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Abstract. Facilitated by the recent advances of Machine Learning (ML),
the automated design of optimization heuristics is currently shaking up
evolutionary computation (EC). Where the design of hand-picked guide-
lines for choosing a most suitable heuristic has long dominated research
activities in the field, automatically trained heuristics are now seen to
outperform human-derived choices even for well-researched optimization
tasks. ML-based EC is therefore not any more a futuristic vision, but
has become an integral part of our community.
A key criticism that ML-based heuristics are often faced with is their po-
tential lack of explainability, which may hinder future developments. This
applies in particular to supervised learning techniques which extrapolate
algorithms’ performance based on exploratory landscape analysis (ELA).
In such applications, it is not uncommon to use dozens of problem fea-
tures to build the models underlying the specific algorithm selection or
configuration task. Our goal in this work is to analyze whether this many
features are indeed needed. Using the classification of the BBOB test
functions as testbed, we show that a surprisingly small number of fea-
tures – often less than four – can suffice to achieve a 98% accuracy. Inter-
estingly, the number of features required to meet this threshold is found
to decrease with the problem dimension. We show that the classification
accuracy transfers to settings in which several instances are involved in
training and testing. In the leave-one-instance-out setting, however, clas-
sification accuracy drops significantly, and the transformation-invariance
of the features becomes a decisive success factor.

Keywords: Exploratory Landscape Analysis · Feature Selection · Black-
Box Optimization.

1 Introduction

Evolutionary algorithms and other iterative optimization heuristics (IOHs) are
classically introduced as frameworks within which a user can gather some mod-
ules to instantiate an algorithm. For instance, the design of an evolutionary
algorithm requires to choose the population size, the variation and selection op-
erators in use, the encoding structure, fitness function penalization weights, etc.
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This highly flexible design of IOHs allows for efficient abstractions but comes at
the burden of having to solve an additional (meta-)optimization problem. Auto-
mated design of heuristics aims at solving this problem by providing data-driven
recommendations which IOH shall be employed for a given optimization problem
and how it shall be configured. Automated IOH design has proven its promise
in numerous applications, see [7,9,20,3,12] for examples and further references.

A common critique of machine-trained automated algorithm design is its
potential lack of explainability. That is, the general fear is that by relying on
automated design approaches, we may be loosing intuition for why certain rec-
ommendation are made – a key driver for the development of new optimization
approaches. This fear is not without any reason: the vast majority of automated
algorithm design studies fall short in this explainability aspect.

Our Contribution. Our work aims at providing paths to narrowing this
important gap, by studying which information the trained models actually need
to achieve convincing performance. As testbed we chose the automated classifi-
cation of optimization problems through exploratory landscape analysis (ELA).
We show that very small feature sets can suffice to reliably discriminate between
various optimization problems and that these sets are robust with respect to the
classifiers and function instances.

Apart from the explainability aspect, our findings have important conse-
quences also for the efficiency of automated algorithm design: smaller feature
sets are faster to compute and they can drastically reduce the time spent in the
training phase. Another advantage of feature selection is that the classification
or regression accuracy can increase.

Background and Motivation. ELA was introduced in [17] with the objec-
tive to gain insights about the properties of an unknown optimization problem.
Instead of relying on expert knowledge, the keystone of ELA are computer-
generated features that are based on sampling the decision space. With the pur-
pose of enhancing the effectiveness of this approach, several additional features
have been introduced since. A good selection of these features are automatically
computed by the R package flacco [14], see Sec. 2 for more details.

We chose classification as task, because it offers a very clean setting in which
the results are easily interpretable. Classification has a straightforward perfor-
mance measure, the classification accuracy, i.e., the fraction of items that are
classified correctly. Additionally, the classification accuracy is a good way of esti-
mating the expressiveness of ELA feature sets, i.e., their ability to discriminate
between different problems [26]. A proper classification furthermore plays an
important role also in many other ML tasks, including the selection and config-
uration of algorithms, so that a good classification accuracy can be expected to
provide good results also for these tasks.

Related Work. Given the mentioned speed-up and the better performance
that one can expect from smaller feature sets, feature selection is not new, but
rather standard in automated algorithm design. However, most related works
still use a relatively large number of features, hindering explainability of the
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trained models. Among the ELA-based applications in EC, the following ones
have used the smallest feature portfolios.

Muñoz and Smith-Miles [19] compute the co-linearity between landscape fea-
tures with the idea that if two features are strongly co-linear, they carry the same
type of information about the landscape. Applying this procedure, nine features
were kept for further analysis: the adjusted coefficient of determination of a
linear regression model including interactions [17], the adjusted coefficient of de-
termination of a quadratic regression model [17], the ratio between the minimum
and maximum absolute values of the quadratic term coefficients in the quadratic
model, the significance of D-th and first order [29], the skewness, kurtosis and
entropy of the fitness function distribution [17], and the maximum information
content [22].

Another method to perform feature selection is the use of search algorithms.
In their work, Kerschke and Trautmann [12] compare four different algorithms,
a greedy forward-backward selection, a greedy backward-forward selection, a
(10 + 5)-GA and a (10 + 50)-GA. The smallest feature sets considered in their
algorithm selection setting have a size of eight features: three features from the
y-distribution feature set [17] (skewness, kurtosis, and number of peaks), one
level set feature [17] (the ratio of mean misclassification errors when using a
linear (LDA) and mixed discriminant analysis (MDA)), two information content
features [22] (the maximum information content and the settling sensitivity),
one cell mapping feature [13] (the standard deviation of the distances between
each cell’s center and worst observation), and one of the basic features (the best
fitness value within the sample). This result is still considerably larger than the
sets we will identify as promising in our work.

Saini et al. [28] and Lacroix and McCall [15] also use reduced feature sets,
but do not expand on how these have been derived.

Availability of Our Data. All our project data is available at [27].

2 Problem Classification via Majority Judgment

Our primary objective is to analyze the number of features that are needed
to correctly classify the 24 BBOB functions from the COCO benchmark envi-
ronment and their robustness across several dimensions and sample sizes. We
describe in this section the benchmark set, the experimental procedure, and the
classification scheme.

The 24 BBOB Benchmark Problems. A standard benchmark en-
vironment for numerical black-box optimization is the COCO (COmparing
Continuous Optimizers) platform [6]. From this environment, we consider the
BBOB suite, a set of 24 noiseless problems. For each BBOB problem, several in-
stances are available, which are obtained from a “base” function via translation,
rotation and/or scaling transformations [6]. Each problem instances is a real-
valued function f : [−5, 5]d → R. Problems scale for arbitrary dimensions d. In
our experiments, we consider six different dimensions, d ∈ {5, 10, 15, 20, 25, 30},
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and we focus on the first five instances of each problem (first instance in Sec. 3.
In abuse of notation, we shall often identify the functions by their ID 1, . . . , 24.

Computation of Feature Values via flacco. For the feature value
approximation, we sample for each of the 24 functions f a number n
of points x(1), . . . , x(n) ∈ [−5, 5]d, and we evaluate their function values
f(x(1)), . . . , f(x(n)). The set of pairs {(x(i), f(x(i))) | i = 1, ..., n} is then fed
to the flacco package [14], which returns a vector of features. The flacco pack-
age covers a total number of 343 features [9], which are grouped into 17 fea-
ture sets. However, some of these features are often omitted in practice because
they require adaptive sampling [2,12,18,24], while other features have previously
been dismissed as non-informative for the BBOB functions [13,26]. After remov-
ing these sets from our test bed, we are left with six feature sets: dispersion
(disp [16]), information content (ic [22]), nearest better clustering (nbc [10]),
meta model (ela meta [17]), y-distribution (ela distr [17]), and principal compo-
nent analysis (pca [14]). But even if this selection reduces the number of features
to 46, a full enumeration of all subsets for all sizes c ≤ 46 would still be com-
putationally infeasible (since we need to train and test a classification model for
each such set). We therefore need to reduce the set of eligible features further. To
this end, we build on the work presented in [26], in which we studied the expres-
siveness of these 46 features. Based on this work we select four features. We add
to this selection another six features, one per each of the feature set mentioned
above (to ensure a broad diversity of features) and again giving preference to the
most expressive ones and to features invariant to BBOB transformations [30].
This leaves us with the following ten features. We indicate in this list by Xand -
whether or not a feature is considered invariant under transformation according
to [30] (first entry) and according to our data (second entry), respectively. Note
here that the setting used in [30] is slightly different from the instances used
in BBOB, mostly due to different ways to handle boundary constraints. The
assessment can therefore differ.

1. disp.ratio mean 02 [X,X] (disp) computes the ratio of the pairwise dis-
tances of the points having the best 2% fitness values with the pairwise
distances of all points in the design.

2. ela distr.skewness [X,X] (skew) computes the skewness coefficient of the
distribution of the fitness values. This coefficient is a measure of the asym-
metry of a distribution around its mean.

3. ela meta.lin simple.adj r2 [X,X] (lr2), which computes the adjusted
correlation coefficient R2 of a linear model fitted to the data.

4. ela meta.lin simple.intercept [X,-] (int), the intercept coefficient of the
linear model.

5. ela meta.lin simple.coef.max [-,-] (max), the largest coefficient of the
linear model that is not the intercept coefficient.

6. ela meta.quad simple.adj r2 [X,X] (qr2), the adjusted correlation coef-
ficient R2 of a quadratic model fitted to the data.

7. ic.eps.ratio [-,X] (εratio), the half partial information sensitivity.
8. ic.eps.s [-,X] (εs), the settling sensitivity.
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9. nbc.nb fitness.cor [X,X] (nbc), the correlation between the fitness values
of the search points and their indegree in the nearest-better point graph.

10. pca.expl var PC1.cov init [X,X] (pca), which measures the importance
of the first principal component of a Principal Component Analysis (PCA)
over the sample points in the whole search space.

Normalization of Feature Values. The value of each feature is normalized
between 0 and 1 where 0 (resp. 1) correspond to the smallest (resp. largest) value
encountered in the approximated feature values. This normalization is performed
independently for each dimension, each sample size, and each classifier used in
this paper.

Sampling Strategy. Based on an extension of the preliminary experi-
ments reported in [25] we use a quasi-random distribution to sample the points
x(1), . . . , x(n) from which the feature values are computed. More precisely, we
use Sobol’ sequences [32], which we obtain from the Python package sobol seq
(version 0.1.2), with randomly chosen initial seeds.

We sample a total number of 100 independent Sobol’ designs, which leaves us
with 100 feature value vectors per each function. Fig. 1 provides an impression
of the distribution of these feature values. Plotted are here approximated values
for the lr2 feature. The comparison shows that the dispersion slightly decreases
with the dimension, which is quite surprising in light of the lower density of the
points in higher dimensions. We also see that the median values are not stable
across dimensions. Some functions (F5 of course, which is correctly identified as
a linear function, but also F16, F19, and F20, for example) show a high con-
centration of feature value approximations, whereas other functions show much
larger dispersion within one dimension (e.g., F12, F15, F17, F18) or between
different dimensions (F2, F11, F24).

Sample Size. To study the effect of the sample size on the number of features
needed to correctly classify the 24 BBOB functions, we conduct experiments for
seven different values of n, namely n ∈ {30d, 50d, 100d, 250d, 650d, 800d, 1000d}.
We note here that a linear scaling of the sample size is the by far most common
choice, see, for example, [3,11,12].

Feature Selection. We apply a wrapper method, i.e., we actually train a
classifier for every considered subset of features. For a given sample size and
a given dimension, we train and test all

(
10
c

)
possible subsets of size c starting

with c = 1. If none of these size-c subsets achieves our target accuracy, we
move on to the size c + 1 subsets. As soon as a sufficiently qualified subset has
been identified, we continue to evaluate all size-c subsets, but stop the selection
process thereafter. This full enumeration of all possible feature combinations for
a given size c allows us to investigate the robustness of the feature selection.
Ideally, we would like to see that the feature sets achieving our 98% accuracy
threshold (this will be introduced below) are stable across the different sample
sizes. Robustness with respect to the dimension is much less of a concern to us,
since the problem dimension is typically known and can be used for the choosing
the feature ensemble that shall be applied to characterize the problem.
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Fig. 1: Distribution of the feature values for the lr2 feature for different dimen-
sions. Each feature value is computed from 250 × d samples and each boxplot
represents results of 100 independent feature computations.

Validation Procedure and Target Classification Accuracy. In our
experiments, we use 80 randomly chosen feature vectors (per function) to train
a classification model, and we use the remaining 24 × 20 = 480 feature vectors
for testing. For each of these 480 test cases we store the true function ID (i.e.,
the ID of the function that the feature value originates from) and we store the
ID of the function that the classifier matches the feature vector to. From this
data we compute the overall classification accuracy.

We repeat this procedure of splitting the set of all feature vectors into 80
training and 20 test instances 20 times; i.e., we repeat 20 times a random
sub-sampling validation. We require that the overall classification accuracy
for each of the 20 validations is at least 98%. That is, a feature set is eligible if,
in each of the 20 random sub-sampling validation runs, it misclassifies at most 10
out of the 480 tested feature vectors. Feature combinations achieving a smaller
classification accuracy in one of the validation runs are immediately discarded.

Classification Model. In the main part of this work, we use a Majority
Judgment classifier [1]. A cross-validation with decision trees and KNN classifiers
will be presented in Sec. 4.

The Majority Judgment classifier works as follows. Let Φ = {ϕ1, . . . , ϕk}
be the set of features for which we want to know whether it achieves our 98%
target precision requirement. We consider one of the independent subsampling
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Function ID (index j)
1 2 . . . 24

Feature ϕ1 0 0.7 . . . 0.7
Feature ϕ2 0.2 0.6 . . . 0.5
Feature ϕ3 0.6 0.8 . . . 0.2

Median distance Dj 0.2 0.7 . . . 0.5

Table 1: Example for the Majority Judgment classification scheme with three
features. The values in the table are the distances of the measured feature value
ζi to the median feature values M(i, j) of the training set. The median values are
reported in the last line. The ID of the function minimizing this median distance
Dj is the output of the Majority Judgment classifier.

validation runs. That is, for each function we randomly select 80 out of the 100
feature vectors. Denote by ϕi,j,r the r-th estimated value for feature ϕi for the j-
th BBOB function, the set {(ϕi,j,r, j) | i = 1, . . . , k, j = 1, . . . , 24, r = 1, . . . , 80}
describes the full set of training data. From this data we compute for each of
the 24 functions j = 1, . . . , 24 and for each feature ϕi ∈ Φ the median value

M(i, j) := M ({ϕi,j,r | r = 1, . . . , 80}) .

This gives us a set of 24k values M(i, j) and concludes the training step.
In the testing step we apply an approval voting mechanism [4] to each of

the 480 test instances. Approval voting mechanisms are single-winner systems
where the winner is the most-approved candidate among the voters. From this
class of approval voting mechanism we choose Majority Judgment [1] —a voting
techniques which ensures that the winner between three or more candidates has
received an absolute majority of the scores given by the voters.

To apply Majority Judgment to our classification task, we do the following.
We recall that the task of the classifier is to output, for a given feature vector
ζ = (ζi)

k
i=1, the ID of the function that it believes this feature vector to belong to.

To this end, it first computes for each of the k features i and for all 24 functions
j the absolute distances di,j := |ζi −M(i, j)|. Tab. 1 presents an example for
what the distances may look like. We then compute for each function the median
of these distances, by setting Dj(ζ) := M ({di,j | i = 1, . . . , k}) . The cells with
these median values are highlighted with a blue background in Tab. 1, and the
values Dj(ζ) are reported in the last line. The classifier outputs as predicted
function ID the value j for which the distance Dj(ζ) is minimized. This cell is
highlighted in yellow background color.

Computation Time. To give an impression of the computational resources
required for our experiments, we report that the computation of the 100 5-
dimensional feature vectors requires around 6 CPU hours, whereas the computa-
tion of the 25-dimensional feature vectors takes about 1221 CPU hours. Training
and testing the classifier takes between 1 second and 3 hours, depending on the
setting. In total, we have invested around 432 CPU days for computing the data
presented in this work.
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Sample Size
dimension 30d 50d 100d 250d 650d 800d 1000d

5 - - - 4 4 - 2
10 - - - 4 1 2 1
15 - - 6 4 2 2 2
20 - - 6 2 1 1 2
25 1 1 1 1 1 1 1
30 - 6 2 1 1 2 2

Table 2: Feature combination size achieving 98% classification accuracy in all 20
runs.

3 Feature Sets Achieving 98% Classification Accuracy

The portfolios of features for which we obtained the desired 98% classification
accuracy for each of the 20 random sub-sampling validation runs are presented
in Tab. 3. For convenience, their sizes are summarized in Tab. 2.

Our first, and most important, finding is that we can actually classify the
BBOB functions with very few features. However, we also see that the existence
of such portfolios requires a sufficient sample size. For d ∈ {5, 10, 15, 20}, none of
the 210 possible portfolios based on size-30d and size-50d feature approximations
could achieve the 98% accuracy threshold.

We also see that, as expected, the size of the minimal portfolio achieving the
target precision decreases with increasing sampling size. A few exceptions to this
rule exist:

– No combination in d = 5 with n = 800 samples achieved the target precision.
– In d = 10 we see that a single feature, the intercept feature int, suffices

to classify with 98% accuracy when the sampling size is 650d and 1000d.
For 800d, however, this feature does not achieve the threshold. A detailed
analysis of the classification accuracy achieved with this feature will be given
in Fig. 2.

– In d = 15, the εratio information content feature classifies properly when the
sample size equals n = 800d, but for n = 1000d, one additional feature is
needed to pass the 98% accuracy threshold.

– In d = 20 a single feature suffices for n = 650d and n = 800d, but for
n = 1, 000d an additional feature is needed to achieve the target accuracy.

Overall, we see that for ten settings a single feature suffices for proper classifi-
cation. An additional seven cases can be solved by a combination of two features.
It seems counter-intuitive that in almost all cases the size of the smallest admissi-
ble portfolio decreases with increasing dimension. However, as already discussed
in the context of Fig. 1, the dispersion of some feature values decreases with
increasing dimension – an effect that is interesting in its own right. Without
going into much detail here, we note that this effect is further intensified when
using a properly scaled sampling size that maintains the same sampling density
across dimensions.
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Feature

d n int lr2 qr2 max εs εratio disp skew pca nbc

5

30d
50d

100d
250d X X X X
650d X X X X
800d

1000d X X

10

30d
50d

100d
250d XO XO XO O X
650d X
800d X X

1000d X

15

30d
50d

100d X X X X X X
250d X X X X
650d X H O XH O
800d X X

1000d XO X O

20

30d
50d

100d X X X X X X
250d X X
650d X
800d X

1000d X XO O

25

30d X
50d X

100d X
250d X
650d X O
800d X

1000d X M

30

30d
50d X X X X X X

100d X XO O
250d X
650d X
800d O X XO M

1000d O X H XOHV M V

Table 3: Feature combinations achieving the 98% classification accuracy thresh-
old in all 20 runs. Features with the same symbol (X,O,H,V) belong to the same
combination. Results are grouped by dimension d and by the sample size n used
to approximate the feature values. Blank rows are for (d,n) settings for which
all 210 feature sets failed. M = missing data (due to coronavirus measures in
France, we have lost access to cluster and data.)
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Fig. 2: Distributions of intercept feature accuracy by dimension and sample size

Robustness of the feature combinations with respect to dimension
and sample size. Looking at the robustness of the selected combinations over
the dimensions and the sample sizes, we observe the following.

One feature, the intercept feature int, is involved in 15 out of the 28 (d, n)
pairs for which a successful feature portfolio could be found. This feature, in con-
trast, is rarely present in other combinations of size |c| > 1. To shed more light
on its expressive power, we present in Fig. 2 the distributions of the classifica-
tion accuracy for the various (d, n) combinations. Aggregated over all dimensions
and all sample sizes, the median accuracy of the int feature is 96%. Even if the
feature does not always reach our threshold of 98%, it is worth noting that its
performances is almost always above 90%. Therefore, this feature is very expres-
sive, and this across all tested dimension and sample sizes. Another interesting
observation from Fig. 2 is that the classification accuracy is not monotonic in
the dimension. In all but one case (n = 30d), the d = 15 results are worse than
those for the other dimensions. As already seen in Tab. 3, for n = 250 × d we
always have very good classification accuracy.

The most frequent feature is εratio, which is present in almost all combina-
tions of size |c| ≥ 2. We count 21 successful combinations of size |c| ≥ 2 and
εratio appears in 20 of these combinations regardless of the dimension and the
sample size. In total, it appears in successful portfolios for 17 out of the 28 (d, n)
combinations for which a successful subset had been found. The εratio feature is
very useful for our classification task.

The skewness feature skew, in contrast, does not appear in any of the port-
folios of the smallest size.

Classification Accuracy When Using All flacco Features. We com-
pare the results presented above with the classification accuracy achieved
by the Majority Judgment voting scheme using the whole set of 46 fea-
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tures described in Sec. 2. We perform the same sub-sampling validation as
above. Interestingly, none of tests performed on the pairs (d,n) with n ∈
{30d, 50d, 100d, 250d, 650d, 1000d} and d ∈ {5, 10, 15, 20, 25, 30} met our re-
quired target precision of 98% for each of the 20 runs. We can thus conclude that,
in addition to the gain in explainability, the selection of features for supervised-
ELA approaches provide better performances, and – as we shall discuss below –
also come at a much smaller computational cost.

4 Robustness with Respect to the Classifier

Having identified feature portfolios that reliably classify the BBOB functions
with at least 98% accuracy when using Majority Judgment (MJ), we now inves-
tigate how robust this accuracy is with respect to the choice of the classifier. To
this end, we apply the same classification routine as above, but now using de-
cision trees (DT) and K Nearest Neighbors (KNN) as for classification. We use
off-the-shelf implementations from the scikit learn Python package [23, we use
version 0.21.3]. Our goal being in investigating robustness, we do not perform
any hyper-parameter tuning for these two classifiers. For the KNN classifier we
use K = 5. For all classifications with a reduced portfolio of features, if multiple
combinations are available, only the one marked with X in Tab. 3 will be used.

Both KNN and decision trees perform as well as our classifier when trained
and tested with the small portfolios from Tab. 3, i.e., they both reach at least
98% classification accuracy in every run except for the decision trees trained
with only one feature, for which the accuracy drops to around 62% in every
run. Fig. 3 summarizes the classification accuracy of the three classifiers for the
case that features are based on n = 250d samples, for the portfolios described
in Tab. 3. Performance is indeed very robust with respect to the classification
mechanism.

Running Time. While training and testing were made in around 4 seconds
for the DT and for the MJ voting scheme, the KNN classifier needed around 12
seconds to complete the 20 sub-sampling validation runs.

Gain over Full Feature Set. We now study how much we gain in terms
of computation time when we compute, train, and test the three classifiers (MJ,
DT, and KNN) on the selected feature sets only.

To quantify this gain, we train all three classifiers with the full set of 46
features mentioned in Sec. 2. We first observe that the decision tree classifier
has the best performances among the three classifiers in terms of accuracy. It
achieves at least 99% classification accuracy. For KNN, in contrast, performances
drops below our 98% threshold precision on several runs, resulting in a median
classification accuracy (over all tests) of around 97%. The results for KNN align,
as already briefly touched upon in Sec. 3, with those obtained using MJ, where
none of the tests produced 20 runs in which the threshold was reached.

In terms of computation time, we observe significant differences between the
small feature portfolios and the full flacco set. As already commented in Sec. 2,
the computation of the feature values can be very time-consuming. Reducing the
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Fig. 3: Classification accuracy for the feature portfolios from Tab. 3 for budget
250d. Results are sorted by dimension and classifier and are for 20 random sub-
sampling validation runs. Training and testing is done on the first instance of
each function only. The X corresponds to settings that did not achieve the 98%
threshold.

number of features therefore reduces the running time of the feature extraction.
However, the savings are even bigger when comparing the cost of training (and
testing) the classifiers. For decision trees, the execution of the whole classifica-
tion pipeline takes 3000 times longer than with the small portfolios – around
3 CPU hours instead of a few seconds. For KNN, the total cost is comparable,
also around 3 CPU hours for training and testing the classifiers for the 20 sub-
sampling validation runs. For the MJ classifier, the overall running time is only
around 35 CPU minutes – which is still way above the time needed for the small
portfolios.

Thus, overall, the reduced portfolios resulted not only in much faster com-
putation times, but achieved also better classification accuracy.

5 Robustness with Respect to the Problem Instances

The discussion above focused on classifying the first instance of the BBOB func-
tions, and we now investigate how robust the selection is with respect to different
instances of the same problems. Concretely, we investigate classification accuracy
when performing the same random sub-sampling validation routine as above to
the set of features computed for the first five instances of the BBOB functions.
In this experiment, we keep 80% of feature values for each instance for training
the classifier, and we test on the remaining ones. In a second step we then test
transferability, by performing a leave-one-instance-out (LOIO) cross-validation.
In this setting, the classifiers are trained on four instances of each function and
tested on the remaining one. We use the portfolios marked by an X in Tab. 3, and
compare to classification accuracy when using all ten features. In the following,
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Fig. 4: Classification accuracy of DT and KNN classifiers when applied to the
first five instances of the 24 BBOB functions. Feature values are computed from
250d samples, for the portfolios marked by an X in Tab. 3. Cases with poor
performance are marked by a red X.

MJ voting is excluded as, by design, it is not suited to work with multiple dis-
tributions coming from different instances. Hence, only DT and KNN classifiers
will be used in this section.

Fig. 4 aggregates the results obtained for the first classification task, where we
take feature values from each or the first five instances. As in Fig. 3, DT performs
badly in d = 25 and d = 30, where classification is only based on the intercept
feature. For these cases, the median accuracy is 45% and 62%, respectively.
Since the intercept feature is not invariant to fitness function transformations,
the worsened performance is no surprise. In contrast, the median classification
accuracy is above 98% for all portfolios with at least two features. We also note
that KNN in dimension d = 25 does not reach our 98% threshold, but still
achieves good performances with an average 97% accuracy.

Fig. 5 presents the classification accuracy achieved by KNN and DT in the
LOIO setting. Fig. 5a is for features lr2, qr2, εratio, and nbc computed from 650d
samples in d = 5 and the Fig. 5b is for the two features qr2 and εratio computed
from 250d samples in d = 20. For comparison, we also plot the classification
accuracy achieved when using all ten features listed in Sec. 2. For most settings,
the accuracy obtained with the set of ten features is better than that achieved for
the smaller portfolios. For the 650d setting, this is the case for all instances. For
the 250d setting, DT performs better with the smaller portfolio when instance
1 or instance 3 is left out. The performance loss when using the reduced feature
set is particularly drastic for KNN when instance 1 is left out (both cases), when
instance 2 is left out (650d case), and when instance 4 is left out (250d case).
Interestingly, for DT in the 650d setting, the largest performance losses occur
when leaving instance 2 or 5 out. The average loss in classification accuracy is
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Fig. 5: Classification accuracy of KNN and DT in the leave-one-instance-out
setting. The subscripts 2, 4, and 10 refer to the size of the feature portfolio.

5% and 4% for KNN in the 650d and the 250d case, respectively. For DT, the
average loss in the 650d case is 10% and the average gain in the 250d case is 2%.

We conclude that the feature selection is robust when studying different
instances, except for those portfolios which consist only of a single feature. For
the (arguably more interesting) LOIO setting, however, classification accuracy
drops, but non-homogeneously for the different instances. We recommend using
the larger feature portfolio in this case.

6 Conclusions

Our ambition to build small feature sets is driven by the desire to obtain models
that are (at least to some degree) human-interpretable. While our study certainly
has several limitations, as only one test bed is considered, it nevertheless shows
that the number of features needed to successfully classify the BBOB functions
is surprisingly low. Our main direction for future work is an application of the
small feature sets to automated algorithm design tasks. [8] shows promising
performance of the selected feature portfolio presented in Sec. 2 for automated
performance regression and per-instance algorithm selection, results that we wish
to detail further based on the results presented in Sec. 3. Our next important
goal will then be to uncover how the performance of a given solver depends on
the selected features, by taking a closer look at the trained regression models.
With small feature sets, there is reasonable hope that we can identify meaningful
correlations.

We are targeting, in the mid-term perspective, classifiers and automated
algorithm design techniques that work well on highly constrained problems and
which can cope with discontinuities. Extending the results of this work to such
problems forms another important next step.

Other interesting directions for future work include the investigation of new
features recently proposed in the literature, (such as, for example, the SOO-
based features [5]). We also plan on a closer inspection of the classification results
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presented above, particularly with respect to the mis-classifications. Functions
that are wrongly classified more often than others (a preliminary investigation
showed that these mis-classification rates depend on the dimension. In dimen-
sions d = 10, for example, function 17 is confused with function 21 in 30% of the
tests even when a sample size of n = 10, 000 is used.) Such data can be used, in
particular, for training set selection, but also for the generation of new problem
instances for which the algorithms show some behavior not observable on other
instances of the same collection [31,21].

Acknowledgments. We thank Cédric Buron, Claire Laudy, and Bruno Mar-
con for providing the implementation of the Majority Judgment classifier.
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