to adjacent normal cells
(Supplementary Fig. S6A, B, middle row and Fig. S6C, E),
while there was no difference considering the plasma
membrane association of NME2 (Supplementary Fig. S6G).
However, in sharp contrast to the drop in NME1 expression
in IBCs, NME2 remained elevated in IBCs similar to its
levels in DCIS (Supplementary Fig. S6A, B, right row and
Fig. S6D, F, H).

Anti-correlation of NME1 and MT1-MMP in breast
cancer cells

Given the up-regulation of MT1-MMP during the in situ-to-
invasive transition in relation with poor clinical outcome
[11], we compared NME1 and MT1-MMP levels in the
breast tumor cohort. We observed a striking anti-correlation
of cortical MT1-MMP and NME1 both in DCIS and IBC
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breast tumor counterparts (Fig. 2A, B and Supplementary
Fig. S7). NME1 and cortical MT1-MMP levels were scaled
(Supplementary Fig. S8) and analyzed by unsupervised

hierarchical clustering method, confirming the strong anti-
correlation between the two proteins both in DCIS and IBC
contingents (Fig. 2C–F). Anti-correlation was observed in

Fig. 1 Biphasic up- and down-modulation of NME1 expression
during breast cancer progression. A, B Representative NME1 IHC
staining in breast peritumoral tissues and synchronous in situ and
invasive components from two breast carcinoma biopsies. Arrowheads
point to submembranous staining. Scale bar, 25 μm. C, E, G Com-
parison of total (C), cytoplasmic (E) and plasma membrane (G) NME1

levels using the H-score method in the in situ breast carcinomas as
compared to adjacent breast peritumoral tissues. ***P < 0.001. D, F,
H Total (D), cytoplasmic (F), and plasma membrane (H) NME1 levels
were compared in synchronous in situ and invasive components of
breast tumor biopsies. ***P < 0.001. The median of each H-score
distribution is represented (red bar).
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Fig. 2 Anti-correlation of NME1 and MT1-MMP cell surface levels in
human breast tumors. A, B Representative immunostaining of NME1
and MT1-MMP on serial sections of synchronous in situ (A) and invasive
(B) components of human breast carcinoma (case #1). Scale bar, 25 μm.C,
D Unsupervised hierarchical clustering based on total NME1 and plasma
membrane MT1-MMP expression levels in the in situ (C) and invasive (D)
breast carcinoma samples. Data are shown in a table format with the
vertical axis listing the biopsies. A color scale, which represents the relative
staining patterns of each sample, is displayed at the top right corner. E, F
Left, box-plots of NME1 protein levels (H-score) depending on mem-
branous MT1-MMP H-score variable discretized as low and high

expression from in situ (E) and invasive components (F) of the cohort of
human breast tumors. Right, box-plots of membranous expression of MT1-
MMP (H-score) depending on NME1 H-score variable discretized as low
and high levels in in situ (E) and invasive components (F) of the human
breast tumor cohort. ***P < 0.001; **P < 0.01; *P< 0.05. G, H Box-plots
of NME1 (left) or membranous MT1-MMP levels (right) depending on the
reciprocal marker segregated as low and high expression from in situ (G)
or invasive components (H) of higher histological grade III (G3) breast
tumors. **P < 0.01. I Box-plots of NME1 (left) or membranous MT1-
MMP levels (right) depending on the reciprocal marker segregated as low
and high expression from invasive TNBC tumors. *P < 0.05.
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high histological grade III as compared to lower-grade tumors
(Fig. 2G, H) and in invasive TNBC tumors (Fig. 2I). All
together, our data uncovered a biphasic NME1 alteration in
breast cancer with a characteristic up-regulation in DCIS
lesions and a robust down-modulation at the onset of the
invasive switch and in invasive lesions. Down-regulation of
NME1 correlated with the up-regulation of the pro-invasive,
pro-metastatic surface MT1-MMP in IBCs.

Acceleration of the invasive switch by loss of NME1
in the intraductal xenograft model

Intra-nipple injection of human breast carcinoma
MCF10DCIS.com cells in the mammary glands of SCID
mice generate intraductal tumors that recapitulate the DCIS-
to-IBC transition [20, 23]. Using this model, we reported
that loss of MT1-MMP function impaired the invasive
switch [11]. The consequences of the CRISPR/Cas9-medi-
ated knockout of NME1 or NME2 were investigated using
the intraductal xenograft model (Fig. 3A and Supplemen-
tary Fig. S9). Immunoblotting analysis showed that the
knockout of NME1 did not affect NME2 levels and reci-
procally (Fig. 3A). In addition, immunohistochemistry
staining confirmed the loss of NME1 expression in tumor
xenografts generated from NME1 knockout cells (Fig. 3E,
lower panel KO NME1#A). At an early time-point after
intraductal injection (i.e., 4 weeks), the tumor foci generated
by control MCF10DCIS.com (NT) cells were all scored
in situ based on histological staining of whole-mount and
tissue-sections (Fig. 3B, D). Similarly, NME2 KO cells
gave rise mostly to in situ tumors, with a very small subset
of tumor foci (2–3%) having invasive features (Fig. 3B, D).
In contrast, intraductal injection of NME1 KO cells gener-
ated up-to 20–40% of invasive tumors (Fig. 3B, D). Some
size differences were also found with larger tumors obtained
upon injection of NME2 KO cells (Fig. 3C, D), which
correlated with higher percentage of PCNA-positive cells in
NME2-KO tumor xenografts as compared to NT or NME1-
KO tumors (Supplementary Fig. S10). Therefore, over-
growth of NME2-negative tumors was related to an increase
in the proliferation rate but not to the invasive status.

Strikingly, at later time-point (i.e. 7 weeks after injec-
tion), immunostaining revealed that invasive tumor xeno-
grafts obtained upon injection of control MCF10DCIS.com
cells expressed low NME1 levels, in contrast to in situ
tumors that were frankly positive (Fig. 3E). In addition,
NME1 knockout correlated with a strong membranous
MT1-MMP expression in carcinoma cells that increased in
IBC vs. DCIS tumors (Fig. 3F). Therefore, the invasive
switch in xenograft tumors recapitulated the main features
described in human breast tumors. Collectively, these data
indicated that the loss of NME1, but not of NME2, accel-
erated the invasive switch of breast tumors in the intraductal

xenograft assay, possibly in relation with increased plasma
membrane MT1-MMP levels. Thus, loss of NME1 in breast
carcinoma cells is a key emerging feature of the in situ-to-
invasive breast carcinoma transition.

NME1 controls the endocytic clearance and surface
levels of MT1-MMP

In order to explore the mechanism underlying the
enhancement of breast tumor invasion by NME1 down-
modulation, the cellular distribution of NME1 was exam-
ined. In agreement with the membranous NME1 staining in
IHC analyses (see above), NME1 was recovered in the
dynamin-2-positive membrane fraction also enriched for
MT1-MMP (Fig. 4A). Some association of NME1 with the
cytosolic fraction was also detected (Fig. 4A). Furthermore,
we found that NME1 as well as MT1-MMP, were enriched
in a clathrin-coated vesicle fraction positive for clathrin
heavy chain and in the α-adaptin subunit of the clathrin
adaptor complex, AP-2 (Fig. 4B).

Proximity ligation assay (PLA) confirmed a close proxi-
mity of NME1 with dynamin-2 and α-adaptin [8] (Fig. 4C).
In addition, we detected a close proximity between FLAG-
tagged MT1-MMP and NME1 and dynamin-2 (Fig. 4C).
Omission of any one of the primary antibodies abolished
PLA signal (Fig. 4C). Therefore, our data identified a close
proximity between NME1, α-adaptin, dynamin-2 and MT1-
MMP in the clathrin-mediated endocytic pathway in agree-
ment with previous findings implicating clathrin-mediated
endocytosis in the internalization of MT1-MMP [16, 17, 24].
Furthermore, NME1 and MT1-MMP could be co-immuno-
precipitated, and co-immunoprecipitation was abolished by
NME1 knockout demonstrating specificity (Fig. 4D, E).
Moreover, we found a direct interaction between recombinant
NME1 and the carboxy-terminal tail of MT1-MMP fused
with GST (Fig. 4F). In addition, NME1 and dynamin-2 were
co-immunoprecipitated under similar conditions (Fig. 4G, H).
All together, these data indicated that NME1 interacted with
MT1-MMP and dynamin-2 in clathrin-coated pits.

We previously identified NME1 as an enhancer of dynamin
GTPase-mediated endocytosis by providing GTP supply for
dynamin’s proper function in vesicle sission [8]. Therefore,
we investigated the impact of genetically modified NME1
levels on the rate of MT1-MMP internalization in human
breast cancer cell lines. Overexpression of NME1 in MDA-
MB-435 and MDA-MB-231 cells significantly increased
MT1-MMP endocytosis (Fig. 5A, B, G, H), whereas silencing
of NME1 in MCF10DCIS.com or MDA-MB-231 cells sig-
nificantly decreased MT1-MMP uptake (Fig. 5C, E, I, J).

Surface-exposed MT1-MMP results from a balance of
endocytic and exocytic events, and is responsible for peri-
cellular degradation of ECM components by carcinoma
cells [15, 18, 19]. Immunoblot analysis in breast cancer cell
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lines with genetically-modified NME1 or NME2 levels
revealed no gross alteration of total MT1-MMP levels
(Fig. 5A–F). Surface MT1-MMP levels were analyzed
using a validated flow cytometry assay (Supplementary Fig.
S11). Overexpression of NME1 in MDA-MB-435 or MDA-
MB-231 cells resulted in a strong reduction of surface MT1-
MMP levels (Fig. 5K, L). In reciprocal experiments, loss of

NME1 function in MCF10DCIS.com cells resulted in a ~2-
fold increase in MT1-MMP surface expression, while loss
of NME2 had no such effect (Fig. 5C, D, F, M, N). Col-
lectively, these data indicate that metastasis-suppressor
NME1, but not NME2, controls the endocytic clearance and
surface exposure of MT1-MMP in various breast cancer
cell lines.

Fig. 3 Loss of NME1 function
promotes the in situ-to-
invasive breast tumor
transition. A Lysates of
MCF10DCIS.com clones
knockout for NME1 or NME2, or
control non-KO cells (NT) were
analyzed by immunoblotting with
the indicated antibodies. Alpha-
tubulin was used as a loading
control. Molecular weights are in
kDa. B Phenotypic analysis of
intraductal xenograft tumors of
MCF10DCIS.com cell clones
ablated for NME1 or NME2
measured 4 weeks post-intraductal
injection (p.i.i.) based on whole-
mount staining of the mammary
glands. **P< 0.01; *P< 0.05; ns
not significant. C Tumor area of
intraductal xenograft individual
tumors of NT (wild type NME1
and NME2), KO NME1, or KO
NME2 MCF10DCIS.com cells
4 weeks p.i.i. after phenotypic
classification into in situ or
invasive status. D Whole-mount
carmine (upper row) and H&E
staining (lower row) of nipple-
injected glands 4 weeks after
injection of the indicated
MCF10DCIS.com cell
populations. Scale bars, 1mm
(whole-mount carmine), 50 μm
(H&E). E DAPI (blue) and NME1
(green) immunofluorescence
staining of sections of in situ
(upper row) or invasive (lower
row) intraductal tumor xenografts
of control NT MCF10DCIS.com
cells 4 weeks or 7 weeks after
intra-nipple injection, respectively.
Scale bar, 40 μm. F DAPI (blue)
and MT1-MMP (green)
immunofluorescence staining of
intraductal tumor xenografts of
MCF10DCIS.com cells knockout
for NME1 at the in situ (upper
row) or invasive (lower row) stage.
Scale bar, 20 μm.
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NME1 regulates MT1-MMP-dependent pericellular
collagenolysis and invasion

We assessed the contribution of NME1 to the capacity of
tumor cells to remodel and invade through matrix constructs
consisting either of Matrigel, with a composition similar to

the basement membrane, or type I collagen, the main
component of the interstitial tissue. While, control and
NME2-KO MCF10DCIS.com cells grew as compact
spheroids in Matrigel, spheroids of cells KO for NME1
formed invasive outgrowths (Fig. 6A). Induction of an
invasive program by loss of NME1 was similarly observed
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in cells embedded in the 3D type I collagen network, and
was abolished in the presence of GM6001, a general MMP
inhibitor, or upon silencing of MT1-MMP indicating that
the invasion program induced by NME1 loss-of-function
required MT1-MMP activity (Fig. 6B, C and Supplemen-
tary Fig. S12A).

Finally, we investigated the consequences of the mod-
ulation of NME1/NME2 levels on the ability of tumor cells
to proteolytically cleave the surrounding type I collagen
fibers. We used the Col1-3/4C mAb, which recognizes
MMP-cleaved type I collagen molecules [25, 26]. Silencing
of MT1-MMP in MCF10DCIS.com cells abolished peri-
cellular collagenolysis indicating that type I collagen
degradation strongly relied on MT1-MMP activity
(Fig. 6D, E). Knockdown of NME1 led to a 1.5-2-fold
increase in pericellular collagenolysis, in contrast to
NME2 silencing that did not affect collagenolysis
(Fig. 6D–F and Supplementary Fig. 12B). Moreover,
silencing of MT1-MMP abolished the induction of peri-
cellular collagenolysis upon NME1 loss of function
(Fig. 6F). Collectively, these data indicate that MT1-MMP
mediates both an increase in invasion and collagenolysis in
breast cancer cells with reduced NME1 activity.

The regulation of collagenolysis by NME1 could be
generalized by overexpression in MDA-MB-435 cells that

express barely detectable level of NME1 (Fig. 5A), result-
ing in a strong 80% reduction of collagenolysis (Fig. 6G,
H). Thus, we conclude that NME1, not NME2, is an
essential element of the pericellular matrix proteolysis and
invasion programs of breast tumor cells by controlling the
clearance and surface expression of MT1-MMP in breast
carcinoma cells (see Model in Fig. 6I).

Discussion

Down-modulation of NME1 NDPK expression is known to
correlate with metastatic dissemination and worse prognosis
in several cancer types, including breast cancers [27–29].
However, NME1’s implication in local invasion at the in
situ-to-invasive breast carcinoma transition has been over-
looked, and the mechanisms underlying metastasis sup-
pression by NME1 remained largely unknown.

Our IHC analysis of breast tumor specimens based on
highly discriminating antibodies revealed an up-regulation
of NME1 levels in carcinoma cells in DCIS tumors as
compared to surrounding non-malignant tissues, whereas
NME1 levels were significantly reduced in synchronous
invasive tumor foci and in microinvasive carcinoma buds
extending beyond the ruptured basement membrane. Thus,
we propose NME1 as a potential marker to predict in situ
tumors with high risk to progress into invasive breast car-
cinomatous lesions, which remains a critical issue in breast
cancer management [30]. Supporting our conclusion,
NME1 is also reduced or absent at the invasive front of
human hepatocellular carcinoma and colon cancers, as
compared to its strong expression in the tumor central area
[31]. Taken together, these data suggest that the reduction
of NME1 expression during the progression to invasive
disease is a generic feature of epithelial tumor progression.

We found a strong anti-correlation of NME1 and cortical
MT1-MMP expression in invasive breast carcinomatous
lesions. Anti-correlation of NME1/MT1-MMP levels was
confirmed in RNAseq data in invasive breast carcinoma
(TCGA, not shown). This anti-correlation was additionally
observed in carcinomas of various origin including colon,
endometrial, ovarian, prostate, and head and neck squamous
carcinoma tumors (TCGA, not shown), indicating that
negative control of MT1-MMP activity in matrix remodel-
ing is a generic trait of the metastasis-suppressive function
of NME1, which is lost upon repression of NME1 expres-
sion during cancer progression. In addition, based on the
intraductal xenograft model, [20], we have shown that
down-modulation of NME1 accelerated the invasive tran-
sition in breast carcinoma. Together with the potent inhibi-
tion of the invasive switch caused by the loss of MT1-MMP
in the intraductal model [11], these convergent findings
suggested that the loss of NME1 function in breast tumor

Fig. 4 NME1 interacts with MT1-MMP and dynamin-2 in
clathrin-coated vesicles. A After homogenization, a post-nuclear
supernatant (PNS) of MCF10DCIS.com cells was ultracentrifuged to
produce soluble (Supernatant) and membrane (Pellet) fractions. Pro-
teins corresponding to equivalent cell-number were loaded in each lane
and analyzed by immunoblotting with the indicated antibodies. The
transferrin receptor (TfR) was recovered in the membrane pellet
fraction, while cytosolic RhoGDIα was enriched in the supernatant.
Dyn-2, dynamin-2. B PNS and clathrin-coated vesicle (CCV) fractions
(10 μg) isolated from porcine brain were analyzed by immunoblotting
with the indicated antibodies. Data are representative of two inde-
pendent fractionation experiments. CHC, clathrin heavy chain, α-adap,
α-adaptin, Dyn-1, dynamin-1. C Proximity-Ligation Assay (PLA) in
MCF10DCIS.com cells using the indicated antibody combinations.
Lower row, background PLA signal in the presence of single primary
antibody. Scale bar, 5 μm. D Lysates of MCF10DCIS.com cells or
cells knocked out for NME1 (clones #A and #B) were immunopre-
cipitated with NME1 antibodies or control IgGs followed by immu-
noblotting analysis with MT1-MMP antibodies. 1% of total lysate was
loaded as a control (input). E In reciprocal experiments, lysates were
immunoprecipitated with MT1-MMP antibodies followed by immu-
noblotting analysis with NME1 antibodies. 1% of total lysate was
loaded as a control (input). F Direct interaction between purified
recombinant NME1 (NME1r) and the carboxy-terminal tail of MT1-
MMP fused with GST (GST-MT1-MMP-Cter). GST is used as a
control. Proteins were analyzed by immunoblotting with NME1 or
GST antibodies as indicated. [NME1]1, monomer; [NME1]2,
denaturation-resistant dimer. Lane 1 is a longer exposure of the NME1
immunoblot. G, H MCF10DCIS.com cell lysates were immunopre-
cipitated with NME1 (G) or dynamin-2 (H) antibodies and bound
proteins were analyzed by immunoblotting with dynamin-2 or MT1-
MMP antibodies as indicated. 1% of total lysate was loaded as a
control (input).
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Fig. 5 Modulation of NME1 levels impacts the endocytosis rate and
surface levels of MT1-MMP in breast cancer cells. A, B Lysates of
MDA-MB-435 and MDA-MB-231 cells overexpressing NME1 (NME1
OE) were analyzed by immunoblotting with the indicated antibodies. C, D,
E MCF10DCIS.com or MDA-MB-231 cells were silenced for NME1 or
NME2 by siRNA treatment and lysates were analyzed by immunoblotting
with the indicated antibodies. F Lysates of MCF10DCIS.com cells
knockout for NME1 or NME2, or control non-KO cells were analyzed by
immunoblotting with the indicated antibodies. G, H, I, J NME1 levels
were modulated by overexpression (G, H) or silencing (I, J) in the indi-
cated breast cancer cell lines, and MT1-MMP endocytosis rate was

measured using a cell-surface biotinylation assay after 60min incubation at
37 °C. Three independent experiments were performed. Error bars are the
standard error of the mean (SEM). ***P< 0.001; *P< 0.05. For (G),
although not statistically significant, overexpression of NME1 in MDA-
MB-435 cells clearly tended to increase MT1-MMP endocytosis (6.7-, 2.1-,
and 1.2-fold increase for each of the three independent experiments). K, L,
M, N NME1 levels were modulated in different breast cancer cell lines as
indicated, and surface MT1-MMP levels were analyzed by FACS. Four
independent experiments were performed for (K, L,M). Three independent
experiments were performed for (N). Error bars are the standard error of the
mean (SEM). ***P< 0.001; **P < 0.01; *P < 0.05; ns not significant.
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epithelial cells could unleash MT1-MMP proinvasive activ-
ity. Complex regulatory networks based on transcriptional
regulators including p63 and AIB1/YAP have been identified
as drivers of malignant progression, invasion and prolifera-
tion during breast cancer progression [2, 11, 32, 33].
Whether these different regulatory circuits play a role in the
biphasic NME1 expression profile and MT1-MMP up-

regulation during breast cancer progression will be interest-
ing to examine in future studies.

In order to work efficiently, dynamin, which has a low
affinity for GTP and a high intrinsic GTPase activity, needs
to be permanently reloaded with GTP, which is provided by
NME1 and NME2 NDPKs [8]. In addition, NME1 has been
proposed to facilitate the oligomerization and GTPase
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activity of dynamin [34]. Both GTP channeling and sti-
mulation of dynamin oligomerization by NME1/2 con-
tribute to the stimulation of dynamin function in vesicle
scission. Endocytosis is a major mean by which cells reg-
ulate MT1-MMP cell surface levels, which directly impinge
on pericellular ECM degradation [15, 18]. We show here
that NME1 interacts directly with the cytosolic domain of
trans-membrane MT1-MMP and with ubiquitously-
expressed dynamin-2 in clathrin-coated pits, and that the
reduction of NME1 function impairs both MT1-MMP
endocytosis in relation with an increase in surface exposure,
and consequent enhancement of the degradation of the
pericellular ECM mediated by MT1-MMP (see Model in
Fig. 6I). These data are in agreement with a marked defect
in internalization and strong enhancement of collagenolysis
reported for a tail-deleted MT1-MMP construct [24].
Noteacibly, we and others reported that, besides its role in
endocytosis at the plasma membrane, dynamin-2 also
localizes to (MT1-MMP-positive) endolysosomal compart-
ments where it is required for the recycling of MT1-MMP
and co-trafficking cargoes, such as flotillins, from endoly-
sosomes back to the surface [35–38]. Inhibition or silencing
of dynamin-2 was shown to impair invadopodia activity and
matrix degradation [36], opposite of what is seen upon
NME1 inhibition. Furthermore, dynamin-2 has been shown
to act as a positive regulatory factor of matrix degradation

and metastasis, in relation with its role in actin cytoskeleton
organization and actin dynamics at invadopodia and in
podosomes [39–42]. Therefore, the regulation of ECM
degradation by dynamin-2 is complex and not limited to
dynamin-2’s role in MT1-MMP surface clearance through
clathrin-mediated endocytosis.

A further layer of complexity is that the modulation of
MT1-MMP surface levels, in relation with changes in
NME1 expression such as the one we found in breast
cancers, may affect other MMPs’ function and membrane
proteins that are known to be shedded by MT1-MMP, such
as integrins or CD44, also with consequence for invasion
and metastasis [15]. In preliminary analyses, we found that
similar to NME1, NME2 can be detected in membrane and
cytosolic fractions prepared from MCF10DCIS.com cells,
and is enriched in a clathrin-coated vesicle fraction (Sup-
plementary Fig. S13A, B). This distribution is expected
given that NME2 interacts and forms catalytically active
hetero-hexamers with NME1 [4, 8]. In addition, NME2
could be co-immunoprecipitated with MT1-MMP (Supple-
mentary Fig. S13C). At this stage, information regarding the
relative expression of NME1 and NME2 and stoichiometry
of NME1/NME2 hetero-hexamers in different breast cancer
cells is missing. In addition, we do not know whether co-
immunoprecipitation of NME2 with MT1-MMP relies on a
direct interaction between these two proteins or is mediated
by another protein that could be NME1. Yet, our data
clearly support the conclusion that NME2 knockout, that
does not affect NME1 expression levels (Fig. 3A), does not
impair the invasive and collagenolysis capacity of
MCF10DCIS.com cells, in sharp contrast with NME1 loss
of function (Fig. 6A–E).

Here, we report a role for NME1 on the acquisition of
invasive traits in breast epithelial cancer cells. As the loss of
NME1 may be a prerequisite for the induction of invasive
features in patients with DCIS, we anticipate that its clinical
management may prevent or delay the invasive switch of
breast cancers. In this regard, NME1 expression in breast
cancer as well as other carcinomas might be used as a
prognostic factor for monitoring progression to invasive
states. Finally, while therapeutic efforts aimed at targeting a
proteolytic enzyme that undergoes continuous recycling at
the cell surface might prove problematic, therapies directed
at increasing NME1 expression might prove effective at
preventing or interfering with the tissue-invasive behavior
of aggressive breast cancers.
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