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Abstract

It seems very intuitive that for the maximization of the OneMax problem Om(x) :=∑n
i=1 xi the best that an elitist unary unbiased search algorithm can do is to store a best

so far solution, and to modify it with the operator that yields the best possible expected
progress in function value. This assumption has been implicitly used in several empirical
works. In [Doerr, Doerr, Yang: Optimal parameter choices via precise black-box analysis,
TCS, 2020] it was formally proven that this approach is indeed almost optimal.

In this work we prove that drift maximization is not optimal. More precisely, we show
that for most fitness levels between n/2 and 2n/3 the optimal mutation strengths are larger
than the drift-maximizing ones. This implies that the optimal RLS is more risk-affine
than the variant maximizing the step-wise expected progress. We show similar results for
the mutation rates of the classic (1+1) Evolutionary Algorithm (EA) and its resampling
variant, the (1+1) EA>0.

As a result of independent interest we show that the optimal mutation strengths, unlike
the drift-maximizing ones, can be even.

1 Introduction

It is well understood that iterative optimization heuristics like local search variants, evolutionary
algorithms, estimation of distribution algorithms, etc. can benefit from non-static choices of
the parameters that determine their search radius, population size, or selective pressure. The
question how to select these parameters dynamically is the subject of parameter control, which
studies different techniques to achieve a good fit between suggested and optimal parameter
values.

Complementing a diverse body of empirical works demonstrating advantages of parameter
control mechanisms [KHE15,AM16], there is an increasing interest in proving such benefits by
mathematical means [DD20]. Among the significant advances in this direction are, in chrono-
logical order (with respect to the conference announcements), the analysis of a success-based
adaptation strategy for the choice of the offspring population size λ of the (1 + λ) EA in dis-
tributed models of computation [LS11], the self-adjusting (1 + (λ, λ)) Genetic Algorithm (GA)
using the one-fifth success rule [DD18], a learning-based selection of the search radii in Ran-
domized Local Search [DDY16], and the self-adjusting [DGWY19] and self-adaptive [DWY18a]
mutation rates in a (1 + λ) and (1, λ) Evolutionary Algorithm (EA), respectively. All these
references consider the optimization of OneMax, the problem of maximizing the counting-ones
function Om : {0, 1}n → R, x 7→

∑n
i=1 xi. Only few theoretical results analyzing algorithms with

adaptive parameters consider different functions, e.g., [LOW20,DLOW18,DDK18] (see [DD20]
for a complete list of references). OneMax also plays a prominent role in empirical research
on parameter control. In both communities, it is argued that the consideration of OneMax
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provides a “sterile EC-like environment” [FCSS08], in which the optimal parameter values are
well understood.

In light of the existing literature it is interesting to note that most works, implicitly or
explicitly, assume that for the considered algorithms the optimal strategy for the maximization
of OneMax is a greedy selection of the best so far solution, and the variation of the same by
the mutation rate/step size that maximizes the expected gain in function value [Bäc92,Bäc93,
FCSS08, FCSS09]. Thierens [Thi09] explicitly argues that a particularly useful property of
OneMax, which makes this problem a very suitable benchmark for adaptive operator selection,
is the fact that the reward of an operator can be computed exactly. He then proceeds by
comparing the step-wise expected fitness gains made by different operators, and ranks operators
by this value. He thus uses as underlying assumption that drift-maximization is optimal.

That this widely believed-to-be-optimal drift-maximizing strategy is indeed almost optimal
was formally proven in [DDY20]. More precisely, it is shown in [DDY20] that the best unary
unbiased black-box algorithm for OneMax cannot be better by more than an additive o(n)
term than the RLS variant that flips in each iteration the drift-maximizing number of bits in a
best-so-far solution. Both algorithms have an expected optimization time n ln(n) − cn ± o(n),
for a constant c between 0.2539 and 0.2665.

It was conjectured in [DW18, Section 3.1] that the drift-maximizing RLS is not only “almost”
optimal, but indeed optimal. As mentioned, this conjecture was also—explicitly or implicitly—
made in the empirical works cited above (and several other works on the OneMax function).
We show in this work that this conjecture is false. More precisely, we show that maximizing
drift is not optimal neither for RLS nor for the (1+1) EA nor for its resampling variant, the
(1 + 1) EA>0, suggested in [CD18b].

We explain where the difference between optimal and drift-maximizing strategies comes
from, define precisely how to obtain the optimal mutation rates, numerically compute these
for some selected dimensions up to n = 10,000, and analyze the differences between drift-
maximizing and optimal mutation rates. We also compare the performances of optimal and
drift-maximizing algorithms, and show that the differences in mutation rates/step sizes—albeit
significant—result only in marginal differences in terms of overall running time. Given the
above-mentioned results in [DDY20], the last statement is not surprising. The main contri-
bution of our work is therefore not to be found in tremendous performance gains, but in new
structural insights for the optimization of OneMax, the arguably most widely used benchmark
for parameter control and adaptive operator selection mechanisms.

We note that the argument why drift-maximization is not optimal is quite easy to under-
stand. Basically, our result is built upon the observation that the drift-maximizer values a poten-
tial fitness progress of i by exactly this gain. More precisely, in the computation of the drift, the
probability of creating an offspring y of x is multiplied by the difference max{0,Om(y)−Om(x)},
for each possible offspring y. The optimal algorithms, however, value a fitness gain of i by the
gain in the expected remaining running time. Since this difference in expected remaining run-
ning time is much larger than the fitness difference, the optimal RLS and (1 + 1) EA variants
use mutation rates that are larger than the drift-maximizing ones. Put differently, they trade
a smaller expected progress for a slightly larger probability of making a larger fitness gain.
That is, the optimal algorithms are more risk-affine than the drift-maximizing ones. This quite
intuitive fact seems to have been overlooked in the evolutionary computation (EC) community.

Our work has recently been extended to (1 + λ)-type RLS and EAs [BD20]. In that work,
not only the optimal mutation rates are computed, but also the expected remaining running
times for sub-optimal mutation rates – information that can be used to identify weak spots of
parameter control mechanisms.

Precise Running Time Bounds. While we focus in this work on very precise running
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time bounds for concrete problem dimensions, which we compute numerically, we note that there
exists a significant body of related theoretical works, which focus on asymptotically optimal
mutation rates and running times. In addition to the works mentioned above, which all deal
with adaptive parameter schemes, we consider the following ones particularly interesting in the
context of our study. For the classic RLS variant, which always flips exactly one bit in each
iteration, the expected running time on OneMax was computed very precisely in [DD16]. For
the (1+1) EA with static mutation rate 1/n, the best known bounds are proven in [HPR+18] and
in the recent work [HW19], which are precise up to an additive O(log(n)/n) and O(log n) term,
respectively. For other static mutation rates, the best known results are available in [Wit13].

Online Repository. Codes and details for the here-described algorithms can be found on
the GitHub page of this project at https://github.com/NathanBuskulic/OneMaxOptimal. The
interested reader can find there not only the performance data, but also the drift-maximizing
and optimal step sizes/mutation rates of the algorithms discussed below, for problem dimensions
up to n = 10,000.

2 The OneMax Problem

OneMax, also referred to as counting-ones problem in the early works on evolutionary compu-
tation, is the problem of maximizing the function

Om : {0, 1}n → R, x 7→
n∑

i=1

xi,

which simply assigns to each bit string the number of ones in it. OneMax is considered to
be one of the “easiest” non-trivial benchmark problems, for two reasons. Firstly, a number of
results exist that show that for several (classes of) algorithms the expected optimization time
on OneMax is not bigger than that on any other unimodal function of the same dimension,
cf. [DJW12,Sud13,CHJ+17] for examples. A second reason to declare OneMax as “easy”, yet
useful, benchmark problem is its (presumably) simple structure, which allows us to understand
well the optimization process of classical optimization heuristics. One structural property that
is particularly useful in runtime analyses is the perfect fitness-distance correlation; i.e., whenever
Om(x) > Om(y) for two search points x and y, then the distance of x to the optimum is strictly
smaller than that of y.

For readers wondering about the usefulness of a single benchmark instance, we note that
for most evolutionary algorithms (EAs) and local search variants such as Randomized Local
Search (RLS), Simulated Annealing, etc. the OneMax problem is identical to the problem
of maximizing any of the functions Omz : {0, 1}n → R, x 7→ H(z, x) := |{i ∈ [n] | xi 6= zi}|,
since for any z ∈ {0, 1}n the Hamming distance problem Omz has a fitness landscape that
is isomorphic to that of OneMax, and the mentioned algorithms are oblivious of the exact
problem representation. That is, OneMax is essentially just one representative of the class of
Hamming distance problems.

OneMax is often termed the “drosophila of EC”, because of the vast amount of literature
studying this problem, both in empirical and in theoretical works. In the context of our study
in particular the works [Bäc92, Bäc93, FCSS08, FCSS09, Thi09, BLS14, DD18, DDY20, DDY16,
DGWY19,DWY18a,dPdLDD15,DW18] are worth mentioning, as they all study the benefits of
non-static parameter choices on this problem, for different local search variants and evolutionary
algorithms. Among these works, the empirical ones focus on operators that maximize the
expected progress (“drift”) per each round, either without further justifying it, or explicitly
mentioning that drift-maximization is optimal (an assumption that we will refute in Section 4).
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Algorithm 1: Blueprint for elitist (1+1) unbiased black-box algorithms maximizing
a function f : {0, 1}n → R
1 Initialization: Sample x ∈ {0, 1}n uniformly at random and compute f(x);
2 Optimization: for t = 1, 2, 3, . . . do
3 Sample k ∼ D(n, f(x));
4 y ← flipk(x);
5 evaluate f(y);
6 if f(y) ≥ f(x) then x← y;

Among the theoretical works, most are interested in deriving asymptotic results only, with
the only exception of [DDY20, DDY16], where very precise bounds for the optimization time
of two adaptive RLS variants are proven. Most relevant to our work is the mentioned result
from [DDY20] which proves that the drift-maximizing strategy mentioned above is indeed almost
optimal. When we show in the next sections that the best possible RLS variant is not the drift-
maximizing one, we know by the result from [DDY20] that the gain in expected optimization
time cannot be more than an additive O(n2/3 log9 n) term.

3 Elitist (1+1) Unbiased Algorithms

We are concerned in this work with algorithms following the blueprint given in Algorithm 1.
These algorithms start the optimization in a randomly chosen solution x. In each iteration
exactly one offspring y is sampled by first copying x and then flipping the entries of k randomly
chosen, pairwise different positions i1, i2, . . . , ik. The parent x is replaced by its offspring y if
and only if f(y) ≥ f(x), i.e., if and only if the offspring is at least as good as y. Algorithms
adhering to this scheme are referred to in the theory of EA literature as elitist unary unbiased
black-box algorithms [DL17].

Elitist unary unbiased black-box algorithms differ only in the choice of the mutation
strength k. The two most commonly studied classes of algorithms are Randomized Local
Search (RLS) variants, which use a deterministic choice of k, and (1+1) Evolutionary
Algorithms (EAs), which sample k from Bin(n, p), i.e., from a binomial distribution with
n trials and success rate p. We note that traditionally constant choices, k = 1 for RLS and
p = 1/n for the (1 + 1) EA, are studied, but here in this work we focus on non-static mutation
strengths k and mutation rates 0 ≤ p ≤ 1. More precisely, we study fitness-dependent choices
k(`) and p(`), which take into account the function value (fitness) ` = Om(x) of the current-
best solution. In the terminology proposed in [DD20] such parameter control schemes classify
as state-dependent, since the parameter value depends only on the current-best solution but
not on any other information about the optimization process. The objective of our work is to
identify the functions ` 7→ k(`) and ` 7→ p(`) that minimize the expected running time of RLS
and the (1 + 1) EA, respectively, when optimizing OneMax.

We add to our investigation the (1 + 1) EA>0, which samples k from a conditional bi-
nomial distribution Bin>0(n, p), which is defined by Bin>0(n, p)(0) = 0 and Bin>0(n, p)(i) =
Bin(n, p)(i)/(1− (1−p)n) =

(
n
i

)
pi(1−p)n−i/(1− (1−p)n) for i ∈ [n]. That is, the probability of

the (1 + 1) EA>0 to flip i bits equals that of the (1 + 1) EA conditional on flipping at least one
bit. The (1 + 1) EA>0 was suggested in [CD18b] as an algorithm that more closely resembles
common implementations of the (1 + 1) EA, cf. also discussions in [CD18a]. The (1 + 1) EA>0

can be seen as an intermediate algorithm between the RLS variant always flipping one bit and
the (unconditional) (1 + 1) EA, since for p converging to 0 the distribution Bin>0(n, p) concen-

4



trates on 1, so that for small p the behavior of the (1 + 1) EA>0 “converges” against that of
RLS.

We note that other elitist unary unbiased black-box algorithms have been recently in-
troduced. The fast Genetic Algorithm (GA) suggested in [DLMN17] samples the mutation
strength k from a power-law distribution, and k is sampled from a normal distribution N(µ, σ2)
in the normalized EA studied in [YDB19]. We will nevertheless focus in this work on RLS and
(1+1) EA variants only, simply because they are still the most commonly studied algorithms
in evolutionary computation. We note though that an extension of our work in particular to
results covering the normalized EAs would be interesting, since this algorithm class can be seen
as a meta-model between the class of RLS algorithms and the class of (µ+ λ) EAs.

4 Maximizing Drift is Not Optimal

As mentioned in Section 3, our main interest is in identifying the functions kopt : [0..n − 1] →
[0..n], popt : [0..n − 1] → [0, 1], and p>0,opt : [0..n − 1] → [0, 1] for which the following three
algorithms have a best possible expected optimization time:

• RLSopt, the RLS variant flipping in each iteration exactly kopt(Om(x)) bits (i.e., using
the deterministic mutation strength kopt(Om(x))),

• (1 + 1) EAopt, the (1 + 1) EA variant using standard bit mutation with mutation rate
popt(Om(x)) (i.e., the algorithm sampling the mutation strength from the binomial dis-
tribution Bin(n, popt(Om(x)))), and

• (1+1) EA>0,opt, the (1+1) EA>0 variant using conditional standard bit mutation flipping
at least one bit with mutation rate p>0,opt(Om(x)) (i.e., sampling the mutation strength
from the conditional binomial distribution Bin>0(n, p>0,opt(Om(x))).

Note that, formally, we should write kopt(n), popt(n), and p>0,opt(n), since these functions
depend on the dimension. However, we shall often omit the explicit mention of the dimensions
in order to ease the notation. The same applies to the corresponding functions kdrift(n), pdrift(n),
and p>0,drift(n).

It may be surprising that, after so many years of research on the OneMax problem, none
of the three algorithms above has been explicitly computed. As mentioned in the introduction,
there are two main reasons explaining this situation. Firstly, it is widely believed that the
functions kdrift, pdrift, and p>0,drift, which maximize in each step the expected fitness gain (drift)
of flipping k = kdrift(Om(x)), k ∼ Bin(n, pdrift(Om(x))), and k ∼ Bin>0(n, p>0,drift(Om(x)))
bits, respectively, are optimal. As already discussed, such claims can be quite frequently found
in the literature [Bäc92,FCSS08,DW18]. We will show in this section that these claims are not
correct, by presenting examples which demonstrate that better expected optimization times
can be achieved by choosing kopt 6= kdrift, popt 6= pdrift, and p>0,opt 6= p>0,drift, respectively. In
Section 5 we will quantify the discrepancies between drift-maximizing and optimal (i.e., time-
minimizing) functions for dimensions up to n = 10,000. Section 6 discusses the impact of these
differences on the overall running time.

4.1 RLSopt 6= RLSdrift for n = 3

We first show that kdrift 6= kopt. That is, we study the drift-maximizing and the time-minimizing
variants of RLS, which we call RLSdrift and RLSopt in the following, and show that they are not
identical. Interestingly, it suffices to regard n = 3 for an example for which the two functions
differ. The following table summarizes for n = 3 the functions kdrift, kopt, and the expected
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remaining running times E[Tdrift(`)] and E[Topt(`)] for RLSdrift and RLSopt, respectively, when
starting in a solution x of fitness Om(x) = `. In column p0(`) we list the probability that a
random initial solution has fitness value `. Since uniform random initialization is used, p0(`) =(
n
`

)
/2n. The last line provides the overall expected optimization time of both algorithms. Note

that, by the law of total probability,

E[T ] = 1 +
n∑

`=0

p0(`)E[T (`)],

where the “+1”-term accounts for the evaluation of the initial solution.

` p0(`) kdrift(`) E[Tdrift(`)] kopt(`) E[Topt(`)]

3 1/8 - 0 - 0
2 3/8 1 3 1 3
1 3/8 3 4 2 3
0 1/8 3 1 3 1

E[T ] 3.75 3.375

As we see from the last line, the overall expected running time of RLSopt is 3.375 and thus
strictly smaller than that of RLSdrift, which is 3.75. We briefly explain how the entries in this
table are computed.

Computation of RLSdrift. We start our explanation with the computation of kdrift(n) :
[0..n − 1] → [0..n] and E[Tdrift(`)]. The function kdrift was defined above to be the one that
maps each fitness value to the number of bits that need to be flipped in order to maximize the
expected progress in fitness value, i.e., kdrift(n, `) is defined to be the value of k that maximizes
the expression

E[∆(n, `, k)] := (1)

E[max{Om(y)−Om(x), 0} | Om(x) = `, y ← flipk(x)]

=

`+k∑
i=`+1

(i− `)P[Om(y) = i | Om(x) = `, y ← flipk(x)]

=
k∑

i=dk/2e

(
n−`
i

)(
`

k−i
)

(2i− k)(
n
k

) ,

where we use in the last line the fact that flipping i of the n − ` previously incorrect bits
implies that we flip k − i of the ` previously correct bits, which results in a fitness increase of

i− (k− i) = 2i−k. This event occurs with probability
(n−`

i )( `
k−i)

(nk)
, since there are

(
n−`
i

)
different

ways of choosing i previously incorrect bits,
(

`
k−i
)

ways of choosing k− i previously correct bits,

and
(
n
k

)
ways of choosing k pairwise different bit positions. When two or more values k exist

that minimize this expression, we follow the convention made in [DDY20] and chose in all our
computations below the smallest of these drift-maximizing mutation strengths, i.e., formally,
kdrift(n, `) = min

{
arg maxk E[∆(`, k)]

}
.1

It is easily seen that that for n = 3 and ` = 2 flipping one bit is optimal, since this is the only
mutation strength yielding positive drift. With this value of kdrift(n = 3, ` = 2) the expected
remaining time E[Tdrift(n = 3, ` = 2)] to find the optimal solution is 3. For ` = 1, the expected

1In light of the results presented in this paper, it seems likely that for ` > n/2 the better choice would
be kdrift(n, `) = max{arg maxk E[∆(`, k)]}, but given the small discrepancies in the resulting running times (cf.
Section 6) we do not investigate this question further.
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progress of flip1, i.e., of flipping one bit, is P[Om(y) = 2 | Om(x) = 1, y ← flip1(x)] = 2/3, the
expected progress of flip2 equals 2P[Om(y) = 3 | Om(x) = 1, y ← flip2(x)] = 2/3 (note here that
no fitness gain of one is possible), and the expected progress of flip3 is 1, since in this case we
deterministically obtain an offspring y of fitness Om(y) = 2. The best drift is thus obtained by
operator flip3, which implies kdrift(n = 3, ` = 1) = 3. With this choice of the mutation strength,
the expected remaining optimization time equals 1 + E[Tdrift(n = 3, ` = 2)] = 4. In general,
E[Tdrift(n, `)] can be computed as

1 +
n−1∑
i=`+1

P[Om(y) = i | E ]E[Tdrift(n, i)],

where E is the event that Om(x) = ` and y ← flipkdrift(n,`)
(x). When Om(x) = 0 then flipping

all bits, i.e., applying flipn is optimal, since it directly produces the optimal solution. Note
here that, more generally, the function value of the bitwise complement x̄ of a solution x equals
Om(x̄) = n−Om(x).

With these values, the expected running time of RLSdrift on n = 3 is equal to 1+ 3
83+ 3

84+ 1
8 =

15
4 = 3.75.

Computation of RLSopt. We next discuss how to compute kopt(n) : [0..n − 1] →
[0..n] and E[Topt(`)]. This time, we start our investigation by recalling that, by the law
of total probability, the expected optimization time E[T (RLSopt)] of RLSopt equals 1 +∑n−1

`=0 P[Om(x0) = `]E[Topt(`)]. The best-possible RLS algorithm is hence the one using at
each fitness level ` the mutation strength kopt(n, `) which minimizes the expected remaining
optimization time E[Tk(n, `)] of flipping k bits, which is equal to

1 +

n−1∑
i=`+1

P[Om(y) = i | Om(x) = `, y ← flipk(x)]E[Topt(n, i)]. (2)

Formally, we set again k = arg mink E[Tk(n, `)]. Note that the expression in (2) requires to
know the values E[Topt(n, i)] for i > `. In order to compute kopt(n, `) one therefore has to start
with fitness level n− 1. Once kopt(n, n− 1) and E[Topt(n, n− 1)] are known, kopt(n, n− 2) and
E[Topt(n, n−2)] can be computed, and one continues in this way until eventually reaching ` = 0
for which kopt(n, 0) = n holds.

Applying these computations to our example with n = 3, we first easily obtain kopt(n =
3, ` = 2) = 1 and E[Topt(n = 3, ` = 2)] = 3, as in the drift maximizing case analyzed above.
Given that kopt(3, 0) = 3, the only interesting case is fitness level ` = 1. The expected remaining
time E[T1(n = 3, ` = 1)] equals 1+ 2

3E[Topt(3, 2)]+ 1
3E[T1(3, 1)]. Since E[Topt(3, 2)] = 3, a simple

algebraic transformation shows E[T1(3, 1)] = 9
2 . When flipping two bits, we either obtain the

optimal solution (this happens with probability 1/3) or we remain at the current fitness level,
which shows that E[T2(3, 1)] = 1 + 2

3E[T2(3, 1)]. Thus, E[T2(3, 1)] = 3. Finally, we compute
that E[T3(3, 1)] = 1 + E[Topt(3, 2)] = 4. We therefore see that kopt(n = 3, ` = 1) = 2 and
E[Topt(3, 1)] = 3. With these values, we obtain that the expected optimization time of RLSopt

on the 3-dimensional OneMax is 1 + 3
8E[Topt(3, 2)] + 3

8E[Topt(3, 1)] + 1
8 = 27

8 = 3.375.
Optimal Mutation Strengths Need Not be Uneven. With this example, we not only

prove that RLSopt 6= RLSdrift, but we also make another interesting observation, which concerns
the parity of the values kopt(n, `). It was proven in [DDY20] that kdrift takes only odd values,
since for every k the drift of flipping 2k bits is strictly smaller than that of flipping 2k+ 1 bits.

The example above shows that the situation is different for kopt. More precisely, we have
seen that in the situation n = 3 and ` = 1 flipping 2 bits is optimal.
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4.2 (1 + 1) EAopt 6= (1 + 1) EAdrift for n = 3

The only difference between the (1 + 1) EA and RLS is the random choice of the mutation
strength k, which the (1 + 1) EA samples from a binomial distribution Bin(n, p). The (1 +
1) EAdrift is defined by choosing the fitness-dependent mutation rate pdrift(n, `) which maximizes
the expected progress

E[∆(n, `, p)] (3)

:=
n∑

i=`+1

(i− `)P[Om(y) = i | Om(x) = `, y ← flipk(x), k ∼ Bin(n, p)]

=
n∑

k=1

Bin(n, p)(k)E[∆(n, `, k)]

=
n∑

k=1

(n
k

)
pk(1− p)n−k

k∑
i=dk/2e

(
n−`
i

)(
`

k−i
)

(2i− k)(
n
k

)
,

where we recall that E[∆(n, `, k)] had been defined in equation (1).
Following the same arguments as in the definition of RLSopt in Section 4.1, the (1+1) EAopt

is defined by choosing in each fitness level the mutation rate popt(n, `) which minimizes the
expected remaining time, i.e., the expression

E[Tp(n, `)] = 1 + P[Om(y) ≤ ` | E ]E[Tp(n, `)]

+

n−1∑
i=`+1

P[Om(y) = i | E ]E[Topt(n, i)],

where we abbreviate by E the event that Om(x) = `, y ← flipk(x), and k ∼ Bin(n, p).
As above, we thus need to determine first the values of popt(n, n− 1) and E[Topt(n, n− 1)],

then progress with the computation of popt(n, n− 2) and E[Topt(n, n− 2)], etc.
For n = 3 we obtain the following values, which prove that, like for RLS, drift-maximization

is also not optimal for the (1 + 1) EA.

` p0(`) pdrift(`) E[Tdrift(`)] popt(`) E[Topt(`)]

3 1/8 - 0 - 0
2 3/8 1/3 6.75 1/3 3
1 3/8 1 7.75 2/3 3
0 1/8 1 1 1 1

E[T ] 6.5625 6.1875

Another interesting observation that we can make by comparing this table with the corre-
sponding one of RLS (Sec. 4.1) is that pdrift(3, `) = kdrift(3, `)/3 and popt(3, `) = kopt(3, `)/3.
We will discuss this effect in more detail in Section 5.2.

4.3 (1 + 1) EA>0,opt 6= (1 + 1) EA>0,drift for n = 3

(1 + 1) EA>0,opt and (1 + 1) EA>0,drift are defined by replacing in all definitions in Section 4.2
the binomial distribution Bin(n, p) by the conditional binomial distribution Bin>0(n, p), and
by replacing the formulas accordingly. We omit a detailed definition for reasons of space. All
replacements are straightforward, the only particularity to pay attention to is that both the
drift and the expected remaining time may be better for ever smaller values of p. This happens

8



Figure 1: Comparison of kopt(n, `) and kdrift(n, `) for n = 1,000 (zoom into fitness levels 480 ≤
` ≤ 545).

when flipping one bit deterministically is better in terms of drift or expected running time,
respectively, than using standard bit mutation. In this case we can either use the convention
that the conditional standard bit mutation with mutation rate p = 0 is to be interpreted as the
flip1 operator (i.e., we set Bin(n, 0)(1) = 1 and Bin(n, 0)(k) = 0 for all k 6= 1), or we set a lower
bound pmin for the mutation rate. The effects of the lower bound will be discussed in Section 6.
When using pmin = 0, the situation for the (1 + 1) EA>0 for OneMax in dimension n = 3 is
given by the following table.

` p0(`) p>0,drift(`) E[T>0,drift(`)] p>0,opt(`) E[T>0,opt(`)]

3 1/8 - 0 - 0
2 3/8 0 3 0 3
1 3/8 1 4 3/4 27/7
0 1/8 1 1 1 1

E[T ] 3.75 ≈ 3.696

5 Optimal RLS and (1+1) EA Variants

Using the formulas provided in Section 4 we can compute the optimal RLS, (1 + 1) EA, and
(1 + 1) EA>0 algorithms, as well as their drift-maximizing counterparts. Note, though, that
the numerical evaluation of the binomial coefficients, as well as the optimization required to
determine popt and p>0,opt is not straightforward. For the latter, we have used the bounded
method of the scipy optimization module [JOP+ ]. The overall expected running times are
summarized in Table 1, which can be found at the end of this paper.

5.1 Optimal Mutation Strengths

We start our comparison by considering the differences between the drift-maximizing and the
optimal mutation strengths for RLS. Figure 1 plots the interesting region of kopt(n, `) and
kdrift(n, `) for n = 1,000; the overall picture is very similar across all dimensions n. In particular
it holds for all n that the curves cross at fitness level ` = n/2. For smaller values, the optimal
mutation strengths are smaller or identical to drift-maximizing ones, and the situation is reversed
for fitness levels ` > n/2. This can be explained by the formulas given in Section 4. While the
drift-maximizer values a potential progress of i by this same value, regardless of the current
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Figure 2: Comparison of kopt(n, `) and npopt(n, `) for n = 10,000. Note the logarithmic scale.

fitness level, the same potential progress is valued by E[Topt(` + i)] − E[Topt(`)] > i. RLSdrift

is thus more risk-averse than RLSopt. Put differently, the latter makes use of the fact that an
unlikely large fitness gain results in a larger reduction of the expected remaining optimization
time than a more likely small fitness increase. RLSopt therefore accepts a smaller probability of
an improving move, at the benefit of a potentially larger fitness increase. This observation also
explains why the extreme-valued parameter adaptation method proposed in [FCSS08] showed
better performance on OneMax than update schemes based on average gains.

It was proven in [DDY20] that an approximated drift-maximizer always flips only one bit
when ` > 2n/3. For the actual drift-maximizer this has not been formally proven, but in all our
numerical evaluations for dimensions up to 10,000 we have kopt(`) = kdrift(`) = 1 for ` > 2n/3.

For dimension n = 1,000, we see from Fig. 1 that kopt(`) = 1,000 for ` ≤ 482 and
kdrift(`) = 1,000 for ` ≤ 494. In this regime it is thus beneficial to invest one iteration to
obtain, deterministically, a search point with function value n− `.

The difference between the two functions becomes negligible for ` > 545.
We do not plot the comparison of popt with pdrift nor that of p>0,opt vs. p>0,drift; their curves,

however, are similar to those of RLS.

5.2 Comparison of kopt and popt

We have observed in Section 4.2 that for n = 3 the values of popt were identical to kopt/n.
Likewise, we had observed that in this example pdrift = kdrift/n. Figure 2 plots kopt(n, `) and
npopt(n, `) for n = 10,000 and Figure 3 plots kdrift(n, `) and npdrift(n, `) for n = 1,000; the
overall picture is the same for drift-maximizing and optimal functions in both cases.

While Figure 2 gives the global picture, Figures 3 zooms into the region in which kdrift is
between 3 and 47. We observe that the mutation strength is always smaller, but very close to
n times the respective mutation rate. At the points at which kopt and kdrift change value the
difference between npopt and npdrift is smallest.

6 Running Times

We now discuss the impact of the differences in mutation strengths and rates on the overall
expected running times.

10



Figure 3: Comparison of kdrift(n, `) and npdrift(n =, `) for n = 1,000 (zoom into fitness levels
540 ≤ ` ≤ 645).

Figure 4: Expected optimization time of different variants of RLS and the (1 + 1) EA>0,opt,
normalized by n ln(n).

11



Figure 5: Expected optimization time of different variants of (1 + 1) EA, normalized by n ln(n).

We start our comparison with the RLS and the (1 + 1) EA>0 variants. Figure 4 plots the
by n ln(n) normalized optimization times of five different algorithms for 10 different problem
dimensions between 100 and 4,500. We denote here and in the following by RLS the tradi-
tional RLS variant using static mutation strength k = 1. We see that there is practically no
difference between RLSopt and RLSdrift, and this despite the significant differences in the mu-
tation strengths kopt and kdrift. While the asymptotic result from [DDY20] guarantees that the
absolute difference is bounded by O(n2/3 log9(n)), the absolute difference between the two algo-
rithms is even less than 1 across all tested problem dimensions. The normalized running times
of both algorithms increase from around 0.939 for n = 100 to around 0.969 for n = 4,500. As
we know from the theoretic result [DDY20] these values converge to 1 for growing dimension n.

The differences between the (1 + 1) EA>0,opt and the (1 + 1) EA>0,drift to RLSopt are very
small. The difference between the first two algorithms seems to be more significant than between
drift-maximizing and optimal RLS variants, with a numerical difference between (1+1) EA>0,opt

and (1 + 1) EA>0,drift of around 0.5% for n = 2,000. We do not have an explanation for this
comparatively large difference, but it may be caused by the numerical precision at which the
results have been computed. More details about the (1+1) EA>0 will be discussed in Section 6.1.

Our next chart, Figure 5, compares the expected running times of different (1 + 1) EA
variants. We first note that we plot two different static versions, one using the asymptotically
optimal static mutation rate 1/n, and the other one using the optimal static mutation rate
per each dimension. The latter is slightly larger than 1/n, as was already proven in [CWA14].
Since they only computed the optimal static rates for n ≤ 100, we also had to compute these for
larger dimensions (using a direct computation, not the there-suggested matrix-based approach).
Alternatively, we could have used the approximations suggested in [GW18], which extend the
results of [CWA14] to the (1 + λ) EA and to larger dimensions. The relative advantage over
1/n is not very pronounced, and decreases from around 1.2% for n = 100 to around 0.4% for
n = 3,000. The curves of the (1+1) EAdrift and the (1+1) EA>0 are practically indistinguishable
in this plot. Like for RLS the absolute difference between the expected running time of the
two algorithms is less than 1 for all tested dimensions, again despite significant differences in
the functions popt and pdrift. We add to this chart a comparison with the (1 + 1) EA using the
fitness-dependent mutation rate p(`) = 1/(2` + 2 − n) (for ` ≥ n/2) suggested in [Bäc93]; we
use p(`) = pdrift(`) for ` < n/2. Bäck obtained this mutation rate from numerical evaluations
of pdrift in small dimensions n ≤ 100. His algorithm performs only slightly worse than the true
drift-maximizing (1 + 1) EAdrift, and, thus, as the (1 + 1) EAopt.
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Figure 6: Expected Optimization time of different variants of (1 + 1) EA>0, normalized by
n ln(n).

6.1 Influence of pmin on the (1 + 1) EA>0

We have briefly mentioned in Section 4.3 that for the (1 + 1) EA>0 one needs to specify a
lower bound for the mutation probability, since in some situations the optimal mutation rate
is zero (when using the convention that Bin(n, 0) deterministically returns one). For practical
applications such small mutation rates may be undesirable, e.g., when using multiplicative
success-based updates rules as suggested in [DW18]. We therefore investigate the influence of
this lower bound on the expected running times. These normalized running times are plotted for
six different algorithms in Figure 6. The drift-maximizing variants would be indistinguishable in
this plot from the optimal ones, and are therefore omitted, except for the case pmin = 0, which
we have already discussed in Figure 4. Note that the (1+1) EA>0 with optimal static mutation
rate uses pmin = 0, and is therefore equal to RLS. The relative disadvantage of increasing pmin

to 1/(2n) increases from around 22% in dimension n = 100 to around 26% in dimension 3,500,
both for the static and the adaptive variants. Further increasing pmin to 1/n results in a relative
disadvantage of 51− 59% for the static and from 52− 60% for the dynamic variants.

6.2 Anytime Performance

Fixed-Budget Results. While we have focused above on expected optimization times we
will now follow the suggestion made in [DDY20] and provide a more detailed analysis of the
anytime behavior of the algorithms. More precisely, we regard fixed-budget performance of
RLSopt, RLSdrift, and RLS. Only RLSopt and RLS are plotted in Figure 7, the curves of RLSopt

and RLSdrift are practically indistinguishable. Note that the numbers underlying the plot in
Figures 7 and 8 (discussed in the next section) are the only ones in this paper that are not
derived from theoretical bounds. We have performed a simulation of 500 independent runs
of the three algorithms instead, and we used IOHprofiler [DWY+18b] to analyze the runtime
data. We show not only the mean value, but also the standard deviation. The curves are well
separated even when considering these, for all budgets up to around 3,500. Analyzing the data
in more detail, we observe that the relative advantage in average function value decreases from
10% for budget 100 to 1% for budget 2,500. For larger budgets, the average fitness value is less
than 1% larger for RLSopt than for RLS. However, as proven to hold in an asymptotic sense
for the RLSdrift in [DDY20], the average distance to the optimum is constantly about 12− 14%
better for RLSopt than for RLS, for budgets up to 3,500. The average function values at this
budget (3,500 function evaluations) are slightly smaller than 990 for all three algorithms, RLS,
RLSopt, and RLSdrift. For larger budgets, the distance to the optimum is hence very small. This,

13



Figure 7: Average fixed-budget results for RLS and RLSopt on OneMax in dimension n = 1,000
across 500 independent runs.

Figure 8: Average fixed-target running time for RLS and RLSopt on OneMax in dimension
n = 1,000 across 500 independent runs.

in combination with the variance of our simulation, results in inconsistent relative advantages
in terms of distance to the optimum for budgets greater than 3,500.

Fixed-Target Results. Using the same runtime data for the 500 runs, we can also compute
fixed-target results, i.e., the function mapping each fitness level ` to the expected time needed to
reach a solution x of fitness Om(x) ≥ `. These values, of course, could also easily be computed
theoretically from the results presented in Section 5.1, but we feel that the precision of the
simulation suffices to demonstrate the main effects. The results are plotted in Figure 8.

It is not difficult to see that RLSopt is not optimal for minimizing the expected first hitting
time of targets ` < n, simply because overshooting the target ` are disadvantageous for this
optimization goal. For a similar reason, RLSopt is also not optimal in terms of maximizing the
expected function value at a given budget of B < E[T (RLSopt)], i.e., when the budget is less
than the expected overall optimization time of RLSopt.
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Figure 9: Expected remaining optimization times for OneMax in dimension n = 1,000.

6.3 Remaining Optimization Times

Finally, we take a look at the evolution of the expected remaining optimization time per each
fitness level. These values, derived from our numerical evaluation of the theoretical bounds
presented in Section 4, are plotted in Figure 9. While the algorithms with static mutation
rates and strength are not able to profit from the fact that Om(x̄) = n − Om(x) for each
x ∈ {0, 1}n, we see an almost symmetric behavior for the adaptive algorithms. We also see
again the influence of the lower bound pmin ∈ {1/n, 1/(2n)} in the (1 + 1) EA>0 variants, which
are quite significant.

From this figure we can also compute the weights E[Topt(` + 1)] − E[Topt(`)] by which the
RLSopt starting in a search point of fitness ` values a potential fitness progress of i. We plot in
Figure 10 the gradient of the curves E[T (`)] plotted in Figure 9. That is, for every ` we plot
the values E[T (1000, `)]− E[T (1000, `− 1)] for RLSopt and RLS. We recall that RLSdrift values
a potential fitness progress of i by the same value i. We thus clearly see that RLSopt gives
much more importance to large fitness gains, and hence uses the already discussed more risky
strategy aiming at potentially larger fitness gains, at the cost of a larger probability of creating
an offspring that will be discarded.

6.4 Best Unary Unbiased Algorithms for OneMax

Note that plot in Figure 9 also raises the question how much the algorithms lose in performance
by being forced to be elitist. Note that slightly better algorithms are possible when allowing
them to first decrease the function value to 0 and then inverting the bit string. For the adaptive
algorithms, this would clearly bring more flexibility, and a provable positive advantage over
the elitist algorithms studied in this work. Put differently, the best unary unbiased black-box
algorithm for OneMax is slightly better than RLSopt. The almost perfect symmetric shape
of the algorithms in Figure 9, however, indicates that the advantage is very small. A rigorous
quantification, which we consider to be of rather philosophical benefit, is left for future work.
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Figure 10: Gradient of expected remaining optimization times for OneMax in dimension n =
1,000.

7 Discussion

We have shown that the assumption that drift-maximization is optimal for solving the OneMax
problem is not correct, neither for RLS, nor the (1 + 1) EA, nor the (1 + 1) EA>0. A more
risky strategy turns out to be optimal. However, while the differences in the drift-maximizing
and the optimal mutation rates are significant (Figure 1), the difference in expected running
time is negligibly small already for very small dimensions. The structural findings made here
for the OneMax problem also applies in a broader sense to the optimization of non-deceptive
problems. Already for linear functions like BinVal, the difference between drift-maximizing
and optimal RLS and (1 + 1) EA variants may be more substantial than for OneMax. We also
note that, while we have restricted ourselves to (1+1)-type algorithms, similar effects also hold
for population-based EAs.

The computation of the drift-maximizing and time-minimizing mutation strengths and rates
are quite tedious and require several days of computing time already for moderate dimension. In
order to obtain valid baseline algorithms for larger dimensions, it would be desirable to derive
closed formula expressions that approximate these functions sufficiently well. Note that the
formula provided by Bäck for the drift-maximizer (cf. discussion in Section 6) seems to allow
to derive quite reliable predictions for the drift-maximizing (1+1) EA as seen in Figure 5.
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[Bäc93] Thomas Bäck. Optimal mutation rates in genetic search. In Proc. of the 5th International
Conference on Genetic Algorithms (ICGA’93), pages 2–8. Morgan Kaufmann, 1993.

[BD20] Maxim Buzdalov and Carola Doerr. Optimal mutation rates for the (1+λ) EA on OneMax.
In Proc. of Parallel Problem Solving from Nature (PPSN’20), volume 12270 of LNCS, pages
574–587. Springer, 2020.

[BLS14] Golnaz Badkobeh, Per Kristian Lehre, and Dirk Sudholt. Unbiased black-box complexity
of parallel search. In Proc. of Parallel Problem Solving from Nature (PPSN’14), volume
8672 of Lecture Notes in Computer Science, pages 892–901. Springer, 2014.

[CD18a] Eduardo Carvalho Pinto and Carola Doerr. A simple proof for the usefulness of crossover
in black-box optimization. In Proc. of Parallel Problem Solving from Nature (PPSN’18),
volume 11102 of Lecture Notes in Computer Science, pages 29–41. Springer, 2018. Full
version available at http://arxiv.org/abs/1812.00493.

[CD18b] Eduardo Carvalho Pinto and Carola Doerr. Towards a more practice-aware runtime anal-
ysis of evolutionary algorithms. CoRR, abs/1812.00493, 2018.

[CHJ+17] Dogan Corus, Jun He, Thomas Jansen, Pietro Simone Oliveto, Dirk Sudholt, and Christine
Zarges. On easiest functions for mutation operators in bio-inspired optimisation. Algorith-
mica, 78:714–740, 2017.

[CWA14] Francisco Chicano, Darrell Whitley, and Enrique Alba. Exact computation of the expec-
tation surfaces for uniform crossover along with bit-flip mutation. Theoretical Computer
Science, 545:76–93, 2014.

[DD16] Benjamin Doerr and Carola Doerr. The impact of random initialization on the runtime of
randomized search heuristics. Algorithmica, 75:529–553, 2016.

[DD18] Benjamin Doerr and Carola Doerr. Optimal static and self-adjusting parameter choices
for the (1 + (λ, λ)) genetic algorithm. Algorithmica, 80:1658–1709, 2018.

[DD20] Benjamin Doerr and Carola Doerr. Theory of parameter control mechanisms for discrete
black-box optimization: Provable performance gains through dynamic parameter choices.
In Theory of Evolutionary Computation: Recent Developments in Discrete Optimization,
pages 271–321. Springer, 2020.

[DDK18] Benjamin Doerr, Carola Doerr, and Timo Kötzing. Static and self-adjusting mutation
strengths for multi-valued decision variables. Algorithmica, 80:1732–1768, 2018.

[DDY16] Benjamin Doerr, Carola Doerr, and Jing Yang. k-bit mutation with self-adjusting k outper-
forms standard bit mutation. In Proc. of Parallel Problem Solving from Nature (PPSN’16),
volume 9921 of Lecture Notes in Computer Science, pages 824–834. Springer, 2016.

[DDY20] Benjamin Doerr, Carola Doerr, and Jing Yang. Optimal parameter choices via precise
black-box analysis. Theoretical Computer Science, 801:1–34, 2020.

[DGWY19] Benjamin Doerr, Christian Gießen, Carsten Witt, and Jing Yang. The (1+λ) evolutionary
algorithm with self-adjusting mutation rate. Algorithmica, 81(2):593–631, 2019.

[DJW12] Benjamin Doerr, Daniel Johannsen, and Carola Winzen. Multiplicative drift analysis.
Algorithmica, 64:673–697, 2012.

17

http://arxiv.org/abs/1812.00493


[DL17] Carola Doerr and Johannes Lengler. Introducing elitist black-box models: When does elitist
behavior weaken the performance of evolutionary algorithms? Evolutionary Computation,
25:587–606, 2017.

[DLMN17] Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, and Ta Duy Nguyen. Fast genetic
algorithms. In Proc. of Genetic and Evolutionary Computation Conference (GECCO’17),
pages 777–784. ACM, 2017.

[DLOW18] Benjamin Doerr, Andrei Lissovoi, Pietro Simone Oliveto, and John Alasdair Warwicker.
On the runtime analysis of selection hyper-heuristics with adaptive learning periods. In
Proc. of Genetic and Evolutionary Computation Conference (GECCO’18), pages 1015–
1022. ACM, 2018.

[dPdLDD15] Axel de Perthuis de Laillevault, Benjamin Doerr, and Carola Doerr. Money for nothing:
Speeding up evolutionary algorithms through better initialization. In Proc. of Genetic and
Evolutionary Computation Conference (GECCO’15), pages 815–822. ACM, 2015.

[DW18] Carola Doerr and Markus Wagner. On the effectiveness of simple success-based parameter
selection mechanisms for two classical discrete black-box optimization benchmark prob-
lems. In Proc. of Genetic and Evolutionary Computation Conference (GECCO’18), pages
943–950. ACM, 2018.

[DWY18a] Benjamin Doerr, Carsten Witt, and Jing Yang. Runtime analysis for self-adaptive mutation
rates. In Proc. of Genetic and Evolutionary Computation Conference (GECCO’18), pages
1475–1482. ACM, 2018.

[DWY+18b] Carola Doerr, Hao Wang, Furong Ye, Sander van Rijn, and Thomas Bäck. IOHpro-
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