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ABSTRACT
Introducing new algorithmic ideas is a key part of the continuous
improvement of existing optimization algorithms. However, when
introducing a new component into an existing algorithm, assessing
its potential benefits is a challenging task. Often, the component is
added to a default implementation of the underlying algorithm and
compared against a limited set of other variants. This assessment
ignores any potential interplay with other algorithmic ideas that
share the same base algorithm, which is critical in understanding
the exact contributions being made. We explore a more extensive
procedure, which uses hyperparameter tuning as a means of as-
sessing the benefits of new algorithmic components. This allows
for a more robust analysis by not only focusing on the impact on
performance, but also by investigating how this performance is
achieved. We implement our suggestion in the context of the Mod-
ular CMA-ES framework, which was redesigned and extended to
include some new modules and several new options for existing
modules, mostly focused on the step-size adaptation method. Our
analysis highlights the differences between these new modules, and
identifies the situations in which they have the largest contribution.

CCS CONCEPTS
•Theory of computation→Design and analysis of algorithms;
Bio-inspired optimization.
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1 INTRODUCTION
With the continuous increase in interest for the field of optimization,
many new algorithms get introduced every year. A large number
of these algorithms are not completely novel, but instead add new
algorithmic ideas to existing methods. Originally referring to one
particular algorithm, CMA-ES has developed into a whole family
of algorithms that are built around the core design of the original
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CMA-ES algorithm from [22]. While this growth of the algorithm
set helps to keep improving the state-of-the-art performance, it
also raises a simple question: “How to assess the benefits of new
algorithmic ideas?”

The naive way of performing such an assessment is to implement
the algorithmic idea into a bare-bones version of the base algorithm,
and to benchmark it against the default (and maybe some other
variants). While this technique does manage to give an indication
of the usefulness of the newly introduced component, the results
are not always practical and hide important information, since
they only consider the idea in isolation. Often, there tends to be
an important interplay between algorithmic components, which is
completely missed when doing the type of assessment described
above.

We aim to provide in this work a roadmap for assessing these
algorithmic ideas in a way which takes component interactions into
account. This is achieved by considering the different algorithmic
ideas as modules in a modular framework. Several of these types of
frameworks have been developed over the years [10, 33, 35, 36, 43].
In this work, we present a use case for this roadmap by using the
Modular CMA-ES (ModCMA), which is extended from the existing
ModEA framework [36], by both adding new modules and new
options for existing modules (see Section 2 for details). With this
modular framework, we show in this work how hyperparameter
tuning can be used to assess the contributions of the newly imple-
mented components.

We illustrate how this approach gives a detailed perspective on
the benefits of new algorithmic ideas, by not only looking at pure
performance metrics, but also considering the interplay with exist-
ing modules. We show, among other things, that the introduction
of new Step-Size Adaptation (SSA) methods can be beneficial, but
that it requires careful consideration of the interactions with other
modules, such as the choice of recombination weights. We also
discuss the limitations of this approach, and how to best use it to
gain the most understanding about these new algorithmic ideas.

2 REDESIGNING MODEA TO A MODULAR
CMA-ES FRAMEWORK

Our work relies heavily on the Modular Evolutionary Algorithms
(ModEA) framework introduced in [36]. Since this framework hasn’t
undergone any active development in recent time, we decided to
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redesign the framework to our specifications. The modifications
we made rendered the name of the framework no longer befitting,
as only CMA-ES variants can now be created using the frame-
work, whereas the original framework also supported the design
of other evolutionary algorithms. The new framework was dubbed
the Modular CMA-ES (ModCMA) and is available as an open source
Python package within the IOHprofiler [14] environment1. It is
integrated with the IOHexperimenter, giving access to a broad set
of benchmark problems, including a C++ implementation of the
BBOB functions [21] from the COCO environment [20]. In addi-
tion, this allows for easy data logging, which can be used directly
with the interactive performance analysis and visualization from
IOHanalyzer [41].

Motivation. The primary goal behind redesigning the framework
was to reduce its complexity, and to only include functionality com-
patible to the CMA-ES and its variants. The reasoning behind this
is the fact that the framework mostly revolves around the CMA-
ES. Other EAs are available in the framework, but are quite un-
derdeveloped w.r.t. the CMA-ES. Moreover, introducing working
interactions between the CMA-ES and operators from other EAs
overly complicates the framework’s structure. For example, ModEA
contains a range of different methods for performing recombina-
tion. However, the canonical CMA-ES does not explicitly perform
recombination. Instead, it updates its mean𝑚 by taking a weighted
average of the individuals in its current population, which it then
uses to sample new individuals from a normal distribution. In other
EAs, recombination occurs in a much more pronounced sense, for
example by crossover. In order to make the modular algorithm of
the CMA-ES function with these other forms of recombination,
its original method for “recombination” had to be adapted. The
CMA-ES however, is still only able to properly function with one
of these recombination methods, the canonical one. As this pattern
could be observed in other parts of the framework as well (i.e.,
mutation, selection), it was decided to remove these other methods
all together and to focus solely on the CMA-ES.

2.1 The Modular CMA-ES
To design the Modular CMA-ES, we use the implementation from
the popular CMA-ES tutorial [19] as a starting point. This work
provides a detailed description of the CMA-ES algorithm, including
a practical guide to its implementation. From this basic design, we
separate the CMA-ES in a number of functionally related blocks, in
order to allow a customization of a specific part of the algorithm.
This allows us to implement algorithmic variants of the CMA-ES as
functional modules. From a user perspective, any of these modules
could then be combined in order create a custom instantiation of
the CMA-ES, by selecting an option for each available module.

In ModEA, eleven of such modules were already implemented.
These were all reimplemented in the Modular CMA-ES, with a few
changes to the structure of the options. Specifically, we removed
the Pairwise Selection as a module. Instead, we incorporated this
option in theMirrored Sampling module as the optionMirrored Sam-
pling with Pairwise Selection, converting this module from binary

1https://github.com/IOHprofiler/ModularCMAES

to ternary. This is done because the pairwise selection method is
not suited for use without mirrored sampling [3].

We implemented a new module for performing boundary cor-
rection (see Section 2.2), and added five alternative options for
performing step size adaptation (see Section 2.3). These two exten-
sions to the framework will be the focus of our analysis through out
this work. This set of changes give us the following list of modules
for the redesigned Modular CMA-ES:

(1) Active Update: Bad candidate solutions are penalized in
the covariance matrix update using negative weights [24].
Note that in [19], this is given as the default version, here
we consider it to be optional.

(2) Elitism: (𝜇 + 𝜆) - selection instead of (𝜇, 𝜆) - selection.
(3) Orthogonal Sampling: All the newly sampled points in

the population are orthonormalized using a Gram-Schmidt
procedure [39].

(4) Sequential Selection: Candidate solution are immediately
ranked and compared with the current best solution. If im-
provement is found, no additional objective function evalua-
tions are performed [11].

(5) Threshold Convergence: A method for balancing explo-
ration with exploitation, scaling the mutation vectors to a
required length threshold, which decays over time [34].

(6) Step-Size Adaptation: Supplementary to the default Cu-
mulative Step size Adaptation (CSA), Two Point step size
Adaption (TPA) [17] is implemented. TPA requires two ad-
ditional objective function evaluations, used for evaluating
both a shorter and a longer version of the population’s cen-
ter of mass. The version which shows the higher objective
function value determines whether the step size should be
increased or decreased. Five newly added mechanism for
performing step size adaptation are implemented. They are
described in detail in Section 2.3.

(7) Mirrored Sampling: For every newly sampled point, its
mirror image is added the population, by reversing its
sign [3]. With Pairwise Selection, only the best point of each
mirrored pair is used in recombination.

(8) Quasi-Gaussian Sampling: Instead of performing the sim-
ple random sampling from the multivariate Gaussian, new
solutions can alternatively be drawn from quasi-random
sequences (a.k.a. low-discrepancy sequences) [6]. We imple-
mented two options for this module, the Halton and Sobol
sequences.

(9) Recombination Weights: Three options are implemented;
1) default weights (see [19]), 2) equal weights:𝑤𝑖 = 1/𝜇, and
3)𝑤𝑖 = 1/2𝑖 + 1/(𝜆2𝜆) for 𝑖 = 1, 2, . . . , 𝜆.

(10) Restart Strategy: When the optimization process stagnates,
the CMA-ES can be restarted using a restart strategy. Two
strategies are implemented. IPOP [5] increases the size popu-
lation after every restart by a constant factor. BIPOP [18] also
changes the size of the population, but alternates between
larger and smaller population sizes.

(11) Boundary Correction: If candidate solutions are sampled
outside the search domain, they can be transformed back into

https://github.com/IOHprofiler/ModularCMAES
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# 0 (default) 1 2 3 4 5 6

1 off on - - - - -
2 off on - - - - -
3 off on - - - - -
4 off on - - - - -
5 off on - - - - -
6 CSA TPA MSR PSR xNES m-xNES p-xNES
7 off on on w. PS - - - -
8 off Sobol Halton - - - -
9 default 1

𝜆
1
2𝑖

+ 1
𝜆2𝜆

- - - -
10 off IPOP BIPOP - - - -
11 off UR MCS COTN SCS TCS -

Table 1: The modules available for the Modular CMA-ES.
The numeric index for each module corresponds to the
index used in the text of Section 2.1. Newly added mod-
ules/options are given in bold.

the search domain by applying a boundary correction oper-
ation. In Section 2.2, we describe six options for performing
boundary correction which have been implemented.

In Table 1, an overview is given of all currently implemented
modules and their options in the Modular CMA-ES framework.

2.2 Boundary Correction
In the original framework, a boundary correction function taken
from [28] was implemented, and always applied after eachmutation.
In some cases, however, this operator can degrade the performance
of the algorithm quite drastically. We therefore decided to make the
boundary correction optional, and to implement it as a module, for
it to only be used when beneficial. A number of different boundary
correction strategies were implemented, taken from [12]:

(1) None: No correction is applied to infeasible coordinates of
solutions.

(2) Uniform Resample (UR): Replaces all infeasible coordi-
nates of a solution with new coordinates sampled uniformly
at random within the search space.

(3) Mirror Correction Strategy (MCS): Mirrors all infeasible
coordinates of a solution with respect to its closest boundary.

(4) Complete One-tailed Normal Correction Strategy
(COTN): All infeasible coordinates are replaced with new
coordinates inside the search space according to a rescaled
one-sided normal distribution centered on the boundary.

(5) Saturation Correction Strategy (SCS): All infeasible co-
ordinates is set to the closest corresponding bound.

(6) Toroidal Correction Strategy (TCS): All infeasible coor-
dinates get reflected off the opposite boundary.

2.3 Step-Size Adaptation
In this work, we consider a number of alternative step size adap-
tation mechanisms for new options for the Modular CMA-ES. We
take inspiration from [25], which provides a qualitative evaluation
of multiple step size adaptation mechanisms used in ES. In addition
the CSA and TPA step size adaptation methods, which were already
implemented, we implemented the following procedures:

(1) Median success rule (MSR) [1]: The MSR mechanism
adapts the step-size 𝜎 as follows: it firstly computes a suc-
cess rate by checking the number of current individuals that
are better than some user-defined quantile of the function

values in the previous population, then accumulates such
success rates in every iteration, and finally decides to in-
crease the step-size if the cumulated values is bigger than
1/2 and decrease it otherwise.

(2) Population success rule (PSR) [32]: determines the suc-
cess rate of the current population using a rank-based ap-
proach. It firstly sorts all individuals in the current and pre-
vious population together, then retrieves the set of ranks of
individuals belonging to the current iteration and the one
for the previous iteration, and finally calculates the average
rank difference between those two sets as the population
success rate, which controls the step-size updates.

(3) xNES step-size adaptation (xNES)[16, 26, 42]: calculates
the length of each standardized mutation vector
and subtracts from it the expected length of the standard
Gaussian vector. The resulting difference is then scalarized
using the same weights used in the recombination, which is
finally fed into an exponential function to generate a multi-
plicative coefficient to modify the step-size.

(4) mean-xNES step-size adaptation (m-XNES) [26]: func-
tions similarly to xNES, with the exception that it takes the
standardized differential vector between current center of
mass and the one in the previous iteration and compares it
to the expected length of the standard Gaussian vector.

(5) xNES with log normal prior Step size adaptation (p-
xNES) [26]: resembles the principle of self-adaptation for
step-sizes, where 𝜆 trial step-sizes are generated from a log-
normal distribution which takes the current step-size as its
mean and each trial step-size is used to sample a candidate
point. To determine the new step-size, this method calculates
the weighted sum of the log-transformed trial step-sizes,
where those assigned to their corresponding candidate points
in the recombination.

3 INCREMENTAL ASSESSMENT OF MODULE
PERFORMANCE

With the introduction of these newmodule settings, we have a clear
use-case for the assessment of algorithmic ideas within the CMA-ES
algorithm. Since these options are implemented into a framework
with many existing modules, it will not suffice to look at them in
isolation. Instead, we should carefully consider the potential inter-
actions with the existing modules and investigate their impact on
the empirical performance of ModCMA. Previous work [37] used
data from a complete enumeration of all module settings to ana-
lyze the contribution of each individual module. However, such an
approach becomes intractable when we are confronted with a huge
set of algorithmic variants, or more importantly if we aim to obtain
the contribution of some new modules implemented incrementally
to an existing portfolio of algorithms, which we have investigated
previously. In addition, this complete enumeration approach ig-
nores entirely the configuration of continuous strategy parameters,
e.g., 𝑐1, 𝑐𝜇 , and 𝑐𝑐 , which have been shown to significantly impact
the per-instance performance of the resulting configurations [8].

To properly address the problem of determining the contribution
of a single module setting to an existing portfolio of modules, we
make use of hyperparameter optimization, which has previously
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been shown to achieve results comparable to the complete enumer-
ation method, while being much more easily extendable to other
hyperparameters [38]. We propose the following roadmap to for-
malize this procedure, which is designed to be generic, so that it
can function with any modular algorithm, hyperparameter tuner,
and performance metric:

(1) Select a modular implementation of the base algorithm to
which the new module has been added, a hyperparameter
optimizer and a performance metric.

(2) Collect a list of the existing modules and relevant hyperpa-
rameters (without the new module to assess). This will be
the search space for the hyperparameter optimization.

(3) Run the selected hyperparameter optimizer on this search
space, ideally for a wide set of relevant benchmark functions.
This data will then serve as the baseline performance.

(4) Extend the original search space by including the new mod-
ule to assess, and run the hyperparameter optimization on
this extended search space (using the exact same setup as
the baseline).

(5) Compare the data from the baseline to the experiment with
the extended search space. This should not only be done
from a performance perspective, but also from the resulting
configurations themselves. This allows for the analysis of
potential interactions between modules.

3.1 Performance Measure
Assuming a set of optimization algorithms A = {𝐴1, 𝐴2, . . .}, a
set of objective functions F = {𝑓1, 𝑓2, . . .}, a function evaluation
budget 𝐵, and 𝑁 repeated runs of each algorithm, we denote by
𝑇 (𝐴, 𝑓 , 𝑣, 𝑖), 𝑖 ∈ [1..𝑁 ], the number of function evaluations (hitting
time) consumed by algorithm𝐴 to find in its 𝑖-th run on function 𝑓 a
solution of solution quality at least 𝑣 . We consider the target values
V = {10

10−𝑖
5 : 𝑖 ∈ [1..51]} ⊂ [10−8, 102], and adopt a performance

measure which aggregates the hitting times of each of these targets;
the Area Under the ECDF Curve (AUC):

AUC(𝐴, 𝑓 ,V) =
∫ 𝐵

1
𝐹 (𝑡 ;𝐴, 𝑓 ,V)d𝑡,

𝐹 (𝑡 ;𝐴, 𝑓 ,V) = 1
𝑁 |V|

∑
𝑣∈V

𝑁∑
𝑖=1

1(𝑇 (𝐴, 𝑓 , 𝑣, 𝑖) ≤ 𝑡),

where 1 is the characteristic function. We note that most hyperpa-
rameter tuning methods are built with minimization in mind. As
such, we use the Area Over the Curve (AOC) instead of AUC, since
we know AOC(𝐴, 𝑓 ,V) = 𝐵 − AUC(𝐴, 𝑓 ,V).

In order to collect the AOC measure from the runs of the Mod-
CMA, we integrated it into the IOHprofiler [14], which provides
ease-of-use logging functionality required to calculate the AOC of
each run.

3.2 Experimental Overview
In this paper, we use the irace [29, 30] hyperparameter optimizer.
Irace2 is based on the principle of iterated racing, in where each

2Implemented in R, freely available at [31].

race3 repeatedly executes several configurations until there is a
statistically significant reason to discard enough of them to move
to the next race (thus inherently allocating more runs to more
promising configurations).

Four runs of irace are performed for each of the 24 objective
functions in the BBOB single objective noiseless problem suite [20,
21], of which the first function instance is used in 5D. Each run
of Irace is given a budget of 1 000 algorithm evaluations, which
themselves have a budget of 10 000 · 𝐷 function evaluations. We
use the AOC attained by a run of a given configuration as the
objective function value for irace. Irace will designate one or more
configurations as elites, which are the best configurations found by
irace. We validate the performance of these elite configurations by
performing 25 validation runs, with the same random seeds for all
configurations. We use the results of these runs to assess the final
performance.

Conform our roadmap, we define a baseline by tuning the ex-
isting modules from ModCMA, which are shown (plain text) in
Table 1. In addition, we tune four continuous hyperparameters 𝑐1,
𝑐𝜇 , 𝑐𝑐 , and 𝑐𝜎 , which control the dynamics of the adaption of the
covariance matrix (𝑐1, 𝑐𝜇 , and 𝑐𝑐 ) and of the step-size (𝑐𝜎 ).

We compare two experiments to our baseline where in addition
to the existing modules, 1) a number of new SSA methods (see
Section 2.3) are included, and 2) a new boundary correction module
(see Section 2.2) is added to the tuned parameters 4. Both of these
experiments are using the same experimental setup as the baseline
experiment (excluding the tuned parameters). Note that in the
boundary correction experiment, the new SSA methods cannot be
selected and vice versa.

3.3 Single Module Performance
Before considering our proposed method, we run a basic bench-
marking experiment on each of the individual module options (in-
cluding the new options). This is similar to the common approach
of benchmarking a new module against a set of other algorithm
variants. We show the resulting best single-module configurations
(a.k.a. the virtual best solver, VBS for short) relative to the default
CMA-ES in Table 2. In this table, we see that among the new mod-
ules, only two have been selected: MSR for F23 and m-XNES for
F5. We can further look at the over-all contributions of the newly
introduced step-size settings by plotting the ECDF-curves over all
functions, as done in Figure 1. In this figure, we can clearly see
that most methods are quite competitive, with the only exception
being xNES, which has a overall worse performance than the others.
Overall, the MSR method seems to be quite effective, but there is
no strict domination over the other settings.

4 ANALYSIS AND RESULTS
In this section, we present the results of our hyper-parameter tuning
experiment. We consider two paths to analyze the contributions of
the newly introduced modules: the performance-perspective and
the perspective of the selected modules. We start by examining

3The initial iteration of irace consists of random configurations and the default CMA-ES
setting.
4All of the code used in these experiments, and the resulting data, is available in [13]
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Fid VBS AOC of VBS AOC of Default Improvement

1 elitist_True 247 326 24%
2 active_True 1 272 1 659 23%
3 local_restart_BIPOP 38 374 44 518 14%
4 local_restart_IPOP 41 746 44 613 6%
5 step_size_adaptation_m-xnes 43 63 31%
6 elitist_True 655 904 28%
7 step_size_adaptation_tpa 1 312 39 199 97%
8 base_sampler_halton 1 186 4 544 74%
9 base_sampler_sobol 959 2 470 61%
10 active_True 1 309 1 729 24%
11 active_True 1 162 1 749 34%
12 base_sampler_sobol 2 186 2 980 27%
13 active_True 1 627 2 191 26%
14 active_True 601 831 28%
15 local_restart_BIPOP 30 380 43 313 30%
16 local_restart_BIPOP 8 172 34 132 76%
17 threshold_convergence_True 12 464 26884 54%
18 threshold_convergence_True 15 764 33724 53%
19 mirrored_mirrored 33567 36 688 9%
20 threshold_convergence_True 36 482 40691 10%
21 local_restart_IPOP 38 028 40 371 6%
22 mirrored_mirrored 566 8 632 93%
23 step_size_adaptation_msr 11 060 34 433 68%
24 local_restart_IPOP 42 099 44 351 5%

Table 2: Table showing the AOC of the best single-
module configuration for each function (VBS), compared
to that of the default CMA-ES. The name of the solver
corresponds to the module which is active, e.g. <mod-
ule_name>_<option_value>. Note that these values does not
include benefits from tuning the continuous hyperparame-
ters, which are set to the default values for all configurations
in this table.
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Figure 1: ECDF-curve of all single-module stepsize options.
Figure generated using IOHanalyzer [41].
our baseline. This is followed by an analysis for the performance-
perspective and a deeper analysis into the selected modules.

4.1 Baseline
As mentioned in Section 3.2, we conduct a baseline tuning experi-
ment. Since we run 4 runs of irace for each function, this results
in 4 sets of elites (each set has up to 5 configurations), for which
we then perform the verification runs. We plot the distribution of
the AOC for each of these configurations in Figure 2, in addition to
this, the AOC of the default CMA-ES and the VBS is shown. From
this figure, it is clear that the tuning of all parameters at once is
much better than simply selecting a single-module variant, as is to
be expected. This plot also highlights the variance in performance
of the final found configurations. There are two main reasons for

Figure 2: Distribution of the area over the ECDF curve for
the final elite configuration of the baseline irace runs. All
AOC’s are averages of 25 verification runs. The VBS single-
module configurations can be seen in Table 2.
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Figure 3: Module counts of all elites found in the baseline-
experiment, over all 24 BBOB-functions. The option num-
bers correspond to those in Table 1

this fact: the inherent stochasticity of the CMA-ES itself, and the
large impact of the initially generated configurations of irace. We
discuss these challenges in detail in Section 5.

From this baseline data, we can also study the resulting configu-
rations themselves. This can be done by aggregating the modules
which have been selected in the final elite configurations in the
separate irace runs, as is visualized in Figure 3. In this figure, we can
see that there is a large variability in the selected module options,
which seems to indicate that they are all usable for at least some
functions. One notable exception is the weights option “equal”,
which is chosen in less than 1% of configurations.

4.2 Performance analysis
First, we visualize the distributions of the AOC of the single best
configuration found in each run of irace (based on the verifica-
tion runs) in Figure 4. In this plot, we can see that the effect of
introducing the new modules is quite mixed. For some functions,
performance decreases (e.g., on F8) after introducing new modules,
while for others we see the desired improvement (e.g. on F23).

In order to better show these differences, we show in Figure 6
the AOC of the single best configurations found in both the SSA
and bound-experiments relative to the best configuration from the
baseline. Here we observe a generally negative trend, with outliers
in both directions. This seems to indicate that these new modules
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Figure 4: Distribution of the single best elites from the base-
line and the tuningwith the additionalmodules. AOCvalues
are the result of averaging over 25 verification runs.
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Figure 5: Comparison of the Expected Running Time of the
best configurations found on F12 by both the baseline and
the SSA experiments. Shaded areas indicate the outer quan-
tiles (20-80).

are not always beneficial to the final performance. For example, we
can consider F12, where the configuration found by the baseline
has an average AOC of 1 159, while the best configuration found
when including the new SSA-methods in the search space reaches
an average AOC of 1 480. We show the expected running time of
these two configurations in Figure 5, where we can clearly observe
this difference. However, we can observe a large variance between
runs, which can partly explain poor performance. Indeed, if we look
at the average AOC as found during the irace run (instead of the
later verification runs), the difference between these two configu-
rations is only 7%, even though the distance between them in the
verification runs is much larger. This leads to an important obser-
vation about the assessment of the new algorithmic modules: when
judging results purely from the average performance measures, it is
necessary to also consider the overall variability of the experiment,
as well as the inherent stochasticity of the base algorithm.

We perform the same procedure for the boundary correction
methods. The impact of this module is expected to be smaller, since
for most of the “easier” functions, the boundary condition is rarely
violated. For some of the more challenging functions however, the
penalty value given by BBOB function itself might not be sufficient
to “guide” the algorithm back in bounds, but an explicit boundary
correction could be beneficial in these cases. We can see that this
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Figure 6: The relative improvements per function of the best
configuration found by irace relative to the baseline experi-
ment’s best configuration.

seems to indeed be the case in Figure 6, where on the more com-
plex functions, e.g., F21, the performance is improved when the
boundary correction module is tuned.

In Figure 6, we also see that the inclusion of the new SSAmethods
manages to improve the overall performance for some functions.
As an example, on F23 we saw an improvement of 17.1% over the
best baseline configuration. If we consider all four elite configura-
tions and compare the average performance differences, the average
improvement is even higher, at 22.3%. The stability of this improve-
ment is promising, but in order to fully grasp how the inclusion of
the new SSA mechanisms leads to this improvement, we need to
analyze the selected modules across these different experiments.

4.3 Module Analysis
We have seen that the performance of the elite configuration found
on F23 improves when we include the new SSA modules in the
search space. In order to identify what this performance can tell us
about the new modules themselves, we should study the configu-
rations in more detail. The obvious way to see the difference is by
looking at how often the new module options have been selected
in the final elite configurations. Over 20 elites, the PSR update was
selected 14 times, MSR once, and CSA five times. This shows that
these new modules are indeed used in the successful configurations.
To see how the inclusion of these module options changes the inter-
actions with the other modules, we look at the combined module
activation plot, which is shown in Figure 7. From this figure, we
can see that there are some interesting differences between the
two sets of configurations: the options for the restart and mirrored
module are not as uniform when using the new SSA methods, and
the weights option is changed completely. These observations show
that there is a clear interplay between these modules.

In addition to module activation, we can look into the distri-
butions of configured continuous hyperparameters. To illustrate
this, we study F3, and show the pairwise relations between the four
continuous hyperparameters and the final AOC value in Figure 11.
From the marginal distribution (shown on the diagonal), we can
see that the optimized setting of 𝑐𝜎 differs the most across the SSA,
boundary correction, and the baseline experiments. This is a direct
result of the introduction of the new SSA methods, each of which
prefers slightly different setting for this parameter. This indicates
that even though the final performance of the elite configurations is
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Figure 7: Combined module activation plot for the elites
found in the baseline and SSA experiments, for function 23.
The lower the line, the better its performance, scaled within
each band according to the AOC. The option numbers corre-
spond to those in Table 1.
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Figure 8: Heatmap showing the fraction of the elite config-
uration in which each of the options for either SSA (top) or
boundary correction (bottom) are active.

similar between the baseline and the SSA-experiment, the inclusion
of new SSA methods clearly changes the selected configurations.

We can extend this module analysis to all functions by aggregat-
ing the most important differences found between the baseline and
SSA-experiments. First, we can plot how often each new module
option is selected in the elites for each function, as is done in Fig-
ure 8. We can use the same principle to study the interaction with
the other modules. For the binary modules, we can directly capture
the module difference by looking at which modules occur more or
less often in the final set of elites, as is visualized in Figure 9. While
this does not directly generalize to modules with more settings,
we can create a similar plot for the other modules by considering
the overlap in selected module distributions. This is visualized in
Figure 10. From these figures, it becomes clear that the elites on
some functions are barely affected by the inclusion of the new mod-
ules, while others require completely different module settings to
properly exploit the changed search space.

The cost of tuning. We should note that only considering the
final elite configurations does not tell the full story of a module’s
contribution. As noted previously, introducing a new module in-
creases the size and complexity of the search space, which has a
large impact on the hyperparameter tuning task. If a module is
very dependent on the settings of other hyperparameters, this can
lead to deterioration of the final results, since the initially sampled
configurations are likely to have worse performance than those in
the baseline. This is visualized in Figure 12, where this is clearly
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Figure 9: Heatmap showing difference in the fraction of the
elite configuration in which each the of the binary modules
are active, between the baseline and the SSA experiment.
Positive values indicate a module is turned on more often
in the SSA experiments.
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the baseline and the SSA experiment. 0 indicates that the
distribution is identical, while 1 indicates that there is no
overlap at all.

Figure 11: Distribution of the continuous hyperparameters
from the elite configurations found in all three experiments.

seen on function F5. This is a linear slope function, but the BBOB-
specification does not include a sufficient penalty for leaving the
search space. As a result, an algorithm which quickly leaves the
search space will reach the required objective value very quickly.
Thus, when adding boundary correction methods, 56 random con-
figurations are not able to abuse this loophole, leading to a worse
initial performance. While for F5, the function is simple enough that
the good configurations can still be found (and the inclusion of the
default CMA-ES settings in the initial population means that there
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Figure 12: Distribution of the relative AOC values found in
the initial race of irace (relative to the default CMA-ES con-
figuration; positive values equate to lower AOC.)

is always at least one good configuration present), the same issue
exists to a lesser extent in other functions. Figure 12 also shows
that the “tunability” of modules on different functions varies widely.
For instance, on functions F16 - F18, the spread of AOC values is
significantly larger than those on functions F19 - F21, suggesting
that it is relatively more difficult to tune the modules in the latter
since the tuner will very likely take a considerably larger budget to
identify optimal configurations. Also, while on some functions it is
trivial to get improvement (e.g., F7) over the default CMA-ES, it is a
lot more challenging on others, for example on functions F16 - F18.

5 CHALLENGES
We discuss three key challenges for the module assessment proce-
dure based on hyperparameter optimization as identified in this
work.

Influence and stochasticity of the hyperparameter tuning:
While we showed that assessing the impact of an algorithmic com-
ponent by using a hyperparameter tuning approach provides use-
ful insights, there are several factors which can complicate this
approach. Since hyperparameter tuning is a very challenging prob-
lem, with many different approaches to solving it, the kind of tuner
used will have a large impact on the resulting assessment [38].
In this paper, we used irace, which tends to focus on converging
to a single configuration, instead of covering a large set of differ-
ent solutions. This necessitates running multiple repetitions of the
irace procedure itself, as the initialization might otherwise have too
much impact on the final configurations. This can quickly become
computationally expensive.

Algorithm-inherent stochasticity: As we discussed in the re-
sults, we need to take care when drawing conclusions from the per-
formance of the different CMA-ES configurations. Since CMA-ES is
inherently stochastic, the amount of variance of the configurations
on a certain function has a large impact on the search procedure
of irace. Since we end up selecting elites based on the average per-
formance, we are inherently underestimating the AOC of the final
configuration. Even though irace largely mitigates this by using
statistical testing in the races to decide when to discard configura-
tions, there will always be some degree of underestimation of the
performance (the median performance in the verification runs is
3.4% worse than predicted from the irace runs).

Limits of the per-instance analysis: In the current setup, the
performance assessment is done on an per-instance basis.While this
can be preferred over tuning for large sets of functions/instances [9],
it does have some drawbacks. Specifically, if a module is designed
to have a good performance over a wide set of functions, but other
settings exist for each individual function which outperform it, this
new module would not be seen as beneficial. Because of this, we
argue that module assessment by hyperparameter tuning should
not replace the traditional assessments, but rather complement it
for more in-depth, per-instance analysis.

6 DISCUSSION AND FUTUREWORK
We introduced a roadmap for assessing the performance of individ-
ual algorithmic ideas, which takes into account the interplay with
other existing settings by comparing the results of hyperparameter
tuning. Since this approach requires a modular design to function
as intended, we use the Modular CMA-ES framework, which we
extended with new modules. Our analysis showed that the newly
added step size adaptationmechanisms are not always useful, but do
provide clear benefits in several functions. The results also showed
that SSA is most useful when combined with a different weights
option.

The current version of the Modular CMA-ES framework is a
good step in the direction of complete modularization of the CMA-
ES algorithm, but some further enhancements can still be made.
This would allow for even more precise control over each of the
individual components, leading to an ideal testbed for new algorith-
mic ideas, which can then be evaluated using the approach outlined
in this paper. However, since this can be computationally intensive,
we should aim to share and reuse data as much as possible, by
developing and maintaining a well-organized repository for this
type of benchmark data. This does not only reduce the amount of
computation needed to test new modules, but it also gives rise to
the possibility of testing methods to re-use data from other exper-
iments. Ideally, this would allow for the usage of methods from
transfer learning to significantly shorten the time needed to assess
a module’s performance, even within a large modular search space.

Additionally, we note that while the proposed module assess-
ment is inherently dependent on the used hyperparameter tuning
method, the overall procedure remains the same no matter which
tuner is used. As a result, the analysis of the results should take
into account the particularities of the tuner, such as the way config-
urations are generated. Further research should still be done into
different hyperparameter optimization methods (e.g., SMAC [23],
MIP-EGO [40], SPOT [7], GGA [2], hyperband [27], etc.). More-
over, one could further investigate a module’s contribution to the
portfolio by developing a credit assignment scheme, e.g. using Shap-
ley values [15]. Additionally, an analysis pipeline for this type of
benchmarking could be designed within existing tools like the IO-
Hanalyzer [41], which would greatly reduce the amount of effort
needed to assess new algorithmic ideas.
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