
HAL Id: hal-03233796
https://hal.sorbonne-universite.fr/hal-03233796v1

Submitted on 25 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Static Mutation Strength Distributions for the
(1 + λ) Evolutionary Algorithm on OneMax

Maxim Buzdalov, Carola Doerr

To cite this version:
Maxim Buzdalov, Carola Doerr. Optimal Static Mutation Strength Distributions for the (1 + λ)
Evolutionary Algorithm on OneMax. Genetic and Evolutionary Computation Conference (GECCO
2021), Jul 2021, Lille, France. pp.660-668, �10.1145/3449639.3459389�. �hal-03233796�

https://hal.sorbonne-universite.fr/hal-03233796v1
https://hal.archives-ouvertes.fr

Optimal Static Mutation Strength Distributions for the
(1 + 𝜆) Evolutionary Algorithm on OneMax
Maxim Buzdalov
ITMO University

Saint Petersburg, Russia

Carola Doerr
Sorbonne Université, CNRS, LIP6

Paris, France

ABSTRACT

Most evolutionary algorithms have parameters, which allow a great
flexibility in controlling their behavior and adapting them to new
problems. To achieve the best performance, it is often needed to
control some of the parameters during optimization, which gave
rise to various parameter control methods. In recent works, how-
ever, similar advantages have been shown, and even proven, for
sampling parameter values from certain, often heavy-tailed, fixed
distributions. This produced a family of algorithms currently known
as “fast evolution strategies” and “fast genetic algorithms”.

However, only little is known so far about the influence of these
distributions on the performance of evolutionary algorithms, and
about the relationships between (dynamic) parameter control and
(static) parameter sampling. We contribute to the body of knowl-
edge by presenting, for the first time, an algorithm that computes
the optimal static distributions, which describe the mutation opera-
tor used in the well-known simple (1 + 𝜆) evolutionary algorithm
on a classic benchmark problem OneMax. We show that, for large
enough population sizes, such optimal distributions may be sur-
prisingly complicated and counter-intuitive. We investigate certain
properties of these distributions, and also evaluate the performance
regrets of the (1 + 𝜆) evolutionary algorithm using commonly used
mutation distributions.

1 INTRODUCTION

Many evolutionary algorithms are composed of operators that are
used within in several algorithms. In the context of bit string repre-
sentations, a very popular example of such an operator is standard
bit mutation (SBM), the variation operator that takes as input a
point 𝑥 (the “parent”), modifies it by changing the entry in each
position with some positive probability 𝑝 (independently of all
other decisions), and outputs the so-obtained “offspring” 𝑦. SBM
is a global search operator, since the probability that it generates
a particular point 𝑦 is positive, regardless of the input 𝑥 . Another
common mutation operator is the flip1 operator, which creates the
offspring by changing the entry in exactly one uniformly selected
position. This search operator is a local one. Both mutation opera-
tors are unbiased in the sense proposed by Lehre and Witt [24], i.e.,
they treat all positions and all possible values identically.

By a characterization derived in [13], unary unbiased operators
are exactly the ones that can be described by a distribution 𝐷 over
the integers {0, 1, . . . , 𝑛}. To apply them, one first samples a muta-
tion strength ℓ from this distribution and then changes the input
by applying the flipℓ operator, which flips the entry in ℓ uniformly
chosen, pairwise different positions. That SBM is unbiased now eas-
ily follows from the observation that it can be exactly characterized
by the binomial distribution Bin(𝑛, 𝑝) with 𝑛 trials (one for each
position) and success probability 𝑝 (success=bit flip). Likewise, flip1

is the operator associated to the 1-point distribution assigning all
probability mass to mutation strength 1.

Our Contribution: We want to analyze in this work how com-
mon mutation operators, such as the ones mentioned above or the
fast mutation operator suggested in [14], compare to an optimal
one. To analyze this question, we introduce the (1 + 𝜆) UUSD-EA,
the family of all (1+𝜆)-type mutation-only algorithms whose muta-
tion operator can be defined via a unary unbiased satic distribution
(which may hence depend on the problem dimension 𝑛 and the
offspring population size 𝜆, but which may not change during the
run). This family comprises all (1 + 𝜆) evolutionary algorithms
(EAs), their Randomized Local Search (RLS) counterparts (which
use the flip1 operator instead of SBM), the fastGAs, the normalized
EAs [28], etc.

We numerically compute for various combinations of 𝑛 and 𝜆 the
minimal expected runtime that can be obtained by any (1+𝜆) UUSD-
EA on OneMax in dimension 𝑛, and we compare these runtimes to
that of the classically studies (1 + 𝜆)-type algorithms mentioned
above. Our lower bounds are constructive, in that we also derive
the distributions associated to these optimal (1 + 𝜆) UUSD-EAs.
This allows us to study the properties of these optimal distributions.
Approach: Since the optimal distributions cannot be determined by
exact analytical approaches, we apply the separable CMA-ES [27]
to identify them. The CMA-ES shows very good performance, and
provides us with distributions that are optimal up to the last few
digits in the available machine precision. This is also one of the cases
where the separable version of CMA-ES is not only computationally
faster, but also yields results of same or better quality than the
default CMA-ES implementations.

Main result: Our numerical results show, among other things,
that the flip1 operator is optimal when 𝜆 is small, whereas the
conditional binomial distribution Bin>0 (𝑛, 1/2) is optimal when 𝜆
is very large – with this distribution, the (1+𝜆) UUSD-EA performs
a uniform random search. The optimal distributions in the middle
regime show a rather complex behavior, for which we can identify
a few patterns, but for which we also observe a few phenomena
that may look counter-intuitive at first glance. For instance, the
first mutation strength different from one-bit flip that gets nonzero
probability when 𝜆 grows appears to be either 𝑛 or 𝑛 − 1.

Relationship to black-box complexity and to parameter

control: Our work can be seen as a continuation of black-box com-
plexity theory for 𝜆-parallel [4] elitist [16] unary unbiased [24]
black-box algorithms with static configuration. A key advantage of
lower bounds such as ours is that it allows to rigorously quantify the
impact of individual decisions. In our case, the driving motivation
behind our analyses is a rigorous quantification of the difference be-
tween static and dynamic algorithm configurations. Put differently,
we aim at quantifying the gap between algorithms using parameter

1

ar
X

iv
:2

10
2.

04
94

4v
1

 [
cs

.N
E

]
 9

 F
eb

 2
02

1

Maxim Buzdalov and Carola Doerr

control and such that do not. In contrast to classical runtime and
black-box complexity results, our work focuses on an exact numeric
evaluation of this gap for concrete problem dimensions.

Impact:While the results of our concrete analysis may mostly
appeal to theoreticians, our work invites to take a different view
on mutation operators by defining them via distributions over the
possible mutation strengths. This alternative view makes it sub-
stantially easier to generalize concepts such as SBM, flip1, etc., an
advantage that can be leveraged, for example, for designing smooth
convergence from global to local search behavior. But the design
principle can also lead to performance gains in the static setting.
A first strong result in this context is the fastGA [14], which has
become the new state-of-the-art in several applications [25]. Our
work indicates that there is quite some untapped potential in the
design of new mutation operators, and we hope that our work
inspires new work in this direction.

Based on the findings of our work, we formulate to conjectures:
Conjecture 1:We conjecture that for each𝑛 there exists a threshold
𝜆1 (𝑛) such that for all 𝜆 ≤ 𝜆1 (𝑛) the 1-point distribution is opti-
mal. Our guess on the particular dependency is 𝜆1 (𝑛) = Θ(log𝑛).
However, we currently do not have a formal proof for this.

Conjecture 2: We conjecture that for each 𝑛 and each arbitrar-
ily small 𝜀 there exists another threshold 𝜆𝑏 (𝑛, 𝜀) such that, for
all 𝜆 ≥ 𝜆𝑏 (𝑛, 𝜀), the optimal distribution is closer than 𝜀, in any
imaginable measure – such as the maximum of differences between
probabilities across all mutation strengths – to the conditional bi-
nomial distribution Bin>0 (𝑛, 1/2). This is equivalent to stating that
the uniform random search is arbitrarily close to being optimal for
large enough 𝜆. Again, we do not yet have a formal proof.

RelatedWork:Our study continues the recentworks [6] and [7],
which provide optimal dynamic configurations for (1+1) and (1+𝜆)-
type algorithms, respectively. While their works are restricted to
specific mutation operators (variants of SMB and the 𝑘-bit flips
flip𝑘), we study in this work in a generalization to arbitrary unary
unbiased variation operators. In contrast to [6, 7] we focus on static
configurations, with the idea to build a rigorous baseline against
which we can compare dynamic parameter control methods.

For 𝜆 = 1, the work [13] quantifies the asymptotic advantage
of the best unary unbiased algorithm with dynamic distributions
against the best static one (RLS). To extend this work to (1+𝜆)-type
algorithms, a rigorous bound on the best static case is needed - a
baseline that we provide in this work for various combinations of
𝑛 and 𝜆, with the hope that the insights generated by our examples
can be leveraged to rigorously prove certain characteristics of the
optimal static unary unbiased operators.

For 𝜆 > 1, related works can be found in the context of the
parallel black-box complexity model [4, 5, 23] and for the (1 +
𝜆) EA [18, 19]. All these works, however, are either less interested
in exact runtime bounds (and focus on asymptotic runtime guaran-
tees instead) or they concern specific mutation operators only. For
generalized mutation operators, concrete examples can be found in
the mentioned works [14, 28]. We are not aware, however, of previ-
ous works explicitly studying optimal unary mutation operators.

Availability of Code and Data: All project source code and
data are available for public use at [1].

2 FROMMUTATION OPERATORS TO

MUTATION STRENGTH DISTRIBUTIONS

We are concerned in this work with a generalizing view on unary
unbiased variation operators, often referred to in the evolutionary
computation context as “mutation”. In a nutshell, a mutation op-
erator takes as input a search point 𝑥 ∈ S, S denoting the search
space, and creates from it an offspring 𝑦 ∈ S. More formally, a
mutation operator is a family (𝐷 (𝑥))𝑥 ∈S of unary distributions
over the search space S. When fed with an input 𝑥 , a new search
point 𝑦 is sampled from 𝐷 (𝑥).

One of the most common mutation operators is standard bit
mutation (SBM). In the context of pseudo-Boolean optimization
(i.e., the maximization of a function 𝑓 : {0, 1}𝑛 → R) – which is
the setting that we assume for the remainder of the paper – SBM
is often explained as follows: to obtain an offspring 𝑦 from 𝑥 , we
first create a copy of 𝑥 and then we decide for each bit position
𝑖 ∈ [𝑛] := {1, . . . , 𝑛} whether the entry shall be updated to 1 − 𝑥𝑖
(“bit flip”) or whether the current entry is maintained.The bit flip
decisions are made independently of each other. The probability
𝑝 ∈ (0, 1] to flip an entry is referred to as the mutation rate.

SBM is a prime example of a unary unbiased mutation operator in
the sense proposed by Lehre and Witt in [24]. By a characterization
proven in [13, Lemma 1], this class subsumes all variation operators
that are fully described by a distribution 𝐷 over the possible mu-
tation strengths ℓ ∈ [0..𝑛] := [𝑛] ∪ {0}. When applied to a search
point 𝑥 , the operator first samples a mutation strength ℓ ∈ [0..𝑛]
from its operator-specific distribution 𝐷 and then creates the off-
spring 𝑦 by flipping the entries in ℓ pairwise different, uniformly
selected entries.

It is not difficult to see that the operator-specific distribution
of SBM is the binomial distribution Bin(𝑛, 𝑝) with 𝑛 trials and suc-
cess probability 𝑝 . Another common operator is the 1-bit-flip op-
erator 1pt, which is used, for example, within Randomized Local
Search (RLS). 1pt creates the offspring by flipping exactly one uni-
formly chosen bit. Its operator-specific distribution over the muta-
tion strengths [0..𝑛] is hence the 1-point distribution that assigns
all probability mass to ℓ = 1. Likewise, the 𝑘pt operator flips 𝑘
pairwise different, uniformly selected bits, and its operator-specific
distribution is the 1-point distribution giving all probability mass
to ℓ = 𝑘 . Other common unary unbiased mutation operators in-
clude the “shift” SBM, SBM0→1, which is similar to SBM but which
assign all probability weight from ℓ = 0 to ℓ = 1 and the “re-
sampling” SBM, SBM>0, which assigns the probability weight of
sampling mutation strength 0 proportionally to all positive mu-
tation strengths 1 ≤ ℓ ≤ 𝑛 by assigning to each of these values
probability Bin(𝑛, 𝑝) (ℓ)/(1−(1−𝑝)𝑛); see [8, 9] for a discussion and
motivation of these two latter variants. Motivated by the observa-
tion that infrequent large “jumps” can be beneficial in evolutionary
algorithm behavior, B. Doerr et al. introduced in [14] the fast ge-
netic algorithm (GA), which samples the mutation strength from the
heavy-tailed, power-law distributionP[ℓ = 𝑘] = (𝐶𝛽

𝑛/2)−1𝑘−𝛽 with

𝐶
𝛽
𝑛/2 =

∑𝑛/2
𝑖=1 𝑖

−𝛽 and 𝛽 being some constant, often set as 𝛽 = 1.5. Fi-
nally, in [28] a normalized mutation operator was suggested, which
samples the mutation strength from a normal distributionN(𝜇, 𝜎2).
In contrast to the examples discussed above, this operators allows

2

Optimal Static Mutation Strength Distributions for the (1 + 𝜆) Evolutionary Algorithm on OneMax

Algorithm 1: The (1+𝜆) unary unbiased static distribution
EA (UUSD-EA) maximizing a function 𝑓 : {0, 1}𝑛 → R.
1 Initialization: Sample 𝑥 ∈ {0, 1}𝑛 uniformly at random

and evaluate 𝑓 (𝑥);
2 Optimization: for 𝑡 = 1, 2, 3, . . . do
3 for 𝑖 = 1, . . . , 𝜆 do

4 Sample ℓ (𝑖) ∼ 𝐷 (𝑛, 𝜆);
5 𝑦 (𝑖) ← flipℓ (𝑖) (𝑥);
6 evaluate 𝑓 (𝑦 (𝑖));
7 𝑦 ← select

(
argmax{𝑓 (𝑦 (𝑖)) | 𝑖 ∈ [𝜆]}

)
;

8 if 𝑓 (𝑦) ≥ 𝑓 (𝑥) then 𝑥 ← 𝑦;

to scale the mean and the variance of the distribution independently
of each other.

The characterization from [13, Lemma 1], which identifies muta-
tion operators via their distributions over the set [0..𝑛], is classically
only used to verify that a certain operator is unbiased. We use it
here the other way around, by asking ourselves how different opti-
mal mutation operators are from those commonly studied in the
evolutionary computation community.

The (1 + 𝜆) UUSD-EA. We study this question in the context
of the (1 + 𝜆) unary unbiased static distribution EA (UUSD-EA),
which is given by Algorithm 1. The (1 + 𝜆) UUSD-EA is initialized
uniformly at random. In each iteration, it samples 𝜆 points, which
are all sampled from the same unary unbiased mutation operator.
We denote the distribution from which the mutation strength is
sampled by 𝐷 (𝑛, 𝜆) to indicate that it may depend on 𝑛 and 𝜆,
but not on any information accumulated during the run of the
algorithm. That is, the (1+𝜆) UUSD-EA allows only static mutation
operators. For creating the 𝜆 search points that shall be evaluated in
the current iteration, the (1 + 𝜆) UUSD-EA samples for each one of
them a mutation strength ℓ (𝑖) and then creates the 𝑖-th “offspring”
by applying the flipℓ (𝑖) operator, which flips ℓ (𝑖) pairwise different,
uniformly chosen bits in the input 𝑥 . The best of these offspring
replaces 𝑥 if it is at least as good as it. It is irrelevant for the context
of our work how the ties are broken in line 8, as our results apply
to all tie-breaking rules.

OneMax:We focus on OneMax, i.e., our goal is to determine
the optimal static unary unbiased distributions for maximizing the
function

∑𝑛
𝑖=1 𝑥𝑖 . In the context of our work, this problem is equiv-

alent to that of minimizing the Hamming distance to an arbitrary
bit string 𝑧 ∈ {0, 1}𝑛 [24].

Expected Runtimes:As common in literature on theory of evo-
lutionary computation, we understand as an optimal distribution
the one that minimizes the expected runtime, which we measure
here in terms of generations. Since the offspring population size
𝜆 is fixed, this does not impact our results: a parallel runtime of 𝑇
generations corresponds to a runtime of exactly (𝑇 − 1)𝜆 + 1 func-
tion evaluations. As runtime we therefore denote the number of
iterations that the algorithm performs until it evaluates an optimal
solution for the first time.

(Non-)Uniqueness of the Optimal Distributions: We note
that we do not have any guarantee at the moment that the optimal

distributions are unique. In fact, we observe that for any fixed
problem dimension 𝑛, there is a certain threshold 𝜆(𝑛) before which
small differences in the distributions cause measurable effects on
the expected running times, so that the optimal distribution seems
to be unique from the point of view of our computations. After the
threshold, however, differences between the distributions have no
measurable effect on the expected runtime, so that our algorithm
may consider different ones as optimal, and may hence not always
return the same distribution.

Notation: For combinations of 𝑛 and 𝜆 for which the optimal
distributions are unique, we denote by 𝑃∗ (𝑘 | 𝑛, 𝜆) the probability
that this distribution assigns to flipping 𝑘 bits, 𝑘 ∈ [𝑛]. To ease
the reading, we sometimes use the same notation also for those
distributions which yield expected running times that deviates only
negligibly from what appears to be the true optimum.

3 ALGORITHM FOR COMPUTING THE

OPTIMAL DISTRIBUTIONS

Our algorithm to compute the optimal static unary unbiased distri-
butions is based on the dynamic programming approach from [7].
We start the description by explaining the principles of dynamic
programming that are used to compute the expected running time
𝑇𝑓 of the (1+𝜆) UUSD-EA, measured in iterations, assuming it starts
at fitness 𝑓 and the values 𝑇𝑓 ′ are known for all 𝑓 ′ > 𝑓 . We note
then that a (practical) analytic solution of the problem of finding an
optimal distribution is quite unlikely to exist even for small values
of𝑛, and instead give a black-box minimization scheme with the use
of a separable CMA-ES [27], a simplified and more computationally
efficient version of the well-known continuous optimizer [20]. We
complete with an investigation of convergence properties, which
allows us to say, with great confidence, that separable CMA-ES
finds a globally optimal distribution in a constant fraction of runs.

3.1 Dynamic Programming on Expected Times

We first explain how to compute 𝑇𝑓 for a given distribution 𝐷 =
(𝐷𝑘)𝑘∈[0..𝑛] . We begin with computing the probabilities 𝑆𝑘,𝑔 of
sampling an offspringwith fitness𝑔 by flipping exactly𝑘 bits chosen
uniformly without replacement in a solution of fitness 𝑓 . Note
that these quantities depend only on the current fitness 𝑓 and
the problem properties, that is, they depend neither on 𝜆 nor on
𝐷 . It holds from simple combinatorics that 𝑆𝑘,𝑔 =

(𝑛−𝑓
𝑔−𝑓 +𝑖

) (𝑓
𝑖

)/(𝑛𝑘) ,
where we assume this probability to be zero if one of the binomial
coefficient arguments are out of bounds.

Next we compute the probabilities (𝑄 (1)𝑔)𝑔=𝑓 +1,𝑓 +2,...,𝑛 of sam-
pling a single offspring of fitness 𝑔. For 𝑔 > 𝑓 they are derived from
𝑆𝑘,𝑔 by using the distribution parameters (𝐷𝑘)𝑘∈[0..𝑛] as follows:

𝑄
(1)
𝑔 =

∑︁𝑛

𝑘=1 𝐷𝑘𝑆𝑘,𝑔 .

As the (1 + 𝜆) UUSD-EA is an elitist algorithm, and the behavior
of the algorithmwith different parents having the same fitness value
is the same, with the remaining probability the algorithm remains in
the same state, which we capture as𝑄 (1)

𝑓
= 1−∑𝑔=𝑓 +1,𝑓 +2,...,𝑛 𝑄

(1)
𝑔 .

3

Maxim Buzdalov and Carola Doerr

The probability of each possible fitness improvement after sam-
pling all the 𝜆 offspring is then computed as follows:

𝑄
(𝜆)
𝑔 =

(∑︁𝑔

𝑖=𝑓
𝑄
(1)
𝑖

)𝜆
−
(∑︁𝑔−1

𝑖=𝑓
𝑄
(1)
𝑖

)𝜆
. (1)

In simple words, the new fitness is 𝑔 if all offspring have the fitness
in [𝑓 ..𝑔], but not all of them have the fitness in [𝑓 ..𝑔 − 1], counting
all offspring with fitness smaller than 𝑓 towards 𝑓 .

Finally, the expected time to reach the optimum from the fitness
𝑓 is computed using the following expression:

𝑇𝑓 =
1

1 −𝑄 (𝜆)
𝑓

(
1 +

∑︁𝑛

𝑔=𝑓 +1𝑄
(𝜆)
𝑔 𝑇𝑔

)
, (2)

by standard arguments as detailed in [6, 7].
The time and memory complexities of such a step is 𝑂 (𝑛2) for

computing 𝑆𝑘,𝑔 and 𝑂 (𝑛) for the other stages. As there are 𝑛 dif-
ferent fitness values for 𝑓 , the time complexity of computing all
the expected running times for one set of algorithm parameters
(𝜆, 𝐷) is𝑂 (𝑛3), whereas thememory complexity is still𝑂 (𝑛2) as the
𝑆𝑘,𝑔 matrix may be discarded once 𝑓 changes. However, since 𝑆𝑘,𝑔
depend only on 𝑛 and 𝑓 , one may evaluate up to𝑂 (𝑛) different com-
binations of algorithm parameters (𝜆, 𝐷) in a single run by merging
the activities corresponding to each 𝑓 , which preserves the total
time complexity of 𝑂 (𝑛3) and the memory complexity of 𝑂 (𝑛2).
This feature will turn later to be beneficial when a population-based
optimizer is applied to find the best possible distribution 𝐷 .

3.2 Optimization with Separable CMA-ES

When solving the problem of finding an optimal distribution 𝐷 , one
could choose to express each of 𝑇𝑓 as a function of 𝑛 + 1 distribu-
tion parameters (𝐷𝑘)𝑘∈[0..𝑛] , promote such expressions through
dynamic programming, take their weighed sum for the expected
running time from a random point and perform analytical optimiza-
tion using standard analysis approaches. However, the presence
of 𝑄 (𝜆)

𝑓
in the denominator in (2) makes the resulting expression

nonlinear even for 𝜆 = 1, and having a 𝜆 in the exponent in (1)
makes it even harder. The resulting expression appears to be a ratio
of polynomials of degree Θ(𝑛𝜆) with 𝐷𝑘 as variables, which makes
it infeasible to perform an exact analytical minimization even for
small problem sizes.

Such large degree of the polynomials also effectively prevents
gradient-based optimization, since the exact numeric computation
of the derivatives – although possible – would require considerable
computational resources, which furthermore significantly increase
with 𝜆. At the same time, evaluating the expected runtime of the
(1 + 𝜆) UUSD-EA for a given distribution does not depend on 𝜆,
assuming the computations are done in machine precision. This
makes it possible to apply black-box optimization techniques to
identify distributions which minimize the expected runtime. From
the large set of possible black-box optimization techniques, we
chose the CMA-ES family of algorithms [20] that are well suitable
for such kind of optimization. The application of CMA-ES requires
a few clarifications, which we list below.
• Our implementation of CMA-ES is based on the one from
Apache Commons Math, version 3.6.1. The choice of the Java

0 2,000 4,000 6,000 8,000
10−6

10−2

102

Fitness evaluations

Fi
tn
es
s−

10
.0
22
52
2

Figure 1: Fitness as a function of the number of evaluations

for 𝑛 = 16 and 𝜆 = 8. First four runs are shown.

programming platform was due to the computational com-
plexity of the fitness evaluation. On one hand, it is too expen-
sive to be implemented in Python or Matlab (the languages
with reference implementations of CMA-ES maintained by
the authors of this algorithm). On the other hand, the costs
of inter-process communication are not negligible compared
to fitness evaluation, so evaluation of fitness shall happen in
the same process as the optimizer.
• To search the distributions, we tune the CMA-ES to respect
box constraints (each variable is in [0, 1]) and, before fitness
evaluation, we normalize variable values in the Lamarckian
sense, that is, without updating the individuals themselves,
which would clash with the assumptions made by CMA-ES.
• As we perform distribution optimization for a noiseless prob-
lem, we can safely set 𝐷0 to zero, which restricts the search
to the 𝑛-dimensional cube [0, 1]𝑛 .

We had to modify the implementation of CMA-ES, as the par-
ticular class hierarchy in Apache Commons Math does not allow
to evaluate the whole population in a single call, which we bene-
fit from. Besides, after some experimentation, we switched to the
separable CMA-ES [27], which is more efficient in terms of compu-
tational costs, but also produced better results (likely due to less
operations that caused precision loss). We also vastly optimized its
implementation, which resulted in an 8× reduction of the wall-clock
running time.

The configurable parameters of CMA-ES were: population size
10, initial step size 1.0, random initial guess, computational budget
100𝑛2. The optimizer, however, did not reach the computational
budget, as, in all runs, it converged to a single point and terminates
at one of the degeneration criteria much earlier than that.

3.3 Convergence Analysis

The preliminary experiments showed that CMA-ES typically con-
verges relatively quickly to nearly the same value in most of runs.
Fig. 1 shows example runs for 𝑛 = 16 and 𝜆 = 8. Runs for all 𝑛 and
𝜆 demonstrate similar behavior. The rest of the paper is based on
the data collected for 𝑛 ∈ {3, 5, 8, 11, 16, 23, 32, 45, 64, 91, 100} and
𝜆 ∈ [1..7] ∪ {2𝑖 | 3 ≤ 𝑖 ≤ 10}. For each (𝑛, 𝜆) pair we performed 50
independent runs of the CMA-ES.

We observed that in a constant fraction of runs the algorithm
optimized the distribution to produce the same expected running

4

Optimal Static Mutation Strength Distributions for the (1 + 𝜆) Evolutionary Algorithm on OneMax

0 20 4010−17

10−8

101

Run number, = = 3

Fi
tn
es
sd

i�
er
en
ce

to
be
st

_ = 1
_ = 8
_ = 32
_ = 256

0 20 40
Run number, = = 100

_ = 6
_ = 8
_ = 32
_ = 256

Figure 2: Relative loss of the expected runtime induced by

the result of the 50 CMA-ES runs, when compared against

the best expected runtime. Plots are for 𝑛 = 3 (left) and 𝑛 =
100 (right), respectively, values are sorted by increasing loss.

100 101 102 103

10−10

100

_

M
ax

st
dd

ev

= = 3 = = 11
= = 5 = = 16
= = 8 = = 100

Figure 3: Maximal standard deviations, out of 𝑘 standard de-

viations of 𝑃∗ (𝑘 | 𝑛, 𝜆), as functions of 𝜆 for various 𝑛.

time up to precision of 10−12 and better. Fig. 2 shows examples for
some values of 𝜆 for 𝑛 = 3 and 𝑛 = 100. Note that there is no curve
for 𝜆 = 1 in the 𝑛 = 100 plot since in this case all the values were
identical. Since the delivered precision is very close to the precision
available for the 64-bit floating point machine numbers, we assume
that CMA-ES reaches the global optimum of the problem in most
of the cases. For further analyses we selected only the runs that are
at most 1 + 10−9 times greater than the obtained minimum.

We have also performed the robustness analysis for the distri-
butions produced by the optimizer. For each 𝑛, 𝜆, and 𝑘 , the stan-
dard deviation of the values 𝑃∗ (𝑘 | 𝑛, 𝜆) was computed across all
the good enough distributions. The results are presented in Fig. 3,
where an intriguing picture appears. First, small 𝜆 produce very
small (much less than 10−10) maximal standard deviations, which
then jump to the region of [10−8; 10−5] and remain there until 𝜆
reaches a certain threshold. Above that threshold, the maximal
standard deviations experience some sort of phase shift and raise to
very high values reaching 0.1 and above. Note that, by our selection
of the data that is considered in this computation, the (1+𝜆) UUSD-
EA still shows nearly identical expected running times on such
different distributions and values of 𝜆. We show later in the next
section that this is, in fact, an expected behavior that corresponds
to situations when there is a single global optimum, but a number

101 102
10−2

100

102

=

W
al
l-c

lo
ck

tim
e

_ = 1
_ = 32
_ = 1024
2 · 10−6 · =4
4 · 10−6 · =4.2

Figure 4: Average wall-clock times for various 𝜆 together

with guesses for asymptotic bounds.

100 101 102 103

0

0.5

1

_

Pr
ob
ab
ili
ty

: = 1 : = 10
: = 2 : = 12
: = 3 : = 14
: = 8 : = 16
: = 9

Figure 5: Probabilities of flipping 𝑘 bits in optimal static mu-

tation strength distributions for different population sizes 𝜆
for optimizing OneMax in dimension 𝑛 = 16.

of different distributions coincide in its running time expectation
with that global optimum up to the machine precision.

Fig. 4 displays the average wall-clock times required to find the
optimal distribution for all available 𝑛 and few values of 𝜆. The
available data suggests that the time complexity scales polynomi-
ally with the degree of 4 + 𝜀 for some small 𝜀, which, together with
the earlier cubic runtime bound for the evaluation of a given dis-
tribution, suggests that the CMA-ES requires 𝑂 (𝑛1+𝜀) iterations
before hitting one of its termination criteria.

4 OPTIMAL DISTRIBUTIONS

We now take a closer look at the distributions returned by the
algorithm from Sec. 3. As mentioned, the data is available at [1],
and we present here only our main findings.

We first study the impact of 𝜆 on the optimal distributions. To
this end, we fix the dimension and analyze how for each possible
mutation strength𝑘 ∈ [1..𝑛] its probability of being chosen depends
on 𝜆. Fig. 5 illustrates these probabilities for dimension 𝑛 = 16.

The 1-point distribution Pr[ℓ = 1] = 1 is optimal when 𝝀
is small. For 𝑛 = 16, we see that deterministically flipping one
bit (Pr[ℓ = 1] = 1) is optimal for 𝜆 ≤ 4. Note that for 𝜆 = 1 this
distribution defines Randomized Local Search (RLS), an algorithm

5

Maxim Buzdalov and Carola Doerr

0 2 4 6 8 10 12

0

0.2

0.4

:

Pr
ob
ab
ili
ty

_ = 64
_ = 128
_ = 256
_ = 512
_ = 1024
Bin>0 (11, 12)

Figure 6: Values 𝑃∗ (𝑘 | 𝑛 = 11, 𝜆) for large 𝜆 plotted against

𝑘 . The larger 𝜆, the more the curves resemble the binomial

distribution Bin>0 (11, 1/2), which is also plotted.

that is often used as baseline for comparisons, both in empirical [17]
and in theoretical [15] research. Our data shows that for 𝑛 ∈ {8, 11}
the generalized (1 + 𝜆) RLS is optimal for 𝜆 ≤ 3 and suboptimal
for 𝜆 = 4. Similarly, for 𝑛 ∈ {16, 23, 32} it is optimal for 𝜆 ≤ 4, and
for 𝑛 ∈ {64, 91, 100} the threshold is 𝜆 = 5. We are confident that
this describes a general trend of a positive correlation between the
dimension 𝑛 and the maximal 𝜆 for which the 1-point distribution
Pr[ℓ = 1] = 1 is optimal.

The conditional binomial distribution Bin>0(𝒏, 1/2) is ar-
bitrarily close to an optimal one for large 𝝀.We plot in Fig. 6
the optimal probability 𝑃∗ (𝑘 | 𝑛 = 11, 𝜆) for large 𝜆. The curves
for 𝜆 = 512 and 𝜆 = 1 024 approximate the conditional binomial
distribution Bin>0 (11, 1/2), which we plot as dotted red line. This
can be explained as follows: the (1 + 𝜆) UUSD-EA with the static
mutation strength distribution Bin>0 (𝑛, 1/2) is simply the random
search algorithm, which samples all search points, except the par-
ent, uniformly at random. For 𝜆 = Ω(2𝑛), this algorithm has a very
good chance of sampling every point 𝑦 ∈ {0, 1}𝑛 , so that it also has
a decent chance of hitting the optimum. When 𝜆 is not much larger
than 2𝑛 , the quality of a distribution is significantly influenced by
each of its parameters, so for these cases our computations provide
distributions that are almost identical to random search in each
independent run. When 𝜆 is much bigger than 2𝑛 , however, the
situation changes: while the common sense suggests that the truly
optimal distribution gets even closer to pure random search, the
quality of a distribution quickly loses sensitivity to its parameters,
and we obtain different distributions, which all yield practically
indistinguishable expected runtimes. We provide an example for
𝑛 = 3 in Tab. 1, where we observe that for 𝜆 ≤ 128 the average
of the computed static mutation strength distributions converge
against Bin>0 (𝑛, 1/2). The standard deviation of the independent
runs of our optimizer are negligible in this regime. For 𝜆 = 256, 512,
and 1 024, however, the maximum standard deviation among the
three mutation strengths are 0.07, 0.12, and 0.17, respectively. Fig. 7
plots the results of all 50 independent runs for 𝜆 = 1 024.

𝑷∗(1 | 𝝀, 𝒏) decreases monotonically with increasing 𝝀.
For fixed dimension 𝑛, the importance of 1-bit flips significantly

Table 1: Average values of the recommended distributions

𝑃∗ (𝑘 | 𝑛 = 3, 𝜆) for different 𝜆 and all mutation strengths 𝑘 .
For 𝜆 ≤ 128 the standard deviations are negligible, then grow

quickly (see Figure 3). Unreliable values are indicated with

gray font. We add Bin>0 (3, 1/2) for comparison.

𝜆
𝑘 23 24 25 26 27 28 29 210 Bin>0 (3, 12)
1 0.558 0.448 0.42937 0.42857 0.42857 0.413 0.371 0.364 0.42857
2 0.331 0.414 0.42797 0.42857 0.42857 0.408 0.364 0.342 0.42857
3 0.110 0.138 0.14266 0.14286 0.14286 0.179 0.265 0.294 0.14286

0 0.2 0.4 0.6 0.8 1

20

40 : = 1
: = 2
: = 3

Figure 7: 𝑃∗ (𝑘 | 𝑛 = 3, 𝜆 = 1 024) for each of the 50 indepen-

dent runs of our optimizer. The expected optimization time

is identical for all of them (0.875).

100 101 102 103
0

0.5

1

_

Pr
ob
ab
ili
ty

= = 8, : = 1
= = 8, : = 2
= = 11, : = 1
= = 11, : = 2
= = 16, : = 1
= = 16, : = 2
= = 23, : = 1
= = 23, : = 2
= = 32, : = 1
= = 32, : = 2
= = 45, : = 1
= = 45, : = 2
= = 64, : = 1
= = 64, : = 2

Figure 8: 𝑃∗ (1 | 𝜆, 𝑛) and 𝑃∗ (2 | 𝜆, 𝑛) in dependence of 𝜆, for
selected problem dimensions 𝑛.

decreases as 𝜆 grows. We have seen this for 𝑛 = 16 in Fig. 5. This
trend generalizes to other problem dimensions, which can be seen
in Fig. 8, where we plot the probabilities 𝑃∗ (1 | 𝜆, 𝑛) and 𝑃∗ (2 | 𝜆, 𝑛)
for 𝑛 ∈ {8, 11, 16, 23, 32, 45, 64}.

𝑷∗(2 | 𝝀, 𝒏) is non-monotonic in 𝝀.We clearly see from Fig. 8
that, for fixed dimension 𝑛, the optimal probability to flip two bits
is non-monotonic in 𝜆. The 𝜆 at which it becomes non-zero appears
to be monotonic in 𝑛, however, the set of 𝜆 we used is not enough
to determine the exact threshold. It is 𝜆 = 8 for 𝑛 = 8, 8 < 𝜆 ≤ 16
for 𝑛 ∈ {11, 16, 23}, and it is 16 < 𝜆 ≤ 32 for 𝑛 ∈ {32, 45, 64, 91, 100}.
Surprisingly enough, this threshold is always larger than the value
at which 𝑃∗ (1 | 𝜆, 𝑛) becomes less than one. We do not see any
pattern in the points at which Pr[𝑘 = 2] starts to decrease again.

Flipping all bits can be optimal. Intuitively, flipping more
than 𝑛/2 bits can be optimal in an elitist algorithm only when

6

Optimal Static Mutation Strength Distributions for the (1 + 𝜆) Evolutionary Algorithm on OneMax

Table 2: Combinations of 𝑛 and 𝜆 for which 𝑃∗ (𝑛 | 𝑛, 𝜆) > 0 ,
i.e., the optimal probability of flipping all bits is non-zero.

𝜆
𝑛 3 4 5 6 7 8 16 32 64 128 256 512 1024

8 + + + + + + + + + +
11 + + + + +
16 + + + + +
23
32 + + + + +
45
64 + + +
91 +
100 + + +

23 24 25 26
0.00

0.01

0.02

_

Pr
ob
ab
ili
ty

: = 52 : = 54
: = 55 : = 57
: = 59 : = 60
: = 61 : = 62
: = 63 : = 64

Figure 9: 𝑃∗ (𝑘 | 𝑛 = 64, 𝜆), in dependence of 𝜆, and for all

values 𝑘 ∈ [50, 64] for which there is at least one 𝜆 such that

𝑃∗ (𝑘 | 𝑛, 𝜆) > 0. Note that, for all these 𝑘 , 𝑃∗ (𝑘 | 𝑛, 𝜆) = 0 for

𝜆 ∈ {128, 256, 512, 1024}.

OM(𝑥) < 𝑛/2. It may therefore be surprising that even for mutation
strength ℓ = 𝑛 (i.e., flipping all bits) the optimal static probability
can be non-zero already for comparatively small 𝜆. In Tab. 2 we
show for which combinations of 𝑛 and 𝜆 the optimal probability of
flipping all bits is non-zero. Note that for some 𝑛 we have not seen
any 𝜆 where this probability is nonzero, and this may be related
to the parity of 𝑛: for 𝑛 ∈ {23, 45, 91} the small 𝜆 feature rather
a nonzero 𝑃∗ (𝑛 − 1 | 𝑛, 𝜆) instead. So far we do not have any
explanation for the observed patterns.

We take a set Λ = {6, 7, 8, 16, 32, 64} and show an example in
Fig. 9, where we display 𝑃∗ (𝑘 | 𝑛 = 64, 𝜆 ∈ Λ) for all 𝑘 ∈ [50, 64]
for which there exists at least one 𝜆 ∈ Λ with 𝑃∗ (𝑘 | 𝑛 = 64, 𝜆) > 0.
Interestingly, 𝑃∗ (𝑘 | 𝑛 = 64, 𝜆) = 0 for all tested 𝜆 > 64. We also see
that only nine different 𝑘 appear out of [50, 64], of which at most
three have a non-zero optimal probability for any of the tested 𝜆.

The number of mutation strengths 𝒌 with 𝑷∗(𝒌 | 𝝀, 𝒏) >
0 increases with 𝝀, but not monotonically. We summarize in
Tab. 3 the number of different mutation strengths 𝑘 for which
𝑃∗ (𝑘 | 𝜆, 𝑛) > 0. While there is a general trend for an increasing
number of such𝑘 with increasing 𝜆, these trends are non-monotonic.
From the previous insights, however, it is clear that for every𝑛 there
exists a threshold 𝜆(𝑛) such that for all 𝜆 > 𝜆(𝑛) the number of 𝑘
with 𝑃∗ (𝑘 | 𝜆, 𝑛) > 0 is equal to 𝑛.

Table 3: Number of different mutation strengths 𝑘 for which

𝑃∗ (𝑘 | 𝜆, 𝑛) > 0, in dependence of 𝑛 and 𝜆.

𝜆
𝑛 3 4 5 6 7 8 16 32 64 128 256 512 1024

8 1 2 2 3 3 5 4 5 7 8 8 8 8
11 1 2 2 2 2 4 5 5 4 7 9 11 11
16 1 1 2 3 3 4 6 4 5 5 9 9 10
23 1 1 2 2 2 4 5 6 6 6 7 9 11
32 1 1 2 2 3 4 5 7 6 5 7 7 9
45 1 1 1 2 2 3 5 7 6 7 8 8 8
64 1 1 1 2 3 4 4 7 6 8 8 7 8
91 1 1 1 2 2 3 6 6 6 7 7 9 9
100 1 1 1 2 3 2 6 6 6 7 8 9 9

Table 4: Values of 𝑃∗ (𝑘 | 𝑛 = 11, 𝜆) for selected 𝜆.

𝜆
𝑘 4 5 6 7 8 16 32 64 Bin>0 (11, 12)
1 0.9919 0.9459 0.9156 0.8937 0.8555 0.6337 0.4797 0.3483 0.0054
2 0.2483 0.3241 0.3714 0.0269
3 0.0806
4 0.0530 0.1612
5 0.2257
6 0.2257
7 0.1068 0.1865 0.1612
8 0.0162 0.0677 0.0938 0.0806
9 0.0748 0.0217 0.0269
10 0.0081 0.0541 0.0844 0.1063 0.0875 0.0270 0.0054
11 0.0040 0.0005

A closer look for small 𝝀. It is well known that small values
of 𝜆 are preferable for the optimization of simple function such
as OneMax [21]. We therefore take a more detailed look at small
values in Tab. 4, wherewe list for𝑛 = 11, 𝜆 ∈ [4..8]∪{16, 32, 64}, and
for all possible mutation strengths 𝑘 ∈ [11] the optimal probability
𝑃∗ (𝑘 | 𝑛, 𝜆). We recall from above that for 𝜆 ≤ 3 the one-point
distribution assigning all weight to 𝑘 = 1 is optimal. For 𝜆 = 4 and
𝜆 = 7, the optimal probability 𝑃∗ (1 | 𝑛 = 11, 𝜆) is slightly less than
1, and the remaining probability mass is assigned to 𝑘 = 10, i.e., to
the operator flipping all bits but one. For 𝜆 = 8 two more values,
𝑘 = 4 and 𝑘 = 11, are also chosen with positive probability. As
already discussed in the context of Tab. 3 and Fig. 6, the number
of mutation strengths 𝑘 with 𝑃∗ (𝑘 | 𝑛 = 11, 𝜆) > 0 increases
for increasing 𝜆, and the distribution converges to the conditional
binomial distribution Bin>0 (11, 1/2), which we include in the table
for reference.

5 RUNTIME COMPARISON

After having focused on the distributions in the previous section,
we now study the runtime of the optimal (1 + 𝜆) UUSD-EA in
comparison to other common (1 + 𝜆) UUSD-EAs. We include in
our comparison the (1 + 𝜆) EA variants with SBM, SBM>0, and
SBM0→1 standard bit mutation operators, the (1 + 𝜆) RLS, and the
(1 + 𝜆) fastGA with different 𝛽 ∈ {1.3, 1.5, 1.7}. We also considered
the variant of the latter which directly samples mutation strengths
ℓ proportional to ℓ−𝛽 for the same parameter values.

It is not difficult to see that, for any fixed 𝑛, the expected runtime
of the optimal (1 + 𝜆) UUSD-EAs converge to 1 − 1/2𝑛 as 𝜆 →∞.
This is also the case for all (1 + 𝜆) UUSD-EA variants that assign a

7

Maxim Buzdalov and Carola Doerr

positive probability to each positive mutation strength 𝑘 ∈ [𝑛], and
this for all problems 𝑓 : {0, 1}𝑛 → R. Since SBM and fast mutation
satisfy these requirements, the expected runtime of all (1 + 𝜆) EA
variants as well as that of the fastGA variants also converges to
1 − 1/2𝑛 , but at a possibly much different speed. The expected
runtime of the generalized (1 + 𝜆) RLS, in contrast, converges to
𝑛/2 onOneMax, since, hand-waivingly, this is the expected distance
to the optimum after initialization and the probability to make a
progress of 1 in each iteration converged to 1 as 𝜆 → R.

In Table 5 we present the expected runtimes of the optimal
(1 + 𝜆) UUSD-EA(s) on OneMax for all different combinations of 𝑛
and 𝜆 we have. Note that these numbers are the lower bounds for all
(1+𝜆) UUSD-EAs, including the algorithms mentioned above. Note
also that algorithms obtaining a better expected runtime require
adaptive parameter choices.

In Figures 10 we illustrate the regret in the expected runtime
of common (1 + 𝜆) UUSD-EAs compared to the optimal one, for
𝑛 ∈ {3, 100}, respectively. Corresponding to our discussion above,
we observe that for 𝑛 = 3 all algorithms, with the exception of RLS,
converge to the same optimal expected runtime of 0.875 = 1 − 1/8
when 𝜆 →∞, whereas the generalized (1+𝜆) RLS converges to 1.5,
which corresponds to a factor 12/7 ≈ 1.71... relative disadvantage.

Note that the regrets are not monotone for those algorithms
which never flip zero bits, except for the (1 + 𝜆 RLS. As 𝜆 grows
from the small values, their regret decreases, most probably as
flipping more than one bit becomes a better choice. However, with
further increase of 𝜆, the fact that these algorithms flip many bits
with a small probability turns to a disadvantage. Note how the
heavy-tailed algorithm that samples the mutation strength directly
from a power-law distribution with the smallest tested 𝛽 = 1.3
becomes a clear winner at 𝜆 ≥ 7. The similar behavior is seen also
for 𝑛 = 100 with the exception that the values of 𝜆 are not large
enough to observer the complete convergence picture.

6 CONCLUSION

We have analyzed in this paper the dependence of 𝑃∗ (𝑘 | 𝑛, 𝜆), the
optimal probability of flipping 𝑘 bits in the (1 + 𝜆) EA-UUSD, in
dependence of 𝑛 and 𝜆. Among other insights, we have shown that
the (1 + 𝜆) RLS is optimal when 𝜆 is small, and that the value for
which it ceases to be optimal increases with increasing 𝑛. We have
also seen that, for fixed 𝑛, the distribution 𝑃∗ (𝑘 | 𝑛, 𝜆) converges to
the conditional binomial distribution Bin>0 (𝑛, 1/2) when 𝜆 →∞.

For future work, we consider the following particularly exciting.
1) Formalizing the observations into rigorous results: We

believe that some of the observations made in this work could be
formalized with reasonable effort.

2) Analyzing benefits of generalized mutation for more

complex problems: For practitioners, our work is perhaps most
interesting in that it invites to consider mutation operators through
the lens of probability distributions over the set of possible radii.
This idea should show its full potential on problems that are more
complex than OneMax. The fastGA proposed in [14] and fast AIS
from [10] are compelling examples that shows that such general-
ization can indeed be very beneficial [25, 26].

3) Transferring the generalizations to variation operators

of higher arity: The quest for analyzing more general variation

20 22 24 26 28 210
10−7

10−3

101

= = 3

_

Ru
nt
im

e
re
gr
et

RLS ℓ ∼ pow(1.3) (1 + _) fast, V = 1.3
(1 + _) EA ℓ ∼ pow(1.5) (1 + _) fast, V = 1.5
(1 + _) EA0→1 ℓ ∼ pow(1.7) (1 + _) fast, V = 1.7
(1 + _) EA>0

20 22 24 26 28 210
10−2

100

102

= = 100

_
Ru

nt
im

e
re
gr
et

Figure 10: Regrets of expected runtime of different (1 +
𝜆) UUSD-EAs on OneMax, in dependency of 𝜆, compared to

the runtime of the optimal (1 + 𝜆) UUSD-EA computed in

Sec. 4, for 𝑛 = 3 (top) and 𝑛 = 100 (bottom). The algorithms

that sample themutation strength ℓ directly from the power-

law distributionwith parameter 𝛽 are denoted as ℓ ∼ pow(𝛽).
The notation for other algorithms is standard.

operators is not restricted to mutation alone, but also generalizes
to variation operators of higher arity, called “crossover” or “re-
combination” operators in evolutionary computation. In a simplest
extension, one could study effects of changing the binomial dis-
tribution associated with the number of bits that is taken from
each parent in uniform crossover. We did not yet investigate this
idea further, but we hope that a de-coupling of mean and variance,
similarly as proposed for variation in [28], may be beneficial.

4) Interplay of generalized mutation with other variation

operators: The benefits of generalized mutation operators are very
likely not restricted to mutation-only algorithms, but could also
improve algorithms that use variation operators of different ari-
ties. First examples demonstrating clear advantages of heavy-tailed
mutation in the (1 + (𝜆, 𝜆)) GA [12] were recently shown in [2, 3].

5) Extensions to the dynamic case: We studied in this work
the case of static distributions 𝑃∗ (𝑘 | 𝑛, 𝜆), whereas it is well known
that a dynamic choice of the mutation rates, or algorithms’ param-
eters in general, can lead to significant performance gains [11, 22].
Combining the analyses made in [7] for the optimal dynamic 1pt
and the optimal dynamic SBM operators with the approach taken
in this work (the generalization to arbitrary distributions) would
provide an exact quantification of the disadvantage of static against
dynamic mutation operator choices.

8

Optimal Static Mutation Strength Distributions for the (1 + 𝜆) Evolutionary Algorithm on OneMax

Table 5: Expected runtimes (in generations) of the optimal (1 + 𝜆) UUSD-EA(s) on OneMax for different combinations of 𝑛
(rows) and 𝜆 (columns), rounded to two digits. For every fixed 𝑛, the optimal expected runtime converges to 1− 1/2𝑛 as 𝜆 →∞.

𝜆
n 1 2 3 4 5 6 7 8 16 32 64 128 256 512 1024
3 3.50 2.26 1.87 1.64 1.48 1.37 1.28 1.21 0.96 0.88 0.88 0.88 0.87 0.87 0.87
5 7.97 4.78 3.78 3.26 2.92 2.67 2.49 2.35 1.78 1.39 1.10 0.98 0.97 0.97 0.97
8 16.20 9.32 7.12 6.04 5.36 4.89 4.54 4.27 3.15 2.43 1.98 1.67 1.39 1.14 1.01
11 25.59 14.45 10.84 9.11 8.04 7.30 6.76 6.34 4.63 3.53 2.82 2.33 2.01 1.83 1.62
16 43.00 23.87 17.64 14.62 12.83 11.60 10.71 10.02 7.26 5.46 4.31 3.54 3.01 2.61 2.26
23 69.95 38.35 28.02 22.99 20.04 18.04 16.60 15.50 11.14 8.32 6.51 5.30 4.46 3.83 3.34
32 107.69 58.52 42.40 34.52 29.91 26.84 24.62 22.94 16.34 12.14 9.42 7.62 6.38 5.47 4.79
45 166.58 89.83 64.63 52.27 45.03 40.25 36.82 34.23 24.17 17.84 13.74 11.05 9.21 7.87 6.86
64 259.25 138.90 99.31 79.86 68.44 60.95 55.59 51.56 36.09 26.45 20.23 16.17 13.39 11.41 9.92
91 400.44 213.38 151.76 121.44 103.60 91.93 83.62 77.39 53.70 39.07 29.70 23.59 19.45 16.50 14.31
100 449.42 239.17 169.88 135.79 115.70 102.57 93.24 86.24 59.70 43.36 32.90 26.09 21.48 18.22 15.79

REFERENCES

[1] Authors Anonymized. 2021. Code and data repository for this paper. Blinded for
GECCO reviews.

[2] Denis Antipov, Maxim Buzdalov, and Benjamin Doerr. 2020. Fast mutation in
crossover-based algorithms. In Proc. of Genetic and Evolutionary Computation Con-
ference (GECCO’20). ACM, 1268–1276. https://doi.org/10.1145/3377930.3390172

[3] Denis Antipov and Benjamin Doerr. 2020. Runtime Analysis of a Heavy-Tailed
(1 + (𝜆, 𝜆)) Genetic Algorithm on Jump Functions. In Proc. of Parallel Problem
Solving from Nature (PPSN’20) (LNCS), Vol. 12270. Springer, 545–559. https:
//doi.org/10.1007/978-3-030-58115-2_38

[4] Golnaz Badkobeh, Per Kristian Lehre, and Dirk Sudholt. 2014. Unbiased Black-
Box Complexity of Parallel Search. In Proc. of Parallel Problem Solving from Nature
(PPSN’14) (LNCS), Vol. 8672. Springer, 892–901.

[5] Golnaz Badkobeh, Per Kristian Lehre, and Dirk Sudholt. 2015. Black-box Com-
plexity of Parallel Search with Distributed Populations. In Proc. of Foundations of
Genetic Algorithms (FOGA’15). ACM, 3–15.

[6] Nathan Buskulic and Carola Doerr. 2019. Maximizing drift is not optimal
for solving OneMax. In Proc. of Genetic and Evolutionary Computation Confer-
ence (GECCO’19, Companion Material). ACM, 425–426. https://doi.org/10.1145/
3319619.3321952 An extension of this work is to appear in the Evolutionary
Computation journal.

[7] Maxim Buzdalov and Carola Doerr. 2020. Optimal Mutation Rates for the (1 +𝜆)
EA on OneMax. In Proc. of Parallel Problem Solving from Nature (PPSN’20) (LNCS),
Vol. 12270. Springer, 574–587. https://doi.org/10.1007/978-3-030-58115-2_40

[8] Eduardo Carvalho Pinto and Carola Doerr. 2018. A Simple Proof for the Usefulness
of Crossover in Black-Box Optimization. In Proc. of Parallel Problem Solving from
Nature (PPSN’18) (LNCS), Vol. 11102. Springer, 29–41. https://doi.org/10.1007/978-
3-319-99259-4_3

[9] Eduardo Carvalho Pinto and Carola Doerr. 2018. Towards a More Practice-Aware
Runtime Analysis of Evolutionary Algorithms. CoRR abs/1812.00493 (2018).
arXiv:1812.00493 http://arxiv.org/abs/1812.00493

[10] Dogan Corus, Pietro S. Oliveto, and Donya Yazdani. 2018. Fast Artificial Immune
Systems. In Parallel Problem Solving from Nature. Lecture Notes in Computer
Science, Vol. 11102. 67–78.

[11] Benjamin Doerr and Carola Doerr. 2020. Theory of Parameter Control Mecha-
nisms for Discrete Black-Box Optimization: Provable Performance Gains Through
Dynamic Parameter Choices. In Theory of Evolutionary Computation: Recent De-
velopments in Discrete Optimization. Springer, 271–321.

[12] Benjamin Doerr, Carola Doerr, and Franziska Ebel. 2015. From black-box com-
plexity to designing new genetic algorithms. Theoretical Computer Science 567
(2015), 87 – 104.

[13] Benjamin Doerr, Carola Doerr, and Jing Yang. 2020. Optimal parameter choices
via precise black-box analysis. Theoretical Computer Science 801 (2020), 1–34.
https://doi.org/10.1016/j.tcs.2019.06.014

[14] Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, and Ta Duy Nguyen. 2017. Fast
genetic algorithms. In Proc. of Genetic and Evolutionary Computation Conference
(GECCO’17). ACM, 777–784. https://doi.org/10.1145/3071178.3071301

[15] Benjamin Doerr and Frank Neumann. 2020. Theory of Evolutionary Computation:
Recent Developments in Discrete Optimization. Springer. https://doi.org/10.1007/
978-3-030-29414-4

[16] Carola Doerr and Johannes Lengler. 2017. Introducing Elitist Black-Box Models:
When Does Elitist Behavior Weaken the Performance of Evolutionary Algo-
rithms? Evolutionary Computation 25 (2017). https://doi.org/10.1162/evco_a_
00195

[17] Carola Doerr, Furong Ye, Naama Horesh, Hao Wang, Ofer M. Shir, and Thomas
Bäck. 2020. Benchmarking discrete optimization heuristics with IOHprofiler.
Applied Soft Computing 88 (2020), 106027. https://doi.org/10.1016/j.asoc.2019.
106027

[18] Christian Gießen and Carsten Witt. 2017. The Interplay of Population Size and
Mutation Probability in the (1 + 𝜆) EA on OneMax. Algorithmica 78, 2 (2017),
587–609.

[19] Christian Gießen and Carsten Witt. 2018. Optimal Mutation Rates for the (1+𝜆)
EA on OneMax Through Asymptotically Tight Drift Analysis. Algorithmica 80, 5
(2018), 1710–1731. https://doi.org/10.1007/s00453-017-0360-y

[20] Nikolaus Hansen and Andreas Ostermeier. 2001. Completely Derandomized
Self-Adaptation in Evolution Strategies. Evolutionary Computation 9, 2 (2001),
159–195. https://doi.org/10.1162/106365601750190398

[21] Thomas Jansen, Kenneth A. De Jong, and Ingo Wegener. 2005. On the Choice of
the Offspring Population Size in Evolutionary Algorithms. Evol. Comput. 13, 4
(2005), 413–440. https://doi.org/10.1162/106365605774666921

[22] Giorgos Karafotias, Mark Hoogendoorn, and A.E. Eiben. 2015. Parameter Con-
trol in Evolutionary Algorithms: Trends and Challenges. IEEE Transactions on
Evolutionary Computation 19 (2015), 167–187.

[23] Per Kristian Lehre and Dirk Sudholt. 2019. Parallel Black-Box Complexity with
Tail Bounds. CoRR abs/1902.00107 (2019). arXiv:1902.00107 http://arxiv.org/abs/
1902.00107

[24] Per Kristian Lehre and Carsten Witt. 2012. Black-Box Search by Unbiased Varia-
tion. Algorithmica 64 (2012), 623–642.

[25] Laurent Meunier, Herilalaina Rakotoarison, Pak-Kan Wong, Baptiste Rozière,
Jérémy Rapin, Olivier Teytaud, Antoine Moreau, and Carola Doerr. 2020. Black-
Box Optimization Revisited: Improving Algorithm Selection Wizards through
Massive Benchmarking. CoRR abs/2010.04542 (2020). arXiv:2010.04542 https:
//arxiv.org/abs/2010.04542

[26] Vladimir Mironovich and Maxim Buzdalov. 2017. Evaluation of heavy-tailed
mutation operator on maximum flow test generation problem. In Proc. of Genetic
and Evolutionary Computation Conference (GECCO’17, CompanionMaterial). ACM,
1423–1426. https://doi.org/10.1145/3067695.3082507

[27] Raymond Ros and Nikolaus Hansen. 2008. A simple modification in CMA-ES
achieving linear time and space complexity. In Parallel Problem Solving from
Nature – PPSN X. Number 5199 in Lecture Notes in Computer Science. 296–305.

[28] Furong Ye, Carola Doerr, and Thomas Bäck. 2019. Interpolating Local and Global
Search by Controlling the Variance of Standard Bit Mutation. In Proc. of IEEE
Congress on Evolutionary Computation (CEC’19). IEEE, 2292–2299.

9

https://doi.org/10.1145/3377930.3390172
https://doi.org/10.1007/978-3-030-58115-2_38
https://doi.org/10.1007/978-3-030-58115-2_38
https://doi.org/10.1145/3319619.3321952
https://doi.org/10.1145/3319619.3321952
https://doi.org/10.1007/978-3-030-58115-2_40
https://doi.org/10.1007/978-3-319-99259-4_3
https://doi.org/10.1007/978-3-319-99259-4_3
http://arxiv.org/abs/1812.00493
http://arxiv.org/abs/1812.00493
https://doi.org/10.1016/j.tcs.2019.06.014
https://doi.org/10.1145/3071178.3071301
https://doi.org/10.1007/978-3-030-29414-4
https://doi.org/10.1007/978-3-030-29414-4
https://doi.org/10.1162/evco_a_00195
https://doi.org/10.1162/evco_a_00195
https://doi.org/10.1016/j.asoc.2019.106027
https://doi.org/10.1016/j.asoc.2019.106027
https://doi.org/10.1007/s00453-017-0360-y
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1162/106365605774666921
http://arxiv.org/abs/1902.00107
http://arxiv.org/abs/1902.00107
http://arxiv.org/abs/1902.00107
http://arxiv.org/abs/2010.04542
https://arxiv.org/abs/2010.04542
https://arxiv.org/abs/2010.04542
https://doi.org/10.1145/3067695.3082507

	Abstract
	1 Introduction
	2 From Mutation Operators to Mutation Strength Distributions
	3 Algorithm for Computing the Optimal Distributions
	3.1 Dynamic Programming on Expected Times
	3.2 Optimization with Separable CMA-ES
	3.3 Convergence Analysis

	4 Optimal Distributions
	5 Runtime Comparison
	6 Conclusion
	References

