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Abstract—With the goal to provide absolute lower bounds
for the best possible running times that can be achieved by
(1+λ)-type search heuristics on common benchmark problems,
we recently suggested a dynamic programming approach that
computes optimal expected running times and the regret values
inferred when deviating from the optimal parameter choice.

Our previous work is restricted to problems for which tran-
sition probabilities between different states can be expressed
by relatively simple mathematical expressions. With the goal
to cover broader sets of problems, we suggest in this work an
extension of the dynamic programming approach to settings in
which the transition probabilities cannot necessarily be computed
exactly, but in which they can be approximated numerically, up
to arbitrary precision, by Monte Carlo sampling.

We apply our hybrid Monte Carlo dynamic programming
approach to a concatenated jump function and demonstrate how
the obtained bounds can be used to gain a deeper understanding
into parameter control schemes.

I. INTRODUCTION

Running time analysis of evolutionary algorithms and other
search heuristics contributes to our understanding of black-
box optimization not only by providing insights into the basic
working principles that drive algorithms’ performance, but
also by providing lower bounds for the performance of broad
classes of black-box approaches [1], [2]. Typically expressed
as black-box complexity bounds, these lower bounds can be
seen as a baseline against which we can compare state-of-the-
art solvers, with the goal to quantify the potential of further
algorithm development. By comparing black-box complexity
bounds for different classes of algorithms, we obtain insight
into the impact of certain algorithm features, such as their
degree of parallelism [3], [4], their memory [5], [11], their
selection principles [7], properties of their sampling strate-
gies [8]–[10], etc. More refined lower bounds can be obtained
by specifying a family of algorithms, the available choices for
configuring it, and by studying the dependency of the running
time on the choices of these configurable components. This
has been classically studied in the asymptotic sense [12]–
[15], however, some recent works provide tight bounds also
for concrete problem dimensions [16], [17].

Most of these works assume a static setting of the parame-
ters. In practice, however, it is well know that dynamic param-
eter settings can greatly improve the efficiency of evolutionary
algorithms [18]–[20]. Precise lower bounds for algorithms

with dynamic parameter settings are rare, see [21] for a survey
of rigorous results for algorithms with dynamic parameter
choices and [22]–[24] for a few exceptions that provide precise
lower bounds for algorithms with dynamic parameter settings.

Proving precise lower bounds for algorithms with dynamic
parameter choices is challenging for several reasons: (i) lower
bounds require to make statements about all possible settings
(as opposed to upper bounds, in which one concrete parameter
setting is analyzed), (ii) the (often very complex and trajectory-
based) dependency of the parameters on the state of the
algorithm needs to be taken into account, and (iii) all bounds
need to be very tight to obtain an overall bound that is
precise enough to give meaningful results for concrete problem
dimensions (and not just for the asymptotic behavior). In
lack of precise methods to derive optimal algorithm behavior,
several author teams have resorted to compute actions that
maximize the step-wise progress, in hope that this “drift-
maximization” is close to the true optimal parameter setting
policy. This step-wise progress maximization was either done
exactly [25] or via Monte Carlo simulations [26]. It is known,
however, that even for the ONEMAX problem with perfect
fitness-distance correlation, the drift-maximization strategy is
only close to being optimal [23], but not strictly optimal [27],
[28]. A different approach to compute precise lower bounds
for algorithms with dynamic parameter settings was therefore
taken in [27]. For the problem of minimizing the expected run-
ning time of (1+1)-type evolutionary algorithms on ONEMAX,
the authors first derive an exact method to compute the optimal
dynamic parameter choices and then evaluate this formula for
concrete problem dimensions using a dynamic programming
approach. The work was greatly extended in [28], by consider-
ing different (1+λ)-type heuristics and by not only computing
the optimal parameter choices at each state, but also the cost
of deviating from it.

Our contribution: We demonstrate in this work how the
approach taken in [27], [28] can be extended to settings in
which we do not necessarily have a closed-form expression
from which we can derive exact parameter settings. Our overall
approach is still based on dynamic programming, but we
replace the exact formulae that model the probabilities to
transition between different states by Monte Carlo simulations.
That is, we take a similar approach as in [26], but we
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do not simply maximize the expected drift, but use these
approximated probabilities to derive strategies that minimize
the expected running time – the quantity that most running
time analyses focus on.

We apply our approach to the RUGGEDNESS function
suggested in [29]. RUGGEDNESS extends the classical jump
function [30] by introducing several small jumps that the
algorithms need to make in order to find the optimal solution,
see Section IV-A for a formal definition. We have chosen this
example because in [31] we observed that classical parameter
control schemes essentially fail on RUGGEDNESS, in the
sense that they show worse performance than the (1 + λ)
evolutionary algorithm (EA) with static mutation rate 1/n
(with n denoting the dimension of the problem). Interestingly,
a better performance is obtained when mutation rates are
capped at 1/n instead of 1/n2; see Figure 1 for an illustration.
That is, despite having less flexibility, the algorithms perform
better. High-performing parameter control mechanisms should
not suffer from more flexibility, and we therefore see this
example as an interesting use-case to identify deficiencies of
state-of-the-art parameter control techniques, and to develop
appropriate remedies to mitigate these.

We suggested in [28] heatmaps to illustrate the behavior of
parameter control schemes. While indeed being very useful
to bound the regret (i.e., the cost of deviating from the
optimal parameter setting) of a single iteration, these heatmaps
turned out to be suboptimal when analyzing the whole search
trajectory. We therefore suggest in this work to complement
them with plots that illustrate the regret per iteration. With
these plots, one can now make a clear distinction between
quick cheap “hiccups” and long-term harmful deviations.

Implications for Ruggedness: The application of our
method to RUGGEDNESS shows that the (1 + λ) EA with
static mutation rate 1/n is around 50-75% worse than the
(1 +λ) EA variant using optimal dynamic mutation rates. We
also illustrate the usefulness of our regret plots by analyzing
why the (1+λ) EA(A, b) with generalized 1/5-th success rule,
shown efficient for other problems in [6], fails on this problem.

Impact and limitations of our work: While the precise
values of the lower bound and of the individual regrets for
RUGGEDNESS may be of interest to a rather specialized
community only, we believe that our general approach of hy-
bridizing Monte Carlo simulation with dynamic programming
should be of interest to everyone willing to derive precise
lower bounds against which sampling-based optimization al-
gorithms can be compared.

At present, our work is restricted to settings in which states
are never visited twice. In practice, this limits our work to
greedy (“elitist”) algorithms. Extensions to algorithms and/or
problems in which states may be visited more than once forms
one of the most challenging directions for future work, on
which we comment in more detail in Section V.

Structure of the paper: The (1 + λ) EA framework and
its main variants studied in [31] are introduced in Section II.
In Section III we describe our hybrid dynamic programming
approach using Monte Carlo simulation. In Section IV we

Algorithm 1: A family of (1 + λ)-type algorithms
Data: n: problem size; f : {0, 1}n → R: function to

maximize; λ: population size; D(p): a family of
parameterized distributions over [0..n]

1 Sample parent x ∈ {0, 1}n uniformly at random;
2 for t← 1, 2, . . . do
3 for i ∈ [1..λ] do
4 Choose a distribution parameter pti;
5 Sample ki ∼ D(pti), the number of bits to flip;
6 Create yi by flipping ki bits in x chosen

uniformly at random without replacement;

7 Select x← arg maxz∈{x,y1,...,yλ} f(z);

present the results of this approach applied to derive the
dynamic parameter settings which minimize the expected
running time of the (1+λ) EA on RUGGEDNESS. We comment
on further extensions of our approach in Section V. Section VI
concludes the paper.

II. (1 + λ) EVOLUTIONARY ALGORITHMS

We present in Algorithm 1 a fairly general family of
(1+λ) EAs, for the context of maximizing a “fitness” function
f : {0, 1}n → R defined on bit strings. Algorithms covered by
this framework are initialized by selecting their first solution
candidate uniformly at random. In each iteration, λ “offspring”
are sampled, by modifying the best-so-far solution x. The
modification is done by unary unbiased variation operators [8],
which –according to a characterization provided in [23] – are
defined by fixing a distribution D over the set of possible
mutation strengths k ∈ [0..n] := {0, 1, 2, . . . , n}. The operator
first samples a mutation strength k from this distribution and
then flips k uniformly selected, pairwise different bits in x.1

The best-so-far solution “survives” and determines the center
of variation in the following iteration. Ties can be broken
arbitrarily; in practice and in the remainder of this work we
assume uniform selection among the best offspring (if at least
one of them is at least as good as the parent).

We do not specify in Algorithm 1 a stopping criterion,
because we are – in line with the majority of running time
analysis papers – interested in the expected optimization time,
i.e., the average number of function evaluation that an algo-
rithm performs until it evaluates for the first time a solution x∗

with f(x∗) ≥ f(y) for all y ∈ {0, 1}n.
In [31], the following (1 + λ) EA variants were studied:
(1) Shift (1+λ) EA: The standard (1+λ) EA with mutation

rate p is Algorithm 1 with D(pti) = B(n, p) for all t ∈ N, i ∈
[1..λ]. It was argued in [32], [33] that for (1+λ) schemes this
operator should not be used in practice, since it assigns proba-
bility mass to flipping 0 bits, which cannot advance the search.

1Examples: The two most commonly used unary unbiased variation op-
erators are 1-bit-flips and standard bit mutation (SBM). 1-bit-flips, as used
within Randomized Local Search (RLS), correspond to the 1-point distribution
P[k = 1] = 1, whereas SBM (used by many evolutionary algorithms) is
exactly the operator characterized by the binomial distribution B(n, p).



Two strategies were suggested to mitigate this unfavorable
behavior: “shifting” all probability mass from k = 0 to k = 1
and “resampling” k until k > 0. We use the shift strategy in all
algorithms considered in this work, i.e., we use the mutation
operator characterized by the distribution B0→1(n, p), which
has P[` = 1 | ` ∼ B0→1(n, p)] = P[` ≤ 1 | ` ∼ B(n, p)]
and P[` = k | ` ∼ B0→1(n, p)] = P[` = k | ` ∼ B(n, p)] for
k ≥ 2. Where p is not specified, we tacitly assume p = 1/n.

(2) (1 + λ) EA(A, b): This algorithm, analyzed in [6],
uses a multiplicative parameter update scheme inspired by
the 1/5-th success rule [34]. Our version uses shift mutation
(as introduced above) instead of resampling mutation, but the
update of p remains the same as in [6] with A = 2 and
b = 1/2. That is, p is initialized as 1/n. At the end of each
iteration p is updated to 2p if max{f(y1), . . . , f(yλ)} ≥ f(x)
and to p/2 otherwise.

(3) (1+λ) EAr/2,2r: This algorithm was suggested in [35].
It creates y1, . . . , yλ

2
by the shift mutation with mutation rate

p/2 and the other offspring, yλ
2 +1, . . . , yλ by the shift mutation

with mutation rate 2p. Let fh = max{f(y1), . . . , f(yλ
2
)} and

fd = max{f(yλ
2 +1), . . . , f(yλ)}. If fh > fd, p is updated to

p/2 with probability 3/4 and to 2p otherwise. If fd > fh, p
is updated to 2p with probability 3/4 and to p/2 otherwise. If
fd = fh, p is updated to either p/2 or 2p equiprobably.

(4) (1 + λ) HQEA: This algorithm was suggested in [31].
It hybridizes reinforcement learning with the multiplicative
update used within the (1 + λ) EA(A, b). We cannot present
details, for reasons of space, and refer the interested reader
to [31] for details. For this work, it is interesting to note that
the algorithm also uses shift mutation, with a mutation rate p
that is updated after each iteration. All λ offspring are sampled
from the same distribution.

Capping of the mutation rate p: An advantage of the
shift mutation operator is that it converges to the 1-bit-flip
operator when p → 0. It can therefore be used to interpolate
between global and local search. However, we typically want
to maintain some probability of escaping local optima. In prac-
tice, p is therefore often capped to remain within an interval
[pmin, pmax]. In our work, when considering parameter control
methods, we fix pmax = 1/2. As discussed in the introduction,
pmin can have a decisive influence on the efficiency of the
algorithms, as can be seen in the example on the right side of
Figure 1. We study two values, pmin = 1/n and pmin = 1/n2.

Scope of our work: We will focus in the following on
computing a lower bound for the family of algorithms that
follow Algorithm 1, but which use identical distributions to
sample the λ offspring (i.e., we require that D(pti) = D(ptj)
for all i, j ∈ [λ]). We also restrict the algorithms to those
in which D(pt) (using the previous convention, we will from
now on drop the index i) may depend on n and on f(x), but
not on x,2 nor on t, nor on any other information.

2This assumption is irrelevant for our use-case, but the structure of x can
have an important impact in general, as is easily seen for the LEADINGONES
function, for which f(0 . . . 0) = f(01 . . . 1) = 0, but the optimal mutation
rate for (0 . . . 0) is one, whereas the optimal one for (01 . . . 1) is pmin.

III. ALGORITHM DESCRIPTION

In this section we describe our algorithm that computes
good choices of distribution parameters p for each possible
fitness value of the parent.

A. High-Level Description

Our algorithm is based on dynamic programming. We iterate
over the possible fitness values, starting from the second best
and continuing towards the smallest value. For each fitness
value we aim at finding the best possible parameter value
that minimizes the remaining expected running time, as well
as the remaining time itself, assuming that the (1 + λ) EA
will subsequently choose the optimal parameter values for all
better fitness values. As a side effect we also compute the
remaining expected running times for a number of parameter
values, which will be later useful to evaluate regrets associated
with particular parameter control schemes.

While doing it, we assume, similarly to [27], [28], that for
all higher fitness values the best possible expected running
times are already computed. However, since we aim at deal-
ing with various fitness functions, we use the Monte Carlo
approach to approximate transition probabilities instead.

B. Requirements for the Fitness Function

Before diving into details, we discuss the limitation of this
algorithm first. Our main limitation follows from our assump-
tion that, apart from the problem size, the optimal choice
of the distribution parameter p depends on the fitness value
exclusively. Hence, if two individuals have the same fitness
but different structure, it may result in different transition
probabilities to higher fitness values. Failing to account for
that may result in both overestimation and underestimation of
running times. For this reason, we formulate our requirement
to the fitness function as follows.

Requirement 1. For any two individuals x1 and x2, such that
f(x1) = f(x2):
• either both x1 and x2 shall be optima;
• or for each fitness value f ′ > f(x1), assuming Y = {y |
f(y) = f ′} is a set of bit strings with the fitness f ′, there
shall exist a bijective mapping π : Y → Y such that such
that for each y ∈ Y the following transition probabilities
shall be equal: P[x1 → y] = P[x2 → π(y)].

When applied inductively, this requirement informally
means that the fitness value unambiguously determines the
further stochastic behavior of the evolutionary algorithm.

Note that some popular benchmark fitness functions, such
as ONEMAX, as well as the function RUGGEDNESS used
in this study, satisfy this requirement. Some other functions
satisfy it only partially: for instance, with certain definitions
of the JUMP function, the individuals that form the small
fitness valley may have the same fitness but be structurally
different. However, in this particular case the probability that
the parent of the (1+λ) EA becomes such an individual during
the optimization run is overwhelmingly small, so we can still



Algorithm 2: High-level outline of the hybrid algo.

1 fmin, fmax ← minimum and maximum fitness values;
2 Initialize optimal times: T ∗fmax

← 0;
3 for f ← fmax − 1, . . . , fmin do
4 for p ∈ {p(f)1 , p

(f)
2 , . . . , p

(f)
mf } do

5 Compute approximate probabilities (p̃i)i=0,1,...

of increasing fitness by i with mutation rate p
using the Monte Carlo approach;

6 Tf,p ←
1

1− p̃0

(
1 +

∑
i>f Ti · p̃(i−f)

)
;

7 Store optimal time: T ∗f ← minp(Tf,p);
8 Store optimal rate: P opt

f ← arg minp(Tf,p);

9 return {P opt, T ∗, T}

apply our algorithm and get the results that are imprecise only
up to a factor whose difference from one is negligible.

C. Detailed Description

The high-level pseudocode of the proposed algorithm is
given in Algorithm 2.

We maintain T ∗f , our approximation of the optimal expected
remaining time starting at fitness f until the optimum is hit.
This value for the maximum fitness, fmax that corresponds to
the optimum, is obviously zero: T ∗fmax

= 0. We compute the
remaining values starting from fmax − 1 and stepping down
until the minimum fitness value fmin is processed. Since the
algorithms from the (1 +λ) EA family are elitist, T ∗f depends
only on T ∗f ′ with f ′ > f , but not on other entries.

To evaluate a particular T ∗f , we evaluate the expected
remaining times Tf,p starting at fitness f until the optimum
is hit, provided that (i) while the parent’s fitness is f , the
(1+λ) EA uses the mutation rate p, and (ii) when the parent’s
fitness is updated, the (1+λ) EA uses the previously computed
optimal mutation rates. Since we aim at an easy-to-compute
approximation scheme that does not depend on the structure of
the fitness function, we employ the following simplifications.
• Instead of testing all possible p, which is computation-

ally infeasible, we use a finite set of mutation rates
{p(f)1 , . . . , p

(f)
mf } that may depend on f . To obtain a good

approximation, this set shall be dense enough around the
assumed optimal mutation rate, but in the same time it
should have a small enough size so that the computation
finishes in affordable times. We detail our choices of these
sets later in Section III-D.

• Instead of analytically computing transition probabilities
of the (1 + λ) EA from the current fitness f to each
larger fitness f ′ (which may be very hard, error-prone and
computationally demanding for certain problems) we use
the Monte Carlo approach, which amounts to simulation
of a part of the run of the (1 + λ) EA.

The Monte Carlo evaluation of Tf,p is performed as follows.
1) Choose a large number of modeled iterations, NI .

2) Choose a large number NT of successful iterations (the
iterations that resulted in a strict fitness increase) to wait
for: if the transitions are easy enough, NT successes
already make a good estimation of the majority of likely
transitions, so we do not execute all NI iterations and
hence save computational resources.

3) Find an individual with fitness f and set it as the parent
individual for the next iterations of the (1 + λ) EA.

4) Perform NI iterations of the (1+λ) EA (or fewer if NT
is hit earlier), however, at the end of each iteration do
not update the parent regardless of the outcome. Instead,
for the j-th iteration we record the fitness f ′j of the
individual that would otherwise become the next parent.

Note that the correctness of not updating the parent even
in the case of neutral move is motivated by Requirement 1:
any individual with the fitness f induces the same behavior,
so execution of a neutral move may be safely omitted.

Let NA ≤ NI be the actual number of simulated iterations.
The probability estimations p̃i of increasing the fitness by i are
computed as p̃i = 1

NA
· |{j | 1 ≤ j ≤ NA; f ′j = f + i}|. Note

that, as the (1 + λ) EA is elitist, p̃0 counts also the occasions
where the best offspring was worse than the parent.

Finally, Tf,p is computed based on p̃i and T ∗f ′ for f ′ > f
using the equation in line 6 of Algorithm 2, which is a solution
of the recurrent relation Tf,p = 1 + p̃0 ·Tf,p +

∑
i>0 p̃i ·T ∗f+i.

D. Choice of Mutation Rate Sets

The choice of the mutation rate sets {p(f)1 , . . . , p
(f)
mf } has

to be a trade-off between the accuracy of the resulting values
and the computation time. However, the freedom to choose
different sets for different fitness values partially reduces the
effects of this trade-off. In particular, one may conduct prelim-
inary experiments to see which probabilities for which fitness
values are most promising, and increase the coverage near
these probabilities in more involved experiments. Technically,
this opens a possibility of a self-adaptive scheme, where first
some predefined grid is used for each fitness value, and then
it is refined in the most promising regions to get better results.
In this paper, however, we used a more conservative scheme
detailed below.

In our experiments, we used a union of two grids: the multi-
plicative grid of the form pi = pbase ·αi, which we use for large
fitness values and which spans relatively small probabilities,
and the additive grid of the form pi = pbase + i · pstep to
cover the whole ranges of fitness values and probabilities.
As the particular parameter values need to depend on the
problem size, we give these values, as well as the Monte Carlo
simulation parameters NI and NT , in the next section.

IV. EXAMPLE APPLICATION OF OUR APPROACH

In this section we outline several kinds of insights that
can be derived from the results computed by the proposed
algorithm. Some of them, namely lower bounds for parameter
control methods, plots of optimal parameter values, and pa-
rameter efficiency heatmaps, have been previously proposed
in [27], [28], and the regret plots are new to this paper.



A. The Ruggedness Function

We have chosen as use-case the RUGGEDNESS function
introduced in [29] (function F6 there). It is basically a function
of concatenated jumps. That is, assuming that the unique
optimum is located in some bit string z, with fitness value
n, all points at Hamming distance one from z have fitness
n − 2, while those at distance two have fitness n − 1, those
at distance three have fitness n − 4, those at distance four
have fitness n − 3, and so on. Formally, letting OMz(x) :=
{i ∈ [1..n] | zi = xi}, RUGGEDNESS assigns r(x) = n if
OMz(x) = n, r(x) = OMz(x) + 1 if OMz(x) ≡ n mod 2,
and r(x) = OMz(x)− 1 otherwise.

As mentioned above, all the mutation rate control methods
considered in [31] perform worse on RUGGEDNESS than the
shift (1+λ) EA with static mutation rate p = 1/n, see Fig. 1.
This raises two important questions, which we will answer in
the remainder of this section: (i) How far are the algorithms
benchmarked in [31] from the best possible performance? (ii)
What is the impact of the individual parameter choices that
are made during the optimization process?

Our experiments consistently use problem size n = 100.
This choice is motivated by three main factors: it is large
enough to see absolute differences in algorithms’ behavior,
yet small enough to finish the Monte Carlo simulations,
and it allows a straightforward comparison with the previous
works [28], [31].

To compute the necessary data for RUGGEDNESS, we use
the following parameters for our Monte Carlo approach: NI =
106, NT = 5 · 104. We use the same set of probabilities for
each fitness, which is constructed using a multiplicative grid
with the following parameters: pbase = 10−4 to match pmin =
1/n2 = 10−4, and α = 101/25, so that 100 probabilities less
than 1 are employed, whose logarithms are evenly distributed.

B. Lower Runtime Bounds for Parameter Control Methods
The near-optimal runtime values T ∗f for each fitness f

obtained from the proposed algorithm may be directly used
to construct the lower bounds on the expected running times
possible for parameter control methods. For this, we compute
for each fitness value f the probability pinit

f of hitting it with the
first created individual. The value T =

∑
f T
∗
f p

init
f , which is

the expected runtime of the (1+λ) EA assuming near-optimal
parameter choices, is then used as lower bound.

Fig. 1 presents the comparison of these lower bounds,
measured in iterations, with the performance of the standard
(1 + λ) EA, as well as of the (1 + λ) EA employing a few
existing parameter control methods, on RUGGEDNESS and
on ONEMAX for comparison, all using the shift mutation.
For ONEMAX we use the exact method for computing the
lower bounds from [28]. For the parameter control methods
we additionally employ two different lower bounds on the
mutation rate, pmin = 1/n and pmin = 1/n2.

Now we compare the insights achieved for RUGGEDNESS
with the ones achieved before. In [31] one was able to see
only that some parameter control methods are far away from
(1 + λ) EA when using pmin = 1/n2, and the situation
becomes better when pmin = 1/n is used. More precisely,
with the less generous lower bound on the mutation rate, all
the considered methods are able to perform just as (1+λ) EA.
But is it possible to come up with a more efficient parameter
control method that would outperform (1 + λ) EA? With the
just obtained lower bounds on expected runtimes, represented
with green lines in Fig. 1, one can conclude that even if one
makes the optimal mutation rate choices for each fitness value,
only a relatively small constant-factor improvement would
be possible. This gives an important bound which was not
previously known.

One of the interesting observations on RUGGEDNESS, which
can be derived from Fig. 1, is that the (1 +λ) EA(A, b) has a
much worse performance than both the (1 + λ) EAr/2,2r and
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the (1+λ) EA. However, the reason for such a behavior cannot
be derived from Fig. 1. We return to this question further in
this section by looking more closely at how these methods
choose mutation rates and how they relate to the best choices.

C. Plots of Optimal Parameter Values

The observation of running times alone cannot provide
deeper insights about the problem structure, including the
optimal mutation rates for different fitness values. Such a
knowledge can shed some light on which issues a parameter
control method may face when the (1 + λ) EA solves the
problem in question. The plots of near-optimal mutation
rates, which the proposed algorithm provides, may serve this
purpose. What is more, one can infer the influence of the
population size λ on the optimal parameters from such plots.

Fig. 2 presents the plots of near-optimal mutation rates as
a function of the fitness value for ONEMAX, computed as
in [28], and RUGGEDNESS. One can see that for ONEMAX
these plots demonstrate a steady tendency of decreasing while
getting closer to the optimum, which matches the general ex-
pectations. At the same time, most the plots for RUGGEDNESS,
while having a similar general trend, show regular oscillations
with a period of 2. Indeed, a small mutation rate is better for
the (1 + λ) EA to improve from the fitness value that has a
different parity than n (by flipping a single bit), but at least
two bits need to be flipped to improve from the fitness value
with the same parity as n, which requires a larger mutation
rate that tends to 2/n as one gets closer to the optimum.

Note that such optimal parameters may be difficult to be
tracked precisely by most parameter control methods that
assume a slow change of the optimal mutation rate.

D. Parameter Efficiency Heatmaps

Since Algorithm 2 provides expected runtimes Tf,p for each
fitness value and mutation rate, assuming that for higher fitness
values the optimal mutation rates are chosen, we can use this

data to estimate the relative efficiency of mutation rate choices
for each fitness value. In Fig. 3 we present this information as
a heatmap for n = 100 and λ = 512. Each cell of a heatmap
corresponds to a pair of f and p, where the following p are
chosen: p = 10−4+i/25 for 0 ≤ i ≤ 100.

Colors of the cells represent the relative efficiency of the
corresponding p among all mutation rates for the correspond-
ing f . They are derived from the value Cf,p = exp(αf ·(T ∗f −
Tf,p)), where αf ≤ 1 is chosen in such a way that at least a
half of Cf,p are at least 0.5. This is done to display enough
information about at least 50% of possible choices, while not
artificially emphasizing differences if they are negligible.

Using Fig. 3, one can make the following observations about
dynamic mutation rates for the (1 +λ) EA on RUGGEDNESS:

• Overall, near-optimal mutation rates start with a rather
high value at the beginning of the optimization and show
a trend to gradually decrease towards the optimum.

• This trend is non-monotone. By comparison with ONE-
MAX, one can see that for even fitness values RUGGED-
NESS shows behavior similar to ONEMAX. However, for
odd fitness values the best mutation rates are higher.

These observations agree well with the findings from the
previous subsection and Fig. 2. However, one can also see
that in most of fitness values, except for a few last ones, there
is a wide enough range of nearly equally good parameters for
each fitness value, which shows that most parameter control
methods have, in theory, a fair chance of maintaining good
mutation rates until the last moments.

Fig. 3 also shows traces of the actual mutation rates chosen
by the (1 + λ) EAr/2,2r and (1 + λ) EA(A, b) algorithms on
RUGGEDNESS, both with pmin = 1/n2, for the corresponding
fitness values. The following observations can be made:

• Both algorithms quickly, in less than 10 iterations, reach
near-optimal mutation rates at fitness of roughly 70.

• For fitness of roughly 80, both algorithms choose rea-
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sonably good values often enough, which ensures some
progress, with the (1 +λ) EAr/2,2r doing slightly better.

• For last few fitness values, both algorithms visit odd
fitness values exclusively, but the (1 + λ) EAr/2,2r
still chooses good mutation rates, whereas the (1 +
λ) EA(A, b) gets stuck with the too small rates.

The latter observation clearly points at the behavior that
causes the poor performance of the (1 + λ) EA(A, b) seen at
Fig. 1. It appears that the (A, b) adaptation rule forces a switch
to local search as progress slows down, which converges the
mutation rate to pmin = 1/n2. With such rate it makes the
chance of finding two-bit improvements Θ(n2) smaller, which
explains the large performance gap observed in Fig. 1.

E. Regret Plots

Overlaying parameter choices of particular parameter con-
trol methods over the parameter efficiency heatmaps may
indicate the presence of problems in a method, and how large

the deviation is. However, it cannot show how much of the
performance the method loses from acting suboptimally.

A possible solution is to show how much the method loses
to the optimal choice in each iteration. More precisely, for
each iteration we take the parameter value p chosen by the
parameter control method in question that corresponds to the
current parent’s fitness value, and plot the value |Tf,p − T ∗f |
for that iteration. Such regret plots are presented in Fig. 4. We
change the plot color whenever the fitness value changes, so
that one can see which iterations share the same fitness value.

We can observe in the example runs in Fig. 4 that both
methods initially quickly reduce their regret. However, the
(1 + λ) EAr/2,2r keeps it at a low level, whereas the (1 +
λ) EA(A, b) shows a more complicated behavior. First it
features two peaks of local regret maxima, which match two
occasions of too high mutation rates seen in Fig. 3. It then
quickly moves through a good region and falls down to small
mutation rates, where it spends most of its time with very large
regrets, whose sum dominates the total running time.



Note that, occasionally, a parameter control method may
enter a region where Tf,p reaches too high values, or where it
is even infinite (which happens twice in Fig. 4). If the method
is quick enough to return to better mutation rates, this does not
harm the performance, as is the case for the (1+λ) EAr/2,2r.

V. GENERALIZATION OF THE HYBRID APPROACH

As discussed in the introduction, our hybrid approach is
at the moment restricted to settings in which states are not
visited more than once. This can be resolved, at the price of
computational complexity, by construction of Markov chains
on all states with equal fitness and solving the resulting system
of equations. However, this may also require a revision of used
definitions, such as the one for regret: if the mutation rate is
fixed to some value for one of the states, globally suboptimal
choices for other states may actually make the runtime smaller.

Our approach is, in fact, not limited to (1 + λ) type
algorithms: as it simulates an iteration of the algorithm as
a parameterized black-box, a wide range of algorithms may
be modeled, which is much harder with exact approaches.

The number of states may become too large to have
them considered explicitly for certain problems, as well as
for population-based algorithms. While we see no obvious
solution for this problem yet, state-merging approaches might
be a solution for some of the cases.

VI. CONCLUSIONS

We have extended in this work the dynamic programming
approach for computing optimal state-dependent, dynamic
mutation rates suggested in [27], [28] to settings in which
the transition probabilities cannot necessarily be computed
by closed-form expressions, but where they need to be ap-
proximated by Monte Carlo simulations. We have applied
this approach to derive optimal parameter choices for the
(1 +λ) EA on RUGGEDNESS. We have also introduced regret
plots, which not only show deficiencies in parameter control
methods, but indicate their impact on the running time.

We plan to extend our work to more complicated setting
detailed in Section V, as well as to use the results presented in
this work to improve some of the parameter control methods.

Acknowledgments. The reported study was funded by
RFBR and CNRS, project number 20-51-15009, and by the
Paris Ile-de-France region.

REFERENCES

[1] B. Doerr and F. Neumann, Eds., Theory of Evolutionary Computation—
Recent Developments in Discrete Optimization. Springer, 2020.

[2] C. Doerr, “Complexity theory for black-box optimization heuristics,” in
Theory of Evolutionary Computation: Recent Developments in Discrete
Optimization. Springer, 2020.

[3] G. Badkobeh, P. K. Lehre, and D. Sudholt, “Unbiased black-box
complexity of parallel search,” in PPSN. Springer, 2014.

[4] P. K. Lehre and D. Sudholt, “Parallel black-box complexity with tail
bounds,” IEEE Trans. Evol. Comp., vol. 24, no. 6, 2020.

[5] S. Droste, T. Jansen, and I. Wegener, “Upper and lower bounds for
randomized search heuristics in black-box optimization,” Theory of
Computing Systems, vol. 39, 2006.

[6] C. Doerr and M. Wagner, “Simple on-the-fly parameter selection mech-
anisms for two classical discrete black-box optimization benchmark
problems,” in GECCO. ACM, 2018.

[7] C. Doerr and J. Lengler, “Introducing elitist black-box models: When
does elitist behavior weaken the performance of evolutionary algo-
rithms?” Evol. Comp., vol. 25, 2017.

[8] P. K. Lehre and C. Witt, “Black-box search by unbiased variation,”
Algorithmica, vol. 64, no. 4, 2012.

[9] B. Doerr, T. Kötzing, J. Lengler, and C. Winzen, “Black-box complex-
ities of combinatorial problems,” Theor. Comput. Sci., vol. 471, 2013.

[10] J. Rowe and M. Vose, “Unbiased black box search algorithms,” in
GECCO. ACM, 2011.

[11] B. Doerr and C. Winzen, “Playing Mastermind with constant-size
memory,” Theory of Computing Systems, vol. 55, 2014.

[12] C. Witt, “Tight bounds on the optimization time of a randomized search
heuristic on linear functions,” Combinatorics, Probability & Computing,
vol. 22, 2013.

[13] D. Sudholt, “A new method for lower bounds on the running time of
evolutionary algorithms,” IEEE Trans. Evol. Comp., vol. 17, 2013.

[14] C. Gießen and C. Witt, “The interplay of population size and mutation
probability in the (1+λ) EA on OneMax,” Algorithmica, vol. 78, no. 2,
2017.

[15] P. S. Oliveto, D. Sudholt, and C. Witt, “A tight lower bound on
the expected runtime of standard steady state genetic algorithms,” in
GECCO. ACM, 2020.

[16] F. Chicano, A. M. Sutton, L. D. Whitley, and E. Alba, “Fitness
probability distribution of bit-flip mutation,” Evolutionary Computation,
vol. 23, no. 2, 2015.

[17] C. Gießen and C. Witt, “Optimal mutation rates for the (1 + λ) EA
on OneMax through asymptotically tight drift analysis,” Algorithmica,
vol. 80, 2018.

[18] G. Karafotias, M. Hoogendoorn, and A. Eiben, “Parameter control in
evolutionary algorithms: Trends and challenges,” IEEE Trans. Evol.
Comp., vol. 19, 2015.

[19] A. Aleti and I. Moser, “A systematic literature review of adaptive pa-
rameter control methods for evolutionary algorithms,” ACM Computing
Surveys, vol. 49, 2016.

[20] A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in
evolutionary algorithms,” IEEE Trans. Evol. Comp., vol. 3, 1999.

[21] B. Doerr and C. Doerr, “Theory of parameter control mechanisms for
discrete black-box optimization: Provable performance gains through
dynamic parameter choices,” in Theory of Evolutionary Computation:
Recent Developments in Discrete Optimization. Springer, 2020.
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