
HAL Id: hal-03233825
https://hal.sorbonne-universite.fr/hal-03233825

Submitted on 25 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Personalizing Performance Regression Models to
Black-Box Optimization Problems

Tome Eftimov, Anja Jankovic, Gorjan Popovski, Carola Doerr, Peter Korošec

To cite this version:
Tome Eftimov, Anja Jankovic, Gorjan Popovski, Carola Doerr, Peter Korošec. Personalizing Perfor-
mance Regression Models to Black-Box Optimization Problems. Genetic and Evolutionary Computa-
tion Conference (GECCO 2021), Jul 2021, Lille, France. �10.1145/3449639.3459407�. �hal-03233825�

https://hal.sorbonne-universite.fr/hal-03233825
https://hal.archives-ouvertes.fr

Personalizing Performance Regression Models
to Black-Box Optimization Problems

Tome Eftimov
Jožef Stefan Institute
Ljubljana, Slovenia
tome.eftimov@ijs.si

Anja Jankovic
Sorbonne Université, LIP6

Paris, France
anja.jankovic@lip6.fr

Gorjan Popovski
Jožef Stefan Institute
Ljubljana, Slovenia

gorjan.popovski@ijs.si

Carola Doerr
Sorbonne Université, CNRS, LIP6

Paris, France
carola.doerr@lip6.fr

Peter Korošec
Jožef Stefan Institute
Ljubljana, Slovenia
peter.korosec@ijs.si

ABSTRACT
Accurately predicting the performance of different optimization
algorithms for previously unseen problem instances is crucial for
high-performing algorithm selection and configuration techniques.
In the context of numerical optimization, supervised regression
approaches built on top of exploratory landscape analysis are be-
coming very popular. From the point of view of Machine Learning
(ML), however, the approaches are often rather naïve, using default
regression or classification techniques without proper investiga-
tion of the suitability of the ML tools. With this work, we bring
to the attention of our community the possibility to personalize
regression models to specific types of optimization problems. In-
stead of aiming for a single model that works well across a whole
set of possibly diverse problems, our personalized regression ap-
proach acknowledges that different models may suite different
types of problems. Going one step further, we also investigate the
impact of selecting not a single regression model per problem, but
personalized ensembles. We test our approach on predicting the
performance of numerical optimization heuristics on the BBOB
benchmark collection.

CCS CONCEPTS
•Computingmethodologies→Continuous space search; Ran-
domized search; • Theory of computation → Random search
heuristics.

1 INTRODUCTION
Before solving a real-world optimization problem via evolution-
ary or similar methods, users need to decide which of the many
possible algorithms to apply (the algorithm selection (AS) problem)
and how to set its parameters (algorithm configuration (AC)). While
classically having to base all decisions on personal experience and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’21, July 10–14, 2021, Lille, France
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8350-9/21/07. . . $15.00
https://doi.org/10.1145/3449639.3459407

recommendations to tackle these problems, users can rely today on
the support of powerful AutoML techniques, which take as input
some descriptors of the problem (and possibly also the specific
instance) at hand, and which then recommend one or several al-
gorithm instances that the users can apply to their problems. At
the heart of many of these AutoML techniques are regression or
classification algorithms, which – in one way or the other – pre-
dict which algorithm (configuration) could be most suitable for the
given task.

In evolutionary computation, a particularly active research ques-
tion concerns the development of landscape-aware AutoML meth-
ods [4, 10, 21, 24, 29, 31]. Classifying as supervised learning ap-
proaches in the broader ML context, the main idea of these methods
is to extract useful properties of the problem (instance) at hand, and
to use this information to predict which algorithm (configuration)
will perform particularly well on it. Landscape-aware AS and AC
are trained on performance data, which has been collected through
previous optimization tasks or via systematic benchmarking.

Since the focus of most of the studies in evolutionary compu-
tation is on the development or assessment of different features,
the Machine Learning (ML) model to derive the recommendation is
often neglected, and authors satisfy themselves by applying off-the-
shelf techniques such as default implementations of random forests
(RF), support vector machines (SVM), or decision trees (DT), as,
for example, available in the scikit toolbox [35]. It is well known,
however, that different predictive models can show quite different
performances on different ML tasks. A more systematic approach
towards the model selection seems therefore in order.

Our Contribution: The main goal of our work is to analyze
to what extent state-of-the-art landscape-aware AS and AC mod-
els could benefit from a more careful choice of the ML tools, and,
more concretely, how their complementarity can be leveraged to
obtain good predictions for broad sets of optimization problems.
We evaluate a way of extending the current practice of deploying a
single predictive model by combining ensemble regression and per-
sonalized regression. While ensemble learning is well-known and
the de-facto standard in several ML-applications [42], the idea to
personalize the regressions is an original research contribution that
we propose in this work. In a nutshell, the key idea is that different
regression models work best for different types of problems, so that
we can improve regression quality by automatically selecting the
one(s) that showed best performance for similar problems.

ar
X

iv
:2

10
4.

10
99

9v
1

 [
cs

.N
E

]
 2

2
A

pr
 2

02
1

https://doi.org/10.1145/3449639.3459407

GECCO ’21, July 10–14, 2021, Lille, France T. Eftimov et al.

Problem
instance i

Exploratory
Landscape Analysis

Feature
representation

of i

(Multi-class) classification
(assign i to a class C(i))

Perform regression with
all RM relevant for C(i) to

obtain y1,..., ym

Output

Figure 1: Application of the personalized ML models. RM=regression models.

We test the impact of each of the suggested extensions on a
portfolio of 12 algorithms from the BBOB workshop series [14], for
which task ourselves with predicting the solution quality after a
fixed budget of function evaluations, a setting previously suggested
in [21].

Results:We find that the regression quality improves for 58%-
70% of the tested problems, depending on the comparison scenario,
which nicely demonstrates that the current practice in performance
regression used within the evolutionary computation community
has quite some untapped potential.

The computational overhead for training and applying the per-
sonalized models is also negligible for the tasks performed in this
study. This happens becausewe areworking onlywith 120 instances
from 24 problems. When moving to larger data sets of several GB or
even TB in size (as often considered in ML applications), however,
we need to consider the impact of data size and data quality on the
learning algorithms performances. With larger amounts of data,
the so-called offline learning (as used in this paper) can become
computationally inefficient. In such cases, one option is to use ran-
dom or stratified sampling if possible, which can reduce the data
size and still preserve the relevant information found in the original
data set.

Broader Impact of our Approach: The idea to personalize
the regression models is not restricted to performance regression,
and not even to optimization. Based on our findings presented in
this work, we consider further applications, for example in per-
sonalized medicine, as an exciting avenue for future work, since
predictive models that are specifically developed for different geno-
types and/or phenotype may allow better recommendations that
one-size-fits all predictive models, which – unfortunately – are
known to come with biases that can cause severe harm.

Note that personalized approach is different from training in-
dividual models separately, in that the classification which model
to use is done in a data-driven way, and not by an external entity.
While we use in this work classification to assign problem instances
to problem classes, our approach can easily be extended to allow
for interpolation between personalized models. How much such an
additional layer would contribute, however, remains to be evaluated
in future work. We compare our results to the approach in which
the classification step can be omitted and the ground truth problem
class is known (this is the “Ensemble-ground” method in Sec. 4.1.)
Based on the results, the misclassification of the problem class that
leads to selecting a personalized model does not have a significant
loss. Even more it can improve the end predictions, however this

happens in cases where landscape representations of the problems
instances are quite similar.

Structure of the Paper: We summarize selected related works
in Sec. 2. The pipeline to create the personalized regression models
is presented in Sec. 3, and we discuss a specific use-case in Sec. 4.
A critical discussion of our approach and avenues for future work
are presented in Sec. 5.

Availability of Data and Code: All project data and code is
available at [11]. Note that this repository does not only include
data for the use-cases presented in Sec. 4, but also for all twelve
algorithms from the selected portfolio.

2 RELATEDWORK
Our work integrates into ongoing research on landscape-aware
algorithm selection (AS) and configuration (AC) [5, 18, 21, 24, 25],
and more specifically to the task of per-instance algorithm selec-
tion (PIAS [22]) and configuration (PIAC [4, 17]), which aims at
recommending a best suited algorithm (configuration) based on the
characteristics of the specific problem instance at hand.

In landscape-aware AS/AC, recommendations are based on fea-
tures of the problem instances, which are estimated from a finite set
{(𝑥, 𝑓 (𝑥))} of evaluated samples via so-called exploratory landscape
analysis [29]. Most research in this area focuses on the definition or
the analysis of features that describe certain characteristics of the
optimization problem, and their suitability for automated algorithm
selection, configuration, and design. See [27, 29, 30] for examples
and further references.

Where dynamic (“online”) algorithm configuration is considered,
recommendations can also be based on the search behavior or
algorithms’ state parameters, see [3, 10] for examples and further
references.

Concerning the ML techniques, we already mentioned that en-
semble learning is quite standard nowadays, as it can result into
much better predictions that using only one predictive model [28,
37]. Our idea to build personalized regression models is based on a
recent study in personalized nutrition [20], which showed that for
different clusters of recipes, different regression models provided
the best prediction of the macronutrient values. None of the single
predictive model could achieve similar performance in that task.
This inspired us to automate the model selection in the context of
landscape-aware AS/AC.

Personalizing Performance Regression Models GECCO ’21, July 10–14, 2021, Lille, France

Benchmark
problem

data

k
Instances

of f1

k
Instances

of f2

k
Instances

of fn

Exploratory
Landscape Analysis

Feature
instance

representtion

A1 A2

Iterative grid search for hyperparameter optimisation

Regression algorithm portfolio

Algorithm
instances of the

Am
Am

Supervised
regression analysis

Target
predictions for
k Instances of

f1

Target
predictions for
k Instances of

f2

Target
predictions for
k Instances of

fn

Calculate the weights (w1, w2, ..., wm)

a1 a2 am a1 a2 am

A1 A2 Am

Selecting the best algorithm instance
within each algorithm

A1 A2 Am

Selecting the best algorithm instance
within each algorithm

A1 A2 Am

Selecting the best algorithm instance
within each algorithm

a1 a2 am

Calculate the weights (w1, w2, ..., wm) Calculate the weights (w1, w2, ..., wm)

`

Figure 2: Training phase of the personalized problem ensembles.

3 PERSONALIZED ML MODELS
To introduce our personalized performance regression pipeline,
let us assume that we face a fixed-budget performance regression
task, i.e., we assume to be aiming at predicting algorithms’ solu-
tion quality after a fixed budget of function evaluations has been
exhausted. The pipeline presented below can be used for other ML
tasks, but the restriction to a specific use case eases the presentation
considerably.

The high-level approach is depicted in Fig. 1. The four main steps
to obtain a performance prediction 𝑦 for a given problem instance 𝑖
are as follows:

(1) We first apply a feature extraction method to obtain a de-
scription of this instance 𝑖 . In our context, the features are
computed with exploratory landscape analysis (see Sec. 4
for details).

(2) We use the instance description to assign instance 𝑖 to a class
𝐶 (𝑖) (i.e., we perform multi-class classification) to obtain a
set {𝑦1, . . . , 𝑦𝑚} of different performance predictions, one
per regression model (RM).

(3) Combine these values to the final prediction𝑦 =
∑𝑚

𝑗=1𝑤 𝑗 (𝑖)𝑦 𝑗 ,
using the weighting scheme𝑤1 (𝑖), . . . ,𝑤𝑚 (𝑖) of class 𝐶 (𝑖).

The association of the RMs to the different classes as well as
the computation of the class-specific weights is handled in a prior

(“offline”) training phase. Its most relevant steps are illustrated in
Fig. 2.

Assuming that we have a set of training instances which are
grouped into 𝑛 classes𝐶1, . . . ,𝐶𝑛 (in our case, these are the problem
instances), a set of potential RMs, which are grouped in to𝑚 classes
𝐴1, . . . , 𝐴𝑚 ,1, and fixed-budget performance data for an algorithm
A, the training phase comprises the following steps:

(1) Compute for each training instance a representation, ideally
using the same feature extraction technique that will be
used in the applications (i.e., in the “test phase” in proper
ML terminology).

(2) Each RM instance uses the problem representation and the
algorithm performance data to train a predictive model.

(3) Each RM is evaluated according to its regression performance
on the train instances within each optimization problem.

(4) For each problem class𝐶 (𝑖), we select from each RM class𝐴 𝑗

the configuration 𝑎 𝑗 (𝑖) which achieved the best performance.
(5) We then calculate the importance of each RM 𝑎 𝑗 (𝑖) via a

min-max normalization. That is, if we denote by 𝑞(𝑖) =

(𝑞1 (𝑖), . . . , 𝑞𝑚 (𝑖)) the vector of performance measures for

1In this work, we group in one class all RMs that differ only in the hyper-parameters
but use the same basic regression technique.

GECCO ’21, July 10–14, 2021, Lille, France T. Eftimov et al.

each of the𝑚 selected configurations for class 𝐶 (𝑖), the im-
portance of 𝑎 𝑗 (𝑖) is computed as

𝑞 𝑗,norm. (𝑖) =
max(𝑞(𝑖)) − 𝑞 𝑗 (𝑖)

max(𝑞(𝑖)) −min(𝑞(𝑖)) , (1)

where we assume a performance measure for which lower
values are better (typically, deviation from the ground truth is
measured in one way or the other). We then compute the vec-
tor𝑤 (𝑖) = (𝑤1 (𝑖), . . . ,𝑤𝑚 (𝑖)) ofweights𝑤 𝑗 =

𝑞 𝑗,norm. (𝑖)∑𝑚
𝑗=1 𝑞 𝑗,norm. (𝑖) ,

which are used in the fourth step of the application phase
described above.

4 USE-CASE: ELA-BASED FIXED-BUDGET
PERFORMANCE REGRESSION

We evaluate our personalized ML pipeline on a standard regres-
sion task which aims at predicting the final solution quality of a
black-box optimization algorithm after a fixed number of function
evaluations. The experimental setup is described in Sec. 4.1. In total,
we apply our approach to twelve different optimization algorithms.
As a consequence of space limitations, however, we present here
only some selected results (Sec. 4.2). A few sensitivity analyses, to
test the robustness of our approach, are performed in Sec. 4.3.

4.1 Experimental Setup
The experiments were performed on 13-inch MacBook Pro with 2.8
GHz Quad-Core Intel Core i7 processor and 16 GB of RAM. The raw
regression data has been collected using Python implementation,
while the personalized approach and all the evaluations have been
performed using R. Our fixed-budget regression is inspired by [21],
but applied here to the more diverse set of algorithms suggested
in [24]. Concretely, we aim at predicting the performance of the
following 12 algorithms: BrentSTEPqi [36], BrentSTEPrr [36], CMA-
ES-CSA [1], HCMA [26], HMLSL [33], IPOP400D [2], MCS [19],
MLSL [33], OQNLP [34], fmincon [34], fminunc [34], and BIPOP-
CMA-ES [13]. Note here that the latter does not appear in the
portfolio analyzed in [24], but it was added since for one algorithm
from the original study the raw performance data was missing.
As performance measure of these algorithms we use their single
run fixed-budget target precision after 250, 500, and 1 000 fitness
evaluations, respectively, and this for the first five instances of each
of the 24 BBOB functions [16] provided by the BBOB platform [15].
This performance data is available at [14], but for our work we used
the post-processed and more conveniently queryable repository
available at [41]. The representations of the 120 problem instances
are based on exploratory landscape analysis [29]. The features
were computed by the R-package flacco [23], using the uniform
sampling procedure with a budget of 400𝑑 (a sensitivity analysis for
a 50𝑑 sampling budget will be presented in Sec. 4.3). Following [21]
we used 56 feature values per instance, which are grouped into
five features groups: disp, ela_level, ela_meta, ic, and nbc (see [21]
for full names and references). To stick to common practice in the
evolutionary computation community, we take the raw feature
values, i.e., we do not normalize these values nor do we perform
any representation learning prior to feeding the values to our ML
approaches.

Table 1: Hyper-parameter values for each regression model
class.

Algorithm Hyperparameters
DecisionTree • 𝑐𝑟𝑖𝑡 ∈ {”𝑚𝑠𝑒”, ”𝑚𝑎𝑒”, ”𝑓 𝑟𝑖𝑒𝑑𝑚𝑎𝑛_𝑚𝑠𝑒”}
(30 configs.) •𝑚𝑖𝑛𝑠𝑝𝑙𝑖𝑡 ∈ {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}
RandomForest • 𝑐𝑟𝑖𝑡 ∈ {”𝑚𝑠𝑒”, ”𝑚𝑎𝑒”}
(200 configs.) •𝑚𝑖𝑛𝑠𝑝𝑙𝑖𝑡 ∈ {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}

• 𝑛𝑒𝑠𝑡 ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}
BaggingDT • 𝑐𝑟𝑖𝑡 ∈ {”𝑚𝑠𝑒”, ”𝑚𝑎𝑒”}
(200 configs.) •𝑚𝑖𝑛𝑠𝑝𝑙𝑖𝑡 ∈ {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}

• 𝑛𝑒𝑠𝑡 ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}

To evaluate the personalized ensembles, we used stratified 5-
cross fold validation, where each fold consists of the first, second,
third, fourth, and fifth instances for each problem, respectively. That
is, we repeat the whole training and testing process described in
Sec. 3 five times, each time leaving out one fold for the testing phase
and using the other four for the training. Note that the personalized
ensembles for the same problem can be different across the five
different runs, since different training data is used. An example
will be presented in Table 3. We have taken the stratified 5-cross
fold validation approach, since it is the predominantly used one in
evolutionary computation [10, 21].

In a first evaluation of our personalization approach, we used
seven regression techniques: Lasso [40], ElasticNet [43], Kernel-
Ridge [32], PassiveAggressive [9], DecisionTree [8], RandomFor-
est [7], and BaggingDT [6]. We applied iterative grid search to
each of them to test different hyper-parameters. Evaluating the
seven regression techniques using the mean absolute errors (MAE)
of the test folds from the stratified 5-cross fold validation, only
three regression techniques were selected for further investigation,
DecisionTree, RandomForest, and BaggingDT. The tested hyper-
parameter combinations for each of these techniques are summa-
rized in Table 1. Since all selected techniques are based on trees,
the crit parameter can be “mse" - mean squared error, “mae" - mean
absolute error and “friedman_mse" - Friedman mean squared error.
Regarding the minsplit hyper-parameter, it is the minimum num-
ber of data instances a node contains in order to be slit. The nest
hyper-parameter defines how many Decision Trees will be built
in the RandomForest/BaggingDT RM. These range of the hyper-
parameters have been selected concerning the data set size and
the guidelines available in ML to avoid overfitting. In total, we
ended up with 430 different RMs, 30 configurations of Decision-
Tree, 200 configurations for RandomForest, and 200 configurations
of BaggingDT.

To select the best RM within the three selected regression tech-
niques and to learn their weights for each problem class separately,
the mean absolute error from the results obtained on the training
fold has been used. This has been done since the data set we used is
relatively small, and we cannot split it into train, validation, and test
set. In the future, when working with much bigger data sets, valida-
tion sets should be used for the weight calculation. Currently, this
can lead further to overfitting on the training set, however it can
also provide preliminary information about how the methodology
fits for new test problem instances.

To associate an instance 𝑖 to a problem class 𝐶 (𝑖), an ensemble
with majority vote of three multi-class classification algorithms

Personalizing Performance Regression Models GECCO ’21, July 10–14, 2021, Lille, France

Table 2: Regression models used for evaluation purposes.
Regression model Selection

Personalized Ensemble MAE on train MAE on test Classification
Ensemble-ground ✓ ✓ ✓ - -
Ensemble-class ✓ ✓ ✓ - ✓
Best-train - - ✓ - -
Best-train-instance ✓ - ✓ - -
Best-test - - - ✓ -

(BaggingDT_crit-entropy_minsplit-2_nest-9, RandomForest_entro-
py_nest-9_min-2, and RandomForest_gini_nest-9_min-2) was train-
ed on the same folds used for building the personalized regression
models. The hyper-parameters used for training the classifiers are
the same as the regression models, with the difference that Gini
impurity (gini) or the Information Gain (entropy) [12] were used
for splitting the nodes in the individual tree. They both measure
the impurity of a node.

The comparison is done in the following scenarios, which are
summarized in Table 2:

• Ensemble-ground: personalized ensembles for each prob-
lem; true problem class, 𝐶 (𝑖), to which the test problem
instance 𝑖 belongs, is known as a priori information. That is,
we assume in this model that we know which problem class
the instance belongs to and our key objective is to evaluate
the appropriateness of the class-specific ensemble.

• Ensemble-class: this is the approach described in Sec. 3,
i.e., we have personalized ensembles for each problem, and
the problem class 𝐶 (𝑖) has to be guessed from the instance
representation by the classifier. When the classifier correctly
predicts the truth problem class, the prediction will be identi-
cal to that of the Ensemble-groundmodel. When the instance
is mis-classified to a different problem class, the noise pre-
sented in the classifier will affect the selection of the relevant
RMs (i.e., RMs for different problem will be selected), which
influences the end prediction (which can go in both ways,
as we shall see below).

• Best-train: the best RM from the three regression tech-
niques is selected based on the MAE obtained across all
problems from the training folds (i.e., one RM for all prob-
lems).

• Best-train-instance: the best RM is selected in the same sce-
nario as the Best-train, but for each problem separately (i.e.,
not across all problems). Selecting the Best-train-instance
model for each problem is a special case of personalized
models (i.e., each problem has its own best RM, but we do
not combine the predictions of several model for the final
output).

• Best-test: the best RM from the three regression techniques
is selected based on the MAE obtained across all problems
from the test folds (i.e., one RM for all problems).

Note that the first four above-mentioned models are learned
without evaluating problem instances from the test folds, whereas
testing is needed to select the Best-test RM.

4.2 BIPOP-CMA-ES Performance Prediction
To evaluate the proposed methodology, the scenario of BIPOP-
CMA-ES performance prediction is explored. The experiment is
performed for a fixed budget of 1000 function/solution evaluations,

Table 3: Regression models used in the personalized ensem-
bles for the sixth problem in each fold.

Fold Models
1 DecisionTree_crit.mse_minsplit.4

RandomForest_crit.mae_minsplit.2_nest.90
BaggingDT_crit.mae_minsplit.2_nest.10

2 DecisionTree_crit.mae_minsplit.4
RandomForest_crit.mse_minsplit.6_nest.90
BaggingDT_crit.mae_minsplit.6_nest.10

3 DecisionTree_crit.mse_minsplit.4
RandomForest_crit.mse_minsplit.2_nest.20
BaggingDT_crit.mae_minsplit.10_nest.10

4 DecisionTree_crit.mae_minsplit.4
RandomForest_crit.mae_minsplit.4_nest.30
BaggingDT_crit.mae_minsplit.2_nest.10

5 DecisionTree_crit.mae_minsplit.4
RandomForest_crit.mse_minsplit.2_nest.70
BaggingDT_crit.mse_ minsplit.10_nest.10

and an ELA feature portfolio calculated using a 400𝑑 sample size.
The personalized ensembles were trained in two scenarios: once to
predict the original target precision achieved, and once to predict
the natural logarithm value of the target precision. Regardless of
how the target is represented, the benefits of using the proposed
methodology is the same. Since this paper is required to adhere to a
page limit, we present the models with the natural logarithm value
of the target precision.

Figure 3 shows the distribution of the absolute error obtained
from each test fold for each problem separately in five different sce-
narios: i) Best-test, ii) Best-train, iii) Best-train-instance iv) Ensemble-
class, and v) Ensemble-ground. The Best-test model is RandomFore-
st_crit-mse_minsplit-6_nest-20, while the Best-train model is Deci-
sionTree_crit-mae_minsplit-4. Table 3 presents the models used in
the personalized ensembles for the sixth problem (i.e., Attractive
Sector Function) for each fold.

Comparing a single RM vs. personalized ensembles: This
comparison involves comparing the results obtained by using a
single RM that works well across all problems (i.e., Best-train or
Best-test) with the results obtained using the personalized ensem-
bles (i.e., Ensemble-class and Ensemble-ground). By comparing the
Best-train, Ensemble-class, and Ensemble-ground models, looking
in the medians from the boxplots, it is obvious that the personalized
ensembles (i.e., Ensemble-class, and Ensemble-ground) are better
than the Best-train for 14 out of 24 optimization problems (i.e., 6,
7, 9, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, and 24). This comparison
actually involves models that have never seen the test instances.
More promising results are actually obtained when comparing the
Ensemble-class and Ensemble-ground models with the Best-test
model. In this case, the personalized ensembles are better in 15
out of 24 problems (i.e., 1, 2, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 21,
and 24). In addition, we should point out that the selection of the
Best-test is done using the information from the test instances, that
have never been seen by the personalized models. Table 4 presents
the median absolute error obtained from each test fold for each
problem separately by the four different regression models. Com-
paring the median absolute values we can see that the gain by using
the personalized ensembles varies between the problems, but this
also results from the different target precision range between the
problems.

GECCO ’21, July 10–14, 2021, Lille, France T. Eftimov et al.

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
function_d

va
lu
es

method
Best-test
Best-train
Best-train-instance
Ensemble-class
Ensemble-ground

Figure 3: Evaluation results for BIPOP-CMA-ES performance prediction. The𝑦-axis corresponds to the absolute error between
the truth and predicted target precision (i.e., natural logarithmic of the target precision), while the 𝑥-axis corresponds to
each BBOB benchmark problem. The boxplots present the distribution of the absolute error obtained from each test fold for
each problem separately in five different scenarios: i) Best-test, ii) Best-train, iii) Best-train-instance iv) Ensemble-class, and
v) Ensemble-ground.

Comparing the ground personalized ensembles with the
personalized ensembles combinedwith classification:By com-
paring themedian values between the Ensemble-class and Ensemble-
ground models, we can actually see the influence of the classifier
on the end result. When there is a difference between the end pre-
diction results obtained by both models, it means that the classifier
predicted the wrong problem class. This happens for four problems
(i.e., 3, 4, 10, and 15). In the case of the fourth and the fifteenth
problem, the misclassification actually improves the end target pre-
diction. To seewhich RMs are selected and combined to generate the
personalized ensemble, the confusion matrix from the classification
is further explored. For the fourth problem, the misclassification
happens in the third test fold, where the instance from the fourth
problem class (i.e., Büche-Rastrigin function, which is a separable
function), is assigned to the third problem (i.e., Rastrigin function,
which is also a separable function). For the fifteenth problem (i.e.,
Rastrigin Function, which is a multi-modal function with adequate
global structure), the misclassification happens in the first test fold,
where the classifier classifies it into the third problem (i.e., Rastrigin
Function, which is a separable function).

These results open new directions for future work; instead of
training personalized ensembles on the problem level it will shift to
learning them for a whole group of instances which belong to the
same cluster. This cluster can be obtained by clustering the ELA
representation of the problem instances.

Comparing a single personalized RM with personalized
ensembles: To delve deeper, the Ensemble-class and Ensemble-
ground personalizedmodels are compared to the Best-train-instance
model. In this scenario, we have limited it to only the best RM for
each problem separately, learned using the performance obtained

Table 4: Median absolute error obtained from each test fold
for each problem separately in four different scenarios.

Problem Best-test Best-train Ensemble-ground Ensemble-class
1 0.6337 0.2170 0.4718★ 0.4718★
2 1.0507 0.7152 0.7478★ 0.7478★
3 0.9530 0.9963 1.0053 1.2729
4 1.0627 0.7711 1.3661 0.8353★
5 9.0958 0.0000 1.9736★ 1.9736★
6 3.5115 1.6669 1.5341△ 1.5341△
7 2.3472 3.0982 2.0179△ 2.0179△
8 2.0920 0.5789 0.6052★ 0.6052★
9 0.8675 1.0208 0.7480△ 0.7480△
10 1.2298 1.8954 1.3431⋄ 1.2865⋄
11 0.7064 0.6347 0.9910 0.9910
12 2.3399 1.9997 2.1457★ 2.1457★
13 1.1155 1.0443 1.0073△ 1.0073△
14 3.9245 1.8126 1.3522△ 1.3522△
15 0.8055 0.7086 0.3540△ 0.2452△
16 0.2879 0.4122 0.2404△ 0.2404△
17 3.7476 4.4404 3.7838⋄ 3.7838⋄
18 2.4728 1.8581 2.6707 2.6707
19 0.7567 2.1484 1.9176⋄ 1.9176⋄
20 0.3334 0.4013 0.4151 0.4151
21 0.4166 0.3046 0.2726△ 0.2726△
22 0.9757 1.6932 1.6386⋄ 1.6386⋄
23 0.2916 0.4672 0.3494⋄ 0.3494⋄
24 0.3209 0.3103 0.2335△ 0.2335△

⋄ Better than Best-train.
★ Better than Best-test.
△ Better than both, Best-train and Best-test.

from the training folds, excluding the information from the test
instances in the selection. Looking at the median absolute error
across the test folds, the personalized ensembles are better than
the Best-train-instance models for 13 out of 24 problems (i.e. the
problems: 1, 7, 8, 9, 10, 15, 17, 18, 19, 21, 22, 23, and 24). Since the

Personalizing Performance Regression Models GECCO ’21, July 10–14, 2021, Lille, France
-2

0
2

4
6

8
10

Problem

G
ai

n
in

 a
bs

ou
lte

 e
rr

or

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Best-train-50d
Best-test-50d
Best-train-400d
Best-test-400d
Ensemble-class-50d

Figure 4: Relative advantage of the Ensemble-class-400d
model vs. the regression models (Best-train-50d, Best-test-
50d, Best-train-400d, Best-test-400d, Ensemble-class-50d).
The y-axis presents the difference between the median ab-
solute errors. Positive values indicate where the Ensemble-
class-400d model is better than the other models, while neg-
ative values indicate vice-versa.

personalized ensembles are based on combining different RMs, the
Best-train-instance model for each problem is actually one of the
three RMs that are being combined. In most cases, combining the
best RM (i.e., Best-train-instance) with the RMs from the other two
regression techniques improves the final prediction. However, there
are also cases when the end prediction is not better, which further
opens the question of how to select the regression techniques that
should be included in learning the ensembles.

Mean absolute error vs. median absolute error compari-
son: In the case when the mean absolute error is used for compari-
son, the personalized ensembles (i.e., Ensemble-class, and Ensemble-
ground) are better than the Best-train in 17 out of 24 optimization
problems (i.e., 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23,
and 24). While comparing them with the Best-test model, they are
better in 11 out of 24 problems (i.e., 3, 5, 6, 9, 10, 12, 13, 14, 15, 21,
and 24). When the comparison is done with the Best-train-instance,
the personalized ensembles are better in 17 out of 24 problems (i.e.,
2, 5, 7, 8, 9, 10, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, and 24).

4.3 Sensitivity Analysis
To investigate the impact of the different steps used by the method-
ology on the final predictions, we compare the Best-test, Best-train,
and Ensemble-class models in three different scenarios:

(1) We investigate how different sample sizes required to calcu-
late the ELA features influence the prediction of the reached
target precision;

(2) Results for different budgets for one optimization algorithm
and fixed ELA portfolio are presented;

(3) The results for different optimization algorithms are pre-
sented, for fixed ELA features portfolio and fixed budget.

Fixed budget, one optimization algorithm, different sam-
ple sizes for ELA calculation: To investigate the impact of differ-
ent sample sizes required to calculate the ELA features on the final

predictions, the 56 selected ELA features were calculated using 50𝑑
and 400𝑑 sample sizes. This resulted in two ELA features portfo-
lios, which were further used as input data to learn personalized
ensembles for the BIPOP-CMA-ES in the fixed budget scenario,
where the budget was set at 1000 evaluations. Figure 4 presents the
relative advantage of the the Ensemble-class-400d model vs. the
regression models (Best-train-50d, Best-test-50d, Best-train-400d,
Best-test-400d, Ensemble-class-50d) for each problem separately.
The suffix 50𝑑 or 400𝑑 in the name of each model presents which
ELA feature portfolio is used for learning it. To estimate the ad-
vantage, the difference between the median absolute errors has
been calculated. Positive values indicate where the Ensemble-class-
400d model is better than the other models, while negative values
indicate vice-versa. From the figure, it follows that the Ensemble-
class-400d model is better than the other models in most of the
problems. Comparing the Ensemble-class-50d and the Ensemble-
class-400d (i.e., the blue line), it follows that using the ELA feature
portfolio calculated with 400𝑑 sample size provides much better
results in most of the problems, however there are few problems
(i.e., 17, 19, 22) for which the opposite is true with really small
differences in the median absolute errors. The results show us that
there is a benefit of using the personalized ensembles. However the
selection of the sample size required to calculate the ELA features
can influence the final prediction. This also points to the robustness
of the ELA features for different samples sizes, which has been
already discussed and investigated from another perspective in a
recently published paper [39].

Fixed ELA portfolio, one optimization algorithm, differ-
ent budgets: Figure 5 presents the relative advantage of Ensemble-
class model vs. Best-train model for each of the 3 budgets (250, 500,
1000), in the case when BIPOP-CMA-ES (i.e., the natural logarithm
of the target precision) is targeted. Here, the ELA features portfolio
is fixed and calculated using a 400𝑑 sample size. Positive values in-
dicate where the Ensemble-class model is better than the Best-train
model. From the figure, it follows that personalized ensembles work
also for small budgets. Looking at problem 7, it seems that, based on
its ELA representation, we can have a good prediction of the target
precision reached after 250 and 1000 evaluations, but the Best-train
model is better when the budget is 500. The limitation here is that
the ELA-problem instance representation is static and the same for
all budgets, and only the reached target is different. This means
that the ELA representation does not cover information about the
algorithm’s behavior (i.e., which parts from the search space are
visited until some budget). To improve this, further information
about the state of the algorithm should be considered and used
as input data to train the personalized ensembles for predicting
performance in different budgets.

Fixed budget, fixed ELA portfolio, different optimization
algorithms: To show the transferability of the proposed methodol-
ogy to other algorithms than BIPOP-CMA-ES, personalized ensem-
bles were learned to predict the performance of CMA-ES-CSA and
IPOP400D, with a fixed budget of 1000 evaluations, and with a fixed
ELA feature portfolio calculated using 400𝑑 sample size (Figure 6).
Without going in detail into the results, it is obvious that using
personalized ensembles improves the final prediction for most of
the problems for both algorithms.

GECCO ’21, July 10–14, 2021, Lille, France T. Eftimov et al.
-2
.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

Problem

M
ed

ia
n

ab
so

lu
te

 e
rr

or

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

250
500
1000

Figure 5: Relative advantage of the Ensemble-class vs. Best-
train for each of the 3 budgets (250, 500, 1000). The y-axis
presents the difference between the median absolute errors.
Positive values indicate where the Ensemble-class model is
better than the Best-train model.

5 DISCUSSION AND FUTUREWORKS
The paper presents the idea of predicting the performance of opti-
mization algorithms, with the aim of selecting a regression model
(or an ensemble) for a problem type. Our results demonstrate that
there is quite some potential in moving from “generalist” regres-
sion models that work well across broad ranges of optimization
problems to more problem-specific, personalized regression models.
The sensitivity analyses confirm the robustness of our approach.

We note that our study should be seen as a first prototype only.
Several extensions are possible and needed. For example, we need
to evaluate our methodology on much bigger data sets, to allow for
a split into train, validation, and test sets. With such a setting, the
train instances are used to train the RMs, the validation instances
are then used to select and to evaluate the RMs to be included in
the ensembles (this comprises the association of the importance
weights that are used to calibrate the predictions of the different
models). The test instances are then used to assess the performance
of the overall pipeline.

As far as the combination of the output of the different regression
models into one prediction is concerned, we plan on evaluating
different approaches to derive the weighting schemes. In particu-
lar, we believe that a multi-criteria approach to combine different
regression performance measures (such as mean root square er-
ror, correlation coefficients, etc.) could be promising, to balance
the complementary information obtained through each of these
statistics.

We used in this work multi-class classification to assign problem
instances to problem classes. In practice, instances may stem from
problem classes not used in the training phase, so that the classifier
cannot assign it to one of the present classes. In such cases, the
classification step can be changed with clustering that will return
its 𝑘 closest problem instances. Then, the personalized ensembles
for the selected problem instances will be used to calculate the
performance prediction, which will be further merged with some
heuristic to generate the end prediction.

0
5

10
15

20

Problem

M
ed

ia
n

ab
so

lu
te

 e
rr

or

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Best-test
Best-train
Ensemble-class

(a) CMA-ES-CSA.

0
5

10
15

20
25

30

Problem

M
ed

ia
n

ab
so

lu
te

 e
rr

or

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Best-test
Best-train
Ensemble-class

(b) IPOP400D.
Figure 6: Median absolute error between the truth and pre-
dicted target precision (i.e., natural logarithmic of the target
precision) for eachBBOBbenchmark problem, for fixed bud-
get 1000, fixed ELA features portfolio calculated using 400d
sample size, and two optimization algorithms.

Last but not least, we will evaluate the personalized ensembles
trained on one benchmark suite (the BBOB functions in our case) on
other benchmark suites (e.g., Nevergrad [38]), in order to investigate
the transferability of the models between the different benchmark
collections.

Acknowledgments. We thank Diederick Vermetten, Leiden
University, for providing us the BBOB workshop data [14] in a
format that was conveniently post-processed by IOHanalyzer [41].
We also thank Pascal Kerschke, University of Dresden, for providing
us with the flacco tool [23] used to compute the feature values
for the 24 BBOB functions.

Ourworkwas supported by projects from the Slovenian Research
Agency (research core funding No. P2-0098, project No. Z2-1867,
and grant number PR-10465), by the Paris Ile-de-France region,
and by COST Action CA15140 “Improving Applicability of Nature-
Inspired optimization by Joining Theory and Practice (ImAppNIO)”.

Personalizing Performance Regression Models GECCO ’21, July 10–14, 2021, Lille, France

REFERENCES
[1] Asma Atamna. 2015. Benchmarking ipop-cma-es-tpa and ipop-cma-es-msr on

the bbob noiseless testbed. In Proceedings of the Companion Publication of the
2015 Annual Conference on Genetic and Evolutionary Computation. 1135–1142.

[2] Anne Auger, Dimo Brockhoff, and Nikolaus Hansen. 2013. Benchmarking the
local metamodel CMA-ES on the noiseless BBOB’2013 test bed. In Proceedings of
the 15th annual conference companion on Genetic and evolutionary computation.
1225–1232.

[3] Lukás Bajer, Zbynek Pitra, Jakub Repický, and Martin Holena. 2019. Gauss-
ian Process Surrogate Models for the CMA Evolution Strategy. Evolutionary
Computation 27, 4 (2019), 665–697. https://doi.org/10.1162/evco_a_00244

[4] Nacim Belkhir, Johann Dreo, Pierre Savéant, and Marc Schoenauer. 2017. Per
instance algorithm configuration of CMA-ES with limited budget. In Proc. of
Genetic and Evolutionary Computation Conference (GECCO’17). ACM, 681–688.
https://doi.org/10.1145/3071178.3071343

[5] Aymeric Blot, Marie-Eléonore Marmion, Laetitia Jourdan, and Holger H. Hoos.
2019. Automatic Configuration of Multi-Objective Local Search Algorithms for
Permutation Problems. Evol. Comput. 27, 1 (2019), 147–171. https://doi.org/10.
1162/evco_a_00240

[6] Leo Breiman. 1996. Bagging predictors. Machine learning 24, 2 (1996), 123–140.
[7] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.
[8] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. 1984.

Classification and regression trees. CRC press.
[9] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram

Singer. 2006. Online passive aggressive algorithms. (2006).
[10] Bilel Derbel, Arnaud Liefooghe, Sébastien Vérel, Hernán E. Aguirre, and Kiyoshi

Tanaka. 2019. New features for continuous exploratory landscape analysis based
on the SOO tree. In Proc. of Foundations of Genetic Algorithms (FOGA’19). ACM,
72–86. https://doi.org/10.1145/3299904.3340308

[11] Tome Eftimov, Anja Jankovic, Gorjan Popovski, Carola Doerr, and Peter
Korošec. 2021. GitHub repository containing all source code and data of
the study presented in this paper. https://repo.ijs.si/teftimov/mr-bec/-
/tree/master/Personalizing%20Performance%20Regression%20Models%20to%
20Black-Box%20Optimization%20Problems%7D

[12] Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. 2001. The elements of
statistical learning. Vol. 1. Springer series in statistics New York.

[13] Nikolaus Hansen. 2009. Benchmarking a BI-population CMA-ES on the BBOB-
2009 function testbed. In Proceedings of the 11th Annual Conference Companion
on Genetic and Evolutionary Computation Conference: Late Breaking Papers. 2389–
2396.

[14] Nikolaus Hansen, Anne Auger, and Dimo Brockhoff. 2020. Data from the BBOB
workshops. https://coco.gforge.inria.fr/doku.php?id=algorithms-bbob.

[15] Nikolaus Hansen, Anne Auger, Raymond Ros, Olaf Mersmann, Tea Tušar, and
Dimo Brockhoff. 2020. COCO: A platform for comparing continuous optimizers
in a black-box setting. Optimization Methods and Software (2020), 1–31.

[16] Nikolaus Hansen, Steffen Finck, Raymond Ros, and Anne Auger. 2009. Real-
Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Defi-
nitions. Technical Report RR-6829. INRIA. https://hal.inria.fr/inria-00362633/
document

[17] Frank Hutter, Youssef Hamadi, Holger H. Hoos, and Kevin Leyton-Brown. 2006.
Performance Prediction and Automated Tuning of Randomized and Parametric
Algorithms. In Proc. of Principles and Practice of Constraint Programming (CP’06)
(LNCS, Vol. 4204). Springer, 213–228. https://doi.org/10.1007/11889205_17

[18] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren (Eds.). 2019. Automated
Machine Learning - Methods, Systems, Challenges. Springer. https://doi.org/10.
1007/978-3-030-05318-5

[19] Waltraud Huyer and Arnold Neumaier. 2009. Benchmarking of MCS on the
noiseless function testbed. Online, 2009c. URL http://www. mat. univie. ac. at/˜
neum/papers. html (2009), 989.

[20] Gordana Ispirova, Tome Eftimov, and Barbara Koroušić Seljak. 2020. P-NUT:
Predicting NUTrient Content from Short Text Descriptions. Mathematics 8, 10
(2020), 1811.

[21] Anja Jankovic and Carola Doerr. 2020. Landscape-aware fixed-budget perfor-
mance regression and algorithm selection for modular CMA-ES variants. In Proc.
of Genetic and Evolutionary Computation Conference (GECCO’20). ACM, 841–849.
https://doi.org/10.1145/3377930.3390183

[22] Pascal Kerschke, Holger H. Hoos, Frank Neumann, and Heike Trautmann. 2019.
Automated Algorithm Selection: Survey and Perspectives. Evolutionary Compu-
tation 27, 1 (2019), 3–45. https://doi.org/10.1162/evco_a_00242

[23] Pascal Kerschke and Heike Trautmann. 2016. The R-Package FLACCO for ex-
ploratory landscape analysis with applications to multi-objective optimization
problems. In Proc. of IEEE Congress on Evolutionary Computation (CEC’16). IEEE,
5262–5269. https://doi.org/10.1109/CEC.2016.7748359

[24] P. Kerschke and H. Trautmann. 2019. Automated Algorithm Selection on
Continuous Black-Box Problems by Combining Exploratory Landscape Anal-
ysis and Machine Learning. Evolutionary Computation 27, 1 (2019), 99–127.
https://doi.org/10.1162/evco_a_00236

[25] Arnaud Liefooghe, Fabio Daolio, Sébastien Vérel, Bilel Derbel, Hernán E. Aguirre,
and Kiyoshi Tanaka. 2020. Landscape-Aware Performance Prediction for Evo-
lutionary Multiobjective Optimization. IEEE Trans. Evol. Comput. 24, 6 (2020),
1063–1077. https://doi.org/10.1109/TEVC.2019.2940828

[26] Ilya Loshchilov, Marc Schoenauer, and Michèle Sebag. 2013. Bi-population CMA-
ES agorithms with surrogate models and line searches. In Proceedings of the 15th
annual conference companion on Genetic and evolutionary computation. 1177–
1184.

[27] Monte Lunacek and L. Darrell Whitley. 2006. The dispersion metric and the CMA
evolution strategy. In Proc. of Genetic and Evolutionary Computation Conference
(GECCO’06). ACM, 477–484. https://doi.org/10.1145/1143997.1144085

[28] Joao Mendes-Moreira, Carlos Soares, Alípio Mário Jorge, and Jorge Freire De
Sousa. 2012. Ensemble approaches for regression: A survey. Acm computing
surveys (csur) 45, 1 (2012), 1–40.

[29] Olaf Mersmann, Bernd Bischl, Heike Trautmann, Mike Preuss, Claus Weihs, and
Günter Rudolph. 2011. Exploratory landscape analysis. In Proc. of Genetic and
Evolutionary Computation Conference (GECCO’11). ACM, 829–836.

[30] Mario A. Muñoz, Michael Kirley, and Saman K. Halgamuge. 2015. Exploratory
Landscape Analysis of Continuous Space Optimization Problems Using In-
formation Content. IEEE Trans. Evol. Comput. 19, 1 (2015), 74–87. https:
//doi.org/10.1109/TEVC.2014.2302006

[31] Mario A. Muñoz, Yuan Sun, Michael Kirley, and Saman K. Halgamuge. 2015.
Algorithm selection for black-box continuous optimization problems: A survey
on methods and challenges. Inf. Sci. 317 (2015), 224–245. https://doi.org/10.1016/
j.ins.2015.05.010

[32] Kevin P Murphy. 2012. Machine learning: a probabilistic perspective. MIT press.
[33] László Pál. 2013. Benchmarking a hybrid multi level single linkagealgorithm on

the bbob noiseless testbed. In Proceedings of the 15th annual conference companion
on Genetic and evolutionary computation. 1145–1152.

[34] László Pál. 2013. Comparison of multistart global optimization algorithms on the
BBOB noiseless testbed. In Proceedings of the 15th annual conference companion
on Genetic and evolutionary computation. 1153–1160.

[35] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research 12 (2011), 2825–2830.

[36] Petr Posík and Petr Baudis. 2015. Dimension Selection in Axis-Parallel Brent-
STEP Method for Black-Box Optimization of Separable Continuous Functions. In
Proc. of Genetic and Evolutionary Computation Conference (GECCO’15, Companion
Material). ACM, 1151–1158. https://doi.org/10.1145/2739482.2768469

[37] Xueheng Qiu, Le Zhang, Ye Ren, Ponnuthurai N Suganthan, and Gehan Ama-
ratunga. 2014. Ensemble deep learning for regression and time series forecasting.
In 2014 IEEE symposium on computational intelligence in ensemble learning (CIEL).
IEEE, 1–6.

[38] Jérémy Rapin and Olivier Teytaud. 2018. Nevergrad - A gradient-free optimization
platform. https://GitHub.com/FacebookResearch/Nevergrad.

[39] Quentin Renau, Carola Doerr, Johann Dreo, and Benjamin Doerr. 2020. Ex-
ploratory landscape analysis is strongly sensitive to the sampling strategy. In
International Conference on Parallel Problem Solving from Nature. Springer, 139–
153.

[40] Robert Tibshirani. 1996. Regression Shrinkage and Selection via the Lasso. Journal
of the Royal Statistical Society. Series B (Methodological) 58, 1 (1996), 267–288.
http://www.jstor.org/stable/2346178

[41] Hao Wang, Diederick Vermetten, Furong Ye, Carola Doerr, and Thomas Bäck.
2020. IOHanalyzer: Performance Analysis for Iterative Optimization Heuristic.
CoRR abs/2007.03953 (2020). arXiv:2007.03953 https://arxiv.org/abs/2007.03953
The BBOB data was extracted from the repository at https://iohprofiler.liacs.nl/.

[42] Cha Zhang and Yunqian Ma. 2012. Ensemble machine learning: methods and
applications. Springer.

[43] Hui Zou and Trevor Hastie. 2005. Regularization and variable selection via the
elastic net. Journal of the royal statistical society: series B (statistical methodology)
67, 2 (2005), 301–320.

https://doi.org/10.1162/evco_a_00244
https://doi.org/10.1145/3071178.3071343
https://doi.org/10.1162/evco_a_00240
https://doi.org/10.1162/evco_a_00240
https://doi.org/10.1145/3299904.3340308
https://repo.ijs.si/teftimov/mr-bec/-/tree/master/Personalizing%20Performance%20Regression%20Models%20to%20Black-Box%20Optimization%20Problems%7D
https://repo.ijs.si/teftimov/mr-bec/-/tree/master/Personalizing%20Performance%20Regression%20Models%20to%20Black-Box%20Optimization%20Problems%7D
https://repo.ijs.si/teftimov/mr-bec/-/tree/master/Personalizing%20Performance%20Regression%20Models%20to%20Black-Box%20Optimization%20Problems%7D
https://coco.gforge.inria.fr/doku.php?id=algorithms-bbob
https://hal.inria.fr/inria-00362633/document
https://hal.inria.fr/inria-00362633/document
https://doi.org/10.1007/11889205_17
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.1145/3377930.3390183
https://doi.org/10.1162/evco_a_00242
https://doi.org/10.1109/CEC.2016.7748359
https://doi.org/10.1162/evco_a_00236
https://doi.org/10.1109/TEVC.2019.2940828
https://doi.org/10.1145/1143997.1144085
https://doi.org/10.1109/TEVC.2014.2302006
https://doi.org/10.1109/TEVC.2014.2302006
https://doi.org/10.1016/j.ins.2015.05.010
https://doi.org/10.1016/j.ins.2015.05.010
https://doi.org/10.1145/2739482.2768469
https://GitHub.com/FacebookResearch/Nevergrad
http://www.jstor.org/stable/2346178
https://arxiv.org/abs/2007.03953
https://arxiv.org/abs/2007.03953
https://iohprofiler.liacs.nl/

	Abstract
	1 Introduction
	2 Related Work
	3 Personalized ML Models
	4 Use-Case: ELA-based Fixed-Budget Performance Regression
	4.1 Experimental Setup
	4.2 BIPOP-CMA-ES Performance Prediction
	4.3 Sensitivity Analysis

	5 Discussion and Future Works
	References

