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Abstract. In this paper, we introduce a Model-based Algorithm Tuning
Engine, namely MATE, where the parameters of an algorithm are repre-
sented as expressions of the features of a target optimisation problem. In
contrast to most static (feature-independent) algorithm tuning engines
such as irace and SPOT, our approach aims to derive the best parame-
ter configuration of a given algorithm for a specific problem, exploiting
the relationships between the algorithm parameters and the features of
the problem. We formulate the problem of finding the relationships be-
tween the parameters and the problem features as a symbolic regression
problem and we use genetic programming to extract these expressions
in a human-readable form. For the evaluation, we apply our approach
to the configuration of the (1+1) EA and RLS algorithms for the One-
Max, LeadingOnes, BinValue and Jump optimisation problems, where
the theoretically optimal algorithm parameters to the problems are avail-
able as functions of the features of the problems. Our study shows that
the found relationships typically comply with known theoretical results
– this demonstrates (1) the potential of model-based parameter tuning
as an alternative to existing static algorithm tuning engines, and (2) its
potential to discover relationships between algorithm performance and
instance features in human-readable form.

Keywords: Parameter tuning · Model-based tuning · Genetic program-
ming

1 Motivation

The performance of many algorithms is highly dependent on tuned parameter
configurations made with regards to the user’s preferences or performance cri-
teria [4], such as the quality of the solution obtained in a given CPU cost, the
smallest CPU cost to reach a given solution quality, the probability to reach
a given quality, with given thresholds, and so on. This configuration task can
be considered as a second layer optimisation problem [19] relevant in the fields
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of optimisation, machine learning and AI in general. It is a field of study that
is increasingly critical as the prevalence of the application of such methods is
expanded. Over the years, a range of automatic parameter tuners have been
proposed, thus leaving the configuration to a computer rather than manually
searching for performance-optimised settings across a set of problem instances.
These tuning environments can save time and achieve better results [2].

Among such automated algorithm configuration (AAC) tools, we cite
GGA [2], ParamILS [23], SPOT [3] and irace [30]. These methods have been
successfully applied to (pre-tuned) state-of-the-art solvers of various problem
domains, such as mixed integer programming [21], AI planning [16], machine
learning [33], or propositional satisfiability solving [24]. Figure 1 illustrates the
abstract standard architecture adopted by these tools.
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Training

Parameters

Training

p1 = v1

...
pN = vN

Tuning 
engine

Algorithm

Parameter
specification

p1, …, pN
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Problem
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Fig. 1: Standard architecture of tuning frameworks.

However, the outcomes of these tools are static (or feature-independent),
which means an algorithm configuration derived by any of these tools is not
changed depending on an instance of a target optimisation problem. This leads
to a significant issue as theoretical and empirical studies on various algorithms
and problems have shown that parameters of an algorithm are highly dependent
on features of a specific instance of a target problem [12] such as the problem
size [6,35].

A possible solution to this issue is to cluster problem instances into multiple
sub-groups by their size (and other potential features), then use curve fitting to
map features to parameters [31,15]. A similar approach is also found in [29] that
first partitions problem instances based the values of their landscape features
and selects an appropriate configuration of a new problem instance based on its
closeness to the partitions. However, the former approach does not scale well to
multiple features and parameters, and the latter faces over-fitting issues due to
the nature of the partitioning approach, making it difficult to assign an unseen
instance to a specific group.

Some works have incorporated problem features in the parameter tuning pro-
cess. SMAC [22] and PIAC [28] are examples of model-based tools that consider
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instance features to define parameter values by applying machine learning tech-
niques to build the model. However, an issue of these approaches is the low
explainability of the outcome. For instance, while machine learning techniques
such as random forest and neural networks can be used to map the parameters to
problem features with a high accuracy, they are considered as black-boxes, i.e.,
the outcome is virtually impossible to understand or interpret. Explainability is
an important concept, as not only it allows us to understand the relationships
between input and output [32], but in the context of parameter tuning, it can
provide an outcome that can be used to inspire fundamental research [17,18].

To tackle these issues, we propose an offline algorithm tuning approach that
extracts relationships between problem features and algorithm parameters using
a genetic programming algorithm framework. We will refer to this approach
as MATE, which stands for Model-based Algorithm Tuning Engine. The main
contributions in this work are as follows:

1. We formulate the model-based parameter tuning problem as a symbolic re-
gression problem, where knowledge about the problem is taken into account
in the form of problem features;

2. We implement an efficient Genetic Programming (GP) algorithm that config-
ures parameters in terms of problem features; and

3. In our empirical investigation, we rediscover asymptotically-correct theoretical
results for two algorithms (1+1-EA and RLS) and four problems (OneMax,
LeadingOnes, BinValue, and Jump). In these experiments, MATE shows its
potential in algorithm parameter configuration to produce models based on
instance features.

2 Background

Several methods have tried to tackle the dependence between the problem
features and the algorithm parameters. The Per Instance Algorithm Configu-
ration (PIAC) [28], for example, can learn a mapping between features and
best parameter configuration, building an Empirical Performance Model (EPM)
that predicts the performance of the algorithm for sample (instance, algo-
rithm/configuration) pairs. PIAC methodology has been applied to several com-
binatorial problems [20,36,25] and continuous domains [5].

Sequential Model-based Algorithm Configuration (SMAC) [22] is also an au-
tomated algorithm configuration tool which considers a model, usually a random
forest, to design the relationship between a performance metric (e.g. the algo-
rithm runtime) and algorithm parameter values. SMAC can also include problem
features within the tuning process as a subset of input variables.

Table 1 presents a summary for some state-of-the-art methods including the
approach proposed in this paper. The term ‘feature-independent’ means that the
corresponding approach does not consider instance features. ‘Model-based’ ap-
proaches use a trained model (e.g. machine learning, regression, etc.) to design
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Table 1: Summary of the state-of-the-art related works
Approach
Name Algorithm Characteristics Ref.

GGA Genetic Algorithm Feature-independent, model-free [2]
ParamILS Iterated Local Search Feature-independent, model-free [23]
irace Racing procedure Feature-independent, model-free [30]

SPOT classical regression, tree-based, ran-
dom forest and Gaussian process

Feature-independent, model-
based [3]

PIAC Regression methods Feature-dependent, model-based [28]
SMAC Random Forest Feature-dependent, model-based [22]

MATE Genetic Programming Feature-dependent, model-
based, explainable

parameter configurations. Model-free approaches generally rely on an experi-
mental design methodology or optimisation method to find parameter settings
of an algorithm that optimise a cost metric on a given instance set.

The main differences between MATE and the other related approaches are:

1. A transparent machine learning method (GP) is utilised to enable human-
readable configurations (in contrast to, e.g., random forests, neural networks,
etc.).

2. The training phase is done on one specific algorithm and one specific problem
in our approach – the model is less instance-focused but more problem-domain
focused by abstracting via the use of features. For example, the AAC exper-
iments behind [17,18] have guided the creation of new heavy-tailed mutation
operators that were beating the state-of-the-art. Similarly, the AAC and PIAC
experiments in [34] showed model dependencies on easily-deducible instance
features.

Lastly, our present paper is much aligned with the recently founded research
field “Data Mining Algorithms Using/Used-by Optimisers (DUO)” [1]. There,
data miners can generate models explored by optimisers; and optimisers can
adjust the control parameters of a data miner.

3 The MATE Framework

3.1 Problem Formulation and Notation

Let us denote an optimisation problem by B whose instances are characterised
by the problem-specific features F = {f1, . . . , fM}. A target algorithm A with
its parameters P = {p1, . . . , pN} is given to address the problem B. A set of
instances I = {i1, . . . , iL} of the problem B and a L × M matrix V, whose
element value vi,j represents the jth feature value of the ith problem instance,
are given.

Under this setting, we define the model-based parameter tuning problem
as the problem of deriving a list of mappings M = {m1, . . . ,mN} where each
mapping mj : RM → R, which we will refer to as a parameter expression, returns
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a value for the parameter pj given feature values of an instance of the problem
B. Specifically, the objective of the problem is to find a parameter expression
set M∗, such that the performance of the algorithm A across all the problem
instances in I is optimised.

3.2 Architecture Overview

In this section, we introduce our approach for parameter tuning based on the
problem features. Figure 2 illustrates the architecture of the MATE tuning en-
gine. In contrast to static methods, we consider the features of the problem.
These feature are to be used in the training phase in addition to the instances,
the target algorithm and the parameter specifications. Once the training is fin-
ished, the model can be used on unseen instances to find the parameters of the
algorithm in terms of the problem feature values of the instance.

Training

Problem domain Algorithm domain

Training

Parameters

Training

Tuning 
engine

Algorithm

Parameter
specification

p1, …, pN

Optimisation
Problem

Instances
i1, …, iL

Features
f1, …, fM

p1 = v1

...
pN = vN

Fig. 2: Architecture of the proposed MATE framework

For example, a desired outcome of applying the MATE framework can be:

– Mutation probability of an evolutionary algorithm in terms of the problem
size;

– Perturbation strength in an iterated local search algorithm in terms of the
ruggedness of the instance and the problem size; and

– Population size of an evolutionary algorithm in terms of the problem size.

Note that all the examples include the problem size as a problem feature. In
both theory and practice, the problem size is among the most important problem
features, and it is usually known prior to the optimisation, without any need
for a pre-processing step. More importantly, an extensive number of theoretical
studies showed that the optimal choice of parameters is usually expressed in
terms of the problem size (see, e.g. [6,12,35]).
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3.3 The Tuning Algorithm

We use a tree-based Genetic Programming system as the tuning algorithm. It
starts with a random population of trees, where each tree represents a potential
parameter expression. Without loss of generality, we assume that the target
problem is always a maximisation problem5.

The Score Function and Bias Reduction The score function is expressed
as the weighted sum of the obtained objective values on each instance in the
training set I. Using the notations previously introduced, the score is defined in
Equation (1):

S(t) =
1

L
Σi∈I

zA(m1(vi,1, . . . , vi,M ), . . . ,mN (vi,1, . . . , vi,M ), i)

Ri
(1)

where:

– S(.) is the GP score function,
– zA(ϕ1, . . . , ϕN , i) is a function measuring the goodness of applying the algo-

rithm A with the parameter values ϕ1, . . . , ϕN to instance i,
– Ri is the best known objective value for instance i.

The weights are used as a form of normalisation to reduce the bias some
instances might induce. A solution to address this issue would be to use the
optimal value or a tight upper bound. However, since we assume the such val-
ues are unknown (the problem itself can be unknown), we use the best known
objective value (Ri) as a reference instead. In order to always ensure that score
is well contained, the reference values are constantly updated whenever possible
during the tuning process.

Replacement Strategy – Statistical Significance and Bloat Control As
the target algorithm can be stochastic, it is mandatory to perform multiple runs
to ensure statistical significance (refer to Table 3). Thus, the replacement of trees
is done based on the Wilcoxon rank-sum test.

Another aspect to take into account during the replacement process is bloat
control. In our implementation, we use a simple bloat minimisation method based
on the size of tree (number of nodes).

Given a newly generated tree (Y ), we compare it against each tree (X) in
the current population starting from the ones with the lowest scores using the
following rules:

– If Y is deemed to be significantly better than X (using the Wilcoxon test).
then we replace X with Y irrespective of the sizes.

– If there is no statistical significance between X and Y , but Y has a smaller
size than X, then we replace X with Y .

– Otherwise, we do not perform the replacement.
5 The current MATE implementation is publicly available at https://gitlab.com/
yafrani/mate

https://gitlab.com/yafrani/mate
https://gitlab.com/yafrani/mate
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Table 2: Summary of problems
Problem Features Training set

OneMax(n) n: number of bits n = 10, 20, 50, 100, 200, 500
BinValue(n) n: number of bits n = 10, 20, 50, 100, 200, 500
LeadingOnes(n) n: number of bits n = 10, 20, 50, 100, 200, 500

Jump(m,n)
m: width of region with bad
fitness values
n: number of bits

(m,n) = (2, 10), (3, 10), (4, 10), (5, 10),
(2, 20), (3, 20), (4, 20),
(2, 50), (3, 50),
(2, 100), (3, 100),
(2, 200)

Table 3: MATE setup
Attribute/Parameter Value/Content

Terminals {1, 2,−1,−2}
⋃
F

Functions Arithmetic operators
Number of GP generations 100
Population size 20
Tournament size 5
Replacement rate < 75%

Initialisation grow (50%) and full (50%)
methods

Mutation operator random mutations
Mutation probability 0.2
Crossover operator sub-tree gluing
Crossover rate 80%
Number of independent runs of target algorithm 10
p-value for the Wilcoxon ranksum test 0.02

4 Computational Study

4.1 Experimental Setting

To evaluate our framework, we consider two target algorithms, the (1+1) EA(µ)
and RLS(k). The (1+1) EA(µ) is a simple hill-climber which uses standard bit
mutation with mutation rate µ. RLS(k) differs from the (1+1) EA(µ) only in
that it uses the mutation operator that always flips k uniformly chosen, pairwise
different bits. That is, the mutation strength k is deterministic in RLS, whereas
it is binomially distributed in case of the (1+1) EA(µ), Bin(n, µ), where n is the
number of bits.

We use MATE to configure the two algorithms for the four different problems
with different time budgets as summarised in Table 2. In the table, the features
of the problems used to tune the algorithm parameters and the different feature
values chosen to generate problem instances of the problems are also presented.
These problems have been chosen because they are among the best studied
benchmark problems in the theory of evolutionary algorithms [13]. The details
of our GP implementation for the experiments are presented in Table 3. Based
on Table 3 and the set of features, our GP method uses a minimalistic set of 6
terminals at most: m, n and {1, 2,−1,−2}.

It is worth noting that we are focusing in this paper on tuning algorithms with
a single parameter. This is done to deliver a first prototype that is validated on
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algorithms and problems extensively studied by the EA theory community. An
extension to tuning several algorithm parameters forms an important direction
for future work.

For example, given a budget of (1 + o(1))en ln(n), it is known that the
(1+1)EA(1/n) optimises the OneMax function as well as any other linear func-
tions with a decent probability. It is also known that the 1/n is asymptotically
optimal [27]. Note, though, that such fixed-budget results are still very sparse [26],
since the theory of EA community largely focuses on expected optimisation
times. Since these can nevertheless give some insight into the optimal parameter
settings, we note the following:

– OneMax and BinValue: the (1+1)EA(1/n) optimises every linear function
in expected time en ln(n), and no parameter configuration has smaller ex-
pected running time, apart from possible lower order terms [35]. For RLS,
it is not difficult to see that k = 1 yields an expected optimisation time of
(1 + o(1))n ln(n), and that this is the optimal (static) mutation strength;

– LeadingOnes: on average, RLS(1) needs n2/2 steps to optimise LeadingOnes.
This choise also minimises the expected optimisation time. For the (1+1) EA,
µ ≈ 1.59/n minimises the expected optimisation time, which is around 0.77n2

for this setting [6]. The standard mutation rate µ = 1/n requires 0.86n2

evaluations, on average, to locate the optimum, of the LeadingOnes function.
For LeadingOnes, it is known that the optimal parameter setting drastically
depends on the available budget. This can be inferred from the proofs in [6,9];
and

– Jump: mutation rate m/n minimises the expected optimisation time of the
(1+1) EA on Jump(m,n), which is nevertheless Θ((e/m)mnm) [12].

4.2 Performance Analysis

Training Phase The experimental study is conducted by running MATE ten
times on each algorithm, problem and budget combination (refer to Table 4 for
the list of budgets). This results in an elite population of 20 individuals for each
setting, from which we select the top 5 expressions in terms of the score. These
results are then merged and the 3 most frequent expressions are selected. For
instance, the expression 2/n for OneMax with 0.5enln(n) appears 92 times over
the 200 individuals (population size (20) × runs (10)).

In the current implementation, expression types (integers and non-integers)
are not taken into account during the evolution. Therefore, the resulting expres-
sions are converted into integers in the case of RLS by merging all real numbers
r using brc (e.g. k = 3/2 will be replaced by k = 1). On the other hand, expres-
sions are simplified for EA by eliminating additive constants (e.g. µ = 1/(n+ 1)
is replaced by µ = 1/n).

Evaluation Phase I To assess the performance of MATE, we evaluate for
each problem-budget combination each of the top 3 most frequent expressions,
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by running them 100 independent times on each training dimension. We then
normalise the outputs as in Equation (1). The results are shown in the box plots
in Table 4.

Comparison amongst the top 3 configurations. When comparing the top 3
ranked configurations, we observe the following from Table 4 while we compare
medians.

– OneMax: For (1+1) EA, µ = 1/n, which ranked second for budgets 0.5en lnn
and en lnn and first for budget 2en lnn performs better than µ = 1/2 ∗ n;
while for RLS, the expression k = 1 appears at least on 94%, providing the
best results;

– BinValue: µ = 1/n represents 18% on en lnn for (1+1) EA experiments, and
a similar performance with µ = 2/n and µ = 3/n; while on 0.5en lnn case the
µ = 1/n expression provides better results than µ = 1/2 and µ = 1/3; on the
same way the expression k = 1 corresponds to 60% of the cases on RLS with
the budget of 2n lnn with a better performance than k = 2 and k = n;

– LeadingOnes: µ = 1/n is the most frequent expression among all considered
budgets on (1+1) EA and µ = 2/n presents the best performance amongst
the top 3 expressions for all budget cases; k = 1 represents 88% on RLS cases
with 0.75n2 iterations and performs better than k = 2 and k = 3 for both
considered budgets.

– Jump: µ = 2/n and µ = m/n present similar results for both budget cases;
µ = 1/n appears on 36% and 68% of the cases on (1+1) EA on the considered
budgets respectively, and performs worse than the other two µ configurations;
for RLS experiments k = m is the most frequent expression and performs
better than k = 2 ∗m and k = 3.

Comparison of top 3 configurations against other parameter settings. For a
fair assessment of our results, we add to this comparison some expressions that
were not ranked in the top 3. These are µ = i/n with i ∈ {1, 3/2, 2, 5/2, 3, 4}
for (1+1) EA(µ) for OneMax and LeadingOnes. For readability purposes, the
top 3 expressions are complemented with 3 of these additional expressions in
the same order they are shown. We can observe in Table 4 that these additional
expressions present low frequencies, µ = 3/n being the highest case with 12%
with the budget en lnn, while expressions µ = 3/(2n) and µ = 5/(2n) are the
lowest cases among the considered budgets. Note that the frequencies do not
necessarily sum up to 100% as other expressions not reported here might have
occurred.

Comparison with theoretical results. As we have mentioned in the beginning
of this section, one should be careful when comparing theoretical results that
have been derived either in terms of running time or in terms of asymptotic
convergence analysis, as typically done in runtime analysis. It is well known that
optimal parameter settings for concrete (typically, comparatively small) dimen-
sions can be different from the asymptotically optimal ones [7,8]. We nevertheless
see that the configurations that minimise the expected running times (again, in
the classical, asymptotic sense) also show up in the top 3 ranked configurations.
In Table 4, we highlight the asymptotically optimal best possible running time
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Table 4: Results for 20 settings.
1+1-EA RLS
Budget Result Budget Result

O
n
eM

ax 0.5en ln(n)
0.85 0.90 0.95

2/n [46%]
1/n [32%]

1/(2*n) [10%]
3/n [4%]

5/(2*n) [2%]
3/(2*n) [0%]

n ln(n)*
0.85 0.90 0.95 1.00

1 [98%]
3 [2%]
2 [0%]

en ln(n)*
0.95 0.96 0.97 0.98 0.99 1.00

2/n [46%]
1/n [26%]

1/(2*n) [14%]
3/n [12%]

5/(2*n) [2%]
3/(2*n) [0%]

2n ln(n)**
0.90 0.92 0.94 0.96 0.98 1.00

1 [94%]
3 [4%]
2 [2%]

2en ln(n)**
0.975 0.980 0.985 0.990 0.995 1.000

1/n [44%]
2/n [26%]

1/(2*n) [12%]
3/n [8%]

3/(2*n) [8%]
5/(2*n) [0%]

B
in

V
al

u
e 0.5en ln(n)

0.92 0.94 0.96 0.98 1.00

1/2 [36%]
1/n [26%]
1/3 [6%]

0.5n ln(n)
0.80 0.85 0.90 0.95 1.00

n [42%]
2 [32%]
1 [22%]

en ln(n)*
0.990 0.992 0.994 0.996 0.998 1.000

2/n [44%]
1/n [18%]
3/n [14%]

n ln(n)*
0.90 0.92 0.94 0.96 0.98 1.00

2 [40%]
n [36%]
1 [14%]

2en ln(n)**
0.9990 0.9992 0.9994 0.9996 0.9998 1.0000

2/n [48%]
3/n [18%]
1/n [12%]

2n ln(n)**
0.980 0.985 0.990 0.995 1.000

1 [60%]
2 [32%]

n [6%]

L
ea

d
in

gO
n
es 0.5n2

0.6 0.7 0.8 0.9

1/n [52%]
2/n [28%]
4/n [20%]

3/n [0%]
5/(2*n) [0%]
3/(2*n) [0%]

0.5n2*
0.7 0.8 0.9 1.0

2 [70%]
1 [26%]

3 [4%]

0.8n2**
0.70 0.75 0.80 0.85 0.90 0.95 1.00

1/n [62%]
2/n [18%]
3/n [16%]

4/n [2%]
5/(2*n) [0%]
3/(2*n) [0%]

0.75n2**
0.75 0.80 0.85 0.90 0.95 1.00

1 [88%]
2 [12%]

3 [0%]

0.9n2**
0.75 0.80 0.85 0.90 0.95 1.00

1/n [48%]
2/n [28%]
3/n [18%]

5/(2*n) [4%]
4/n [0%]

3/(2*n) [0%]

Ju
m

p nm
0.875 0.900 0.925 0.950 0.975 1.000

1/n [36%]
2/n [32%]

m/n [12%]

nm
0.850 0.875 0.900 0.925 0.950 0.975 1.000

m [34%]
2*m [24%]

3 [20%]

enm**
0.92 0.94 0.96 0.98 1.00

1/n [68%]
2/n [22%]
m/n [6%]

2nm
0.850 0.875 0.900 0.925 0.950 0.975 1.000

m [42%]
2*m [20%]

3 [18%]

† The y-axis show the best found expressions with its frequency between square brackets,
and the x-axis represents the normalised fitness.



MATE: A Model-based Algorithm Tuning Engine 11

by an asterisk *. Budgets exceeding this bound are marked by two asterisks **.
As for the individual problems, we note the following:

– OneMax: It is interesting to note here that the performance is not monotonic
in k, i.e., k = 2 performs worse than k = 1 and k = 3. This is caused by
a phenomenon described in [11, Section 4.3.1], which states that, regardless
of the starting point, the expected progress is always maximised by an un-
even mutation strength. MATE correctly identifies this and suggests uneven
mutation strengths in almost all cases.

– BinValue: We observe that it is very difficult here to distinguish the perfor-
mance of the different configurations. This is in the nature of BinValues, as
setting the first bit correctly already ensures 50% of the optimal fitness values.
We very drastically see this effect in the recommendation to use k = n for the
RLS cases. With this configuration, the algorithm evaluates only two points:
the random initial point x and its pairwise complement x̄, regardless of the
budget. As can be seen in Table 4, the performance of this simple strategy is
quite efficient, and hard to beat

– LeadingOnes: As mentioned earlier, for the (1+1) EA, the optimal mutation
rate in terms of minimising the expected running time is around µ = 1.59/n.
We see that µ = 3/(2n), which did not show in the top 3 ranked configurations
performs better than any of the suggestions by MATE.

– Jump: as discussed, mutation rate µ = m/n minimises the expected optimi-
sation time. MATE recognises it as a good configuration in some of the runs.
However, we see that µ = 2/n, which equals µ = m/n for 5 out of our 12
training sets, shows comparable performance, and in the enm budget case
even slightly better performance.

Evaluation Phase II To properly assess the performance of MATE, we con-
ducted experiments for OneMax and LeadingOnes instances of larger sizes that
were not considered in the training phase. The goal of this experiment is to
empirically demonstrate that our approach generalises well for large and unseen
instances. These results are presented in Table 5 where 100 runs were performed
for OneMax with n ∈ {1000, 2000, 5000} and LeadingOnes with n ∈ {750, 1000}.
We can observe the following:

– There is less overlap amongst the confidence intervals especially for smaller
budgets, which means there is a higher level of separability amongst the per-
formances of the different expressions.

– By comparing these results with the ones from Table 4, we can observe that
the results of the top 3 expressions on large instances are statistically better
in the majority of cases.

– OneMax: For (1+1) EA, in contrast to the results in Table 4 where µ = 1/n
and µ = 3/(2n) show a similar performance, here µ = 1/n performs better
than the other expressions. For RLS, the best performing expression is k = 1,
which was ranked first.
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Table 5: Results for larger OneMax and LeadingOnes instances
1+1-EA RLS
Budget Result Budget Result

O
n
eM

ax 0.5en ln(n)
0.975 0.980 0.985 0.990 0.995

2/n [46%]
1/n [32%]

1/(2*n) [10%]
3/n [4%]

5/(2*n) [2%]
3/(2*n) [0%]

n ln(n)*
0.94 0.96 0.98 1.00

1 [98%]
3 [2%]
2 [0%]

en ln(n)*
0.994 0.995 0.996 0.997 0.998 0.999 1.000

2/n [46%]
1/n [26%]

1/(2*n) [14%]
3/n [12%]

5/(2*n) [2%]
3/(2*n) [0%]

2n ln(n)**
0.97 0.98 0.99 1.00

1 [94%]
3 [4%]
2 [2%]

2en ln(n)**
0.994 0.996 0.998 1.000

1/n [44%]
2/n [26%]

1/(2*n) [12%]
3/(2*n) [8%]

3/n [8%]
5/(2*n) [0%]

L
ea

d
in

gO
n
es 0.5n2

0.65 0.70 0.75 0.80 0.85

1/n [52%]
2/n [28%]
4/n [20%]

3/n [0%]
5/(2*n) [0%]
3/(2*n) [0%]

0.5n2*
0.70 0.75 0.80 0.85 0.90 0.95 1.00

2 [70%]
1 [26%]

3 [4%]

0.8n2**
0.80 0.85 0.90 0.95 1.00

1/n [62%]
2/n [18%]
3/n [16%]

4/n [2%]
3/(2*n) [0%]
5/(2*n) [0%]

0.75n2**
0.80 0.85 0.90 0.95 1.00

1 [88%]
2 [12%]

3 [0%]

0.9n2**
0.80 0.85 0.90 0.95 1.00

1/n [48%]
2/n [28%]
3/n [18%]

5/(2*n) [4%]
4/n [0%]

3/(2*n) [0%]

– LeadingOnes: For (1+1) EA the best expressions are µ = 2/n, which was
ranked second, and µ = 3/(2n), which was not ranked among the top 3
expressions. For RLS, k = 1, ranked first and second, is the best performing
expression.

4.3 Comparative study

Herein, we compare the performance of MATE with irace and SMAC. The goal
is to investigate the sensitivity of the obtained parameters on unseen instances.
For a fair comparison, we run irace and SMAC with 2000 maximum experiments
(which we believe is equivalent to the 100 GP generations with a population size
of 20 individuals in MATE) considering the training instances presented in Table
2. We report the best elite parameter values returned by irace (2 candidates),
SMAC (1 candidate) and MATE (most frequent expressions) in the columns µ
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and k in Table 6, while the score (Eq. 1) is shown in column Score with the
standard deviation as a subscript. These parameter values are then applied over
100 runs performed for OneMax with n ∈ {1000, 2000, 5000} and LeadingOnes
with n ∈ {750, 1000}.

Table 6: Results for MATE, irace and SMAC for OneMax and LeadingOnes
instances.

1+1-EA RLS

MATE irace SMAC MATE irace SMAC

Budget µ Score µ Score µ Score Budget k Score k Score k Score

O
n
eM

ax

enln(n)
2

2
n 0.990.001 0.258 0.570.002 0.009 0.80.003 nln(n) 1 10 1 10 1 10

1
n 0.990.001 0.216 0.580.002 3 0.960.002

1
2n 0.980.002 2 0.940.003

enln(n) 1
n 10 0.009 0.820.002 0.016 0.760.003 2nln(n) 1 10 1 10 1 10

2
n 10 0.013 0.790.003 3 0.980.001

1
2n 10 2 0.970.002

2enln(n) 2
n 10 0.594 0.540.002 0.008 0.860.002

1
n 10 0.589 0.540.002

1
2n 10

L
ea

d
in

gO
n
es

0.5n2 1
n 0.70.025 0.430 0.030.002 0.024 0.290.007 0.5n2 2 0.860.014 1 0.980.026 1 0.980.02

2
n 0.80.021 0.409 0.030.002 1 0.970.027 5 0.610.01

4
n 0.710.015 3 0.750.013

0.8n2 1
n 0.950.023 0.255 0.050.002 0.005 0.830.017 0.75n2 1 10 1 10 1 10

2
n 0.990.012 0.258 0.050.002 2 0.950.009

3
n 0.910.018 3 0.820.01

0.9n2 1
n 0.990.011 0.158 0.070.003 0.006 0.750.013

2
n 10 0.153 0.070.006

3
n 0.950.014

Table 6 shows that MATE significantly outperforms irace and SMAC for
(1+1) EA. On the other hand, the three methods show a similar performance on
RLS. This is due to the fact that the parameter µ in (1+1) EA is highly sensitive
to the problem feature n. In contrast, the parameter k in RLS is independent
from n and its best value (k = 1) was identified by the three methods for both
OneMax and LeadingOnes.

5 Conclusions and Future Directions

With this article, we have presented MATE as a model-based algorithm tuning
engine: its human-readable models map instance features to algorithm parame-
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ters. Our experiments showed that MATE can find known asymptotic relation-
ships between the feature values and algorithm parameters. We also compared
the performance of MATE with iRace and SMAC investigating the sensitivity
of the obtained parameters on unseen instances of larger size. With its scalable
models, MATE performed best. It is worth noting that MATE can be a useful
guideline tool for theory researchers due to its white-box nature, similarly to
how results in [14] inspired the analysis of a generalised one-fifth success rule
in [10]. But MATE can also be extended to be used as a practical toolbox for
feature-based algorithm configuration.

In the future, we intend to explore, among other, the following three avenues.
First, the design of MATE itself will be subject to extensions, e.g. to better han-
dle performance differences between instances via ranks or racing. Second, while
our proof-of-concept study here was motivated by theoretical insights, we will
investigate more realistic problems for which instance features are readily avail-
able, such as the travelling salesperson problem and the assignment problem.
Third, we will investigate approaches to extend MATE to handle multiple pa-
rameters to demonstrate its ability to tune more sophisticated algorithms.
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