Experimental Fock-state bunching capability of non-ideal single-photon states
Petr Zapletal, Tom Darras, Hanna Le Jeannic, Adrien Cavaillès, Giovanni Guccione, Julien Laurat, Radim Filip

To cite this version:

HAL Id: hal-03235850
https://hal.sorbonne-universite.fr/hal-03235850
Submitted on 26 May 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Experimental Fock-state bunching capability of non-ideal single-photon states

Petr Zapletal,1,2 Tom Darras,3 Hanna Le Jeannic,3,4 Adrien Cavaillès,3 Giovanni Guccione,3 Jurgen Laurat,3,5 and Radim Filip1,6

1Department of Optics, Palacký University, 17. listopadu 1192/12, 77146 Olomouc, Czech Republic
2Present address: Friedrich–Alexander University Erlangen-Nürnberg (FAU), Department of Physics, 91058 Erlangen, Germany
3Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-Université PSL, Collège de France, 4 Place Jussieu, 75005 Paris, France
4Present address: Laboratoire Photonique Numérique et Nanoscience, Université de Bordeaux, Institut d’Optique, CNRS, UMR 5298, 33400 Talence, France
5e-mail: julien.laurat@sorbonne-universite.fr
6e-mail: filip@optics.upol.cz

Received 7 January 2021; revised 30 March 2021; accepted 30 March 2021 (Doc. ID 419230); published 17 May 2021

Advanced quantum technologies, as well as fundamental tests of quantum physics, crucially require the interference of multiple single photons in linear-optics circuits. This interference can result in the bunching of photons into higher Fock states, leading to a complex bosonic behavior. These challenging tasks timely require to develop collective criteria to benchmark many independent initial resources. Here we determine whether \(n \) independent imperfect single photons can ultimately bunch into the Fock state \(|n\rangle \). We thereby introduce an experimental Fock-state bunching capability for single-photon sources, which uses phase-space interference for extreme bunching events as a quantifier. In contrast to autocorrelation functions, this operational approach takes into account not only residual multi-photon components but also a vacuum admixture and the dispersion of individual photon statistics. We apply this approach to high-purity single photons generated from an optical parametric oscillator and show that they can lead to a Fock-state capability of at least 14. Our work demonstrates a novel collective benchmark for single-photon sources and their use in subsequent stringent applications. © 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

https://doi.org/10.1364/OPTICA.419230

1. INTRODUCTION

Beyond its fundamental significance, the Hong–Ou–Mandel (HOM) effect [1], where two single photons interfere on a beam splitter, has been central to the development of quantum technologies. With the advance of complex quantum information protocols and networking architectures [2,3], the availability of multiple indistinguishable photons is becoming a cornerstone. Multi-photon interference is required in quantum processing with optical [4–14] or microwave photons [15–17], ranging from boson sampling studies to quantum state engineering. It also plays a key role in quantum sensing [18–20], noiseless amplification [21], quantum key distribution [22,23], and error correction [24–26].

Multi-photon interference leads to a non-trivial redistribution of photons between optical modes. To achieve such interferences, all photons have to be indistinguishable. Several methods have been recently developed to investigate this indistinguishability using different benchmarks, e.g., fidelity [27] or specific photon correlation measures [28–32]. However, the joint impact of photon statistics from many imperfect single-photon states, i.e., exhibiting unwanted vacuum and residual multi-photon components, on multi-photon interference has remained elusive. The joint statistical influence of these parameters cannot be described by evaluating properties of single-photon states that are averaged over many experimental runs. Hence, we need criteria, experimental data, and subsequent analysis to determine whether independently generated single photons can, in principle, produce the targeted multi-photon interference effects.

Multi-photon interference effects come in a variety of flavors. An extreme event corresponds to the bunching of \(n \) single photons into the Fock state \(|n\rangle \) [33–35]. Such bunching can appear in a linear-optics network with inputs fed by indistinguishable single photons, as shown in Fig. 1. The elementary example is the appearance of the Fock state [2] based on the HOM effect, as demonstrated in experiments with optical photons and also with microwave photons [16,36], phonons in trapped ions [37], or surface plasmons [38,39]. This extreme bunching event, i.e., the result of a clear operational procedure, enables to introduce a strong benchmark for single-photon states that evaluates their ability to undergo multi-photon interference [40]. This Fock-state bunching capability relies on negativities of the resulting Wigner function that provide a very sensitive signature of the non-classicality of the generated higher Fock states [41,42].

In contrast to the well-known second-order autocorrelation function at zero time delay \(g^{(2)}(0) \), which measures the suppression of the multi-photon contribution and affects the interference visibility [43], the capability is also strongly dependent on the
Contributions typically reported using results indicate that despite the negative impact of multi-photon interference, we computationally determine the Wigner function of the ideal Fock state, which can, in principle, appear from multiple copies of the single-photon state, as depicted in Fig. 1. The generated single photons are sensitive to the presence of vacuum and multi-photon contributions. Also, the exact distribution of residual multi-photon statistics in many non-ideal single-photon states is not known. As a consequence, the joint effect of small discrepancies between individual single-photon copies on multi-photon interference has to be investigated by applying the quantifier on photon statistics measured in an experiment. In this way, we can determine whether the single-photon sources are of sufficient quality for applications in quantum technology that require multi-photon interference.

2. QUANTIFIER PRINCIPLE

We first describe the quantifier principle. To collectively test the ability of the generated single photons to undergo multi-photon interference, we computationally determine the Wigner function of the higher Fock state, which can, in principle, appear from multiple copies of the single-photon state, as depicted in Fig. 1. The area in phase space, where the Wigner function of the ideal Fock state $|n\rangle$ is negative, is composed of $n/2$ or $(n-1)/2$ concentric annuli if n is an even number or an odd number, respectively. By definition, a single-photon state has the capability of the Fock state $|n\rangle$ if the Wigner function of the state, which can be generated from n independent copies of the single-photon state, has the same number of negative annuli as the ideal Fock state $|n\rangle$ [40]. The negative annuli in the Wigner function witness the non-classical nature of multi-photon interference in phase space. The Fock-state capability, which is determined computationally, collectively tests the copies of a single-photon state, even though any multi-copy procedure is not implemented in the laboratory.

In theory, n copies of the ideal single-photon state $|1\rangle$ have the capability of an arbitrary Fock state $|n\rangle$. For states generated by single-photon sources, the negative annuli in the Wigner function are sensitive to the presence of vacuum and multi-photon contributions. Also, the exact distribution of residual multi-photon statistics in many non-ideal single-photon states is not known. As a consequence, the joint effect of small discrepancies between individual single-photon copies on multi-photon interference has to be investigated by applying the quantifier on photon statistics measured in an experiment. In this way, we can determine whether the single-photon sources are of sufficient quality for applications in quantum technology that require multi-photon interference.

3. SINGLE-PHOTON GENERATION AND MULTIPLE DATA SETS

To study this benchmark, we used heralded single-photon states generated using a two-mode squeezer, i.e., a type-II phase-matched OPO operated well below threshold (see Supplement 1). The signal and idler photons at 1064 nm are separated on a polarizing beam splitter, and the idler photon is detected via a high-efficiency superconducting nanowire single-photon detector. This detection event heralds the generation of a single photon in the signal mode. The generated state is emitted into a well-defined spatiotemporal mode [44], with a bandwidth of about 65 MHz. The state is measured using high-efficiency homodyne detection, with visibility of the interference with the local oscillator above 99%, and reconstructed via maximum-likelihood algorithms [45]. The experimental setup has been described elsewhere [46,47].

Importantly, the OPO used in this work exhibits a close-to-unity escape efficiency, i.e., the transmission of the output coupler is much larger than the intracavity losses [48]. As a result, a large
Table 1. Photon-Number Statistics of Heralded Single Photons

<table>
<thead>
<tr>
<th>P_1</th>
<th>P_{2+}</th>
<th>$g^{(2)}(0)$</th>
<th>$2\pi \times W(0,0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.53 ± 0.01</td>
<td>0.010 ± 0.006</td>
<td>0.07 ± 0.05</td>
</tr>
<tr>
<td>2</td>
<td>0.62 ± 0.02</td>
<td>0.013 ± 0.008</td>
<td>0.07 ± 0.04</td>
</tr>
<tr>
<td>3</td>
<td>0.74 ± 0.01</td>
<td>0.016 ± 0.008</td>
<td>0.06 ± 0.03</td>
</tr>
<tr>
<td>4</td>
<td>0.72 ± 0.01</td>
<td>0.05 ± 0.01</td>
<td>0.2 ± 0.04</td>
</tr>
<tr>
<td>5</td>
<td>0.83 ± 0.01</td>
<td>0.07 ± 0.01</td>
<td>0.2 ± 0.03</td>
</tr>
<tr>
<td>6</td>
<td>0.86 ± 0.01</td>
<td>0.02 ± 0.01</td>
<td>0.05 ± 0.03</td>
</tr>
<tr>
<td>7</td>
<td>0.91 ± 0.01</td>
<td>0.02 ± 0.01</td>
<td>0.05 ± 0.02</td>
</tr>
</tbody>
</table>

*Each set is obtained by successive measurements under the same conditions (in particular, pump power). The table displays the single-photon component P_1, multi-photon probability P_{2+}, second-order correlation function $g^{(2)}(0)$, and negativity at the origin of the Wigner function.

4. EXPERIMENTAL FOCK-STATE BUNCHING CAPABILITY

To test a particular data set for the Fock-state capability n, the data are randomly partitioned into n subsets from which n photon-number statistics are obtained and used as the quantifier inputs. The output-state Wigner function of the computational quantifier is averaged over 30 such random choices. From the averaged output-state Wigner function, it is determined whether the data set has Fock-state capability n (see Supplement 1). The capability for all data sets is depicted in Fig. 2 as a function of P_1 and P_{2+}. The quantifier is presently computationally limited by Fock-state capability 14 (see Supplement 1), which is already a very large number in this operational context. All data sets for which this capability 14 is obtained may also have the capability of a higher Fock state. In the following, we describe the different measured points and typical trends.

First, single-photon states with a low purity due to a vacuum component close to 50% (brown bars in Fig. 2, sets 1 and 2 in Table 1) have only the trivial capability of Fock state $|1\rangle$, despite their very low $g^{(2)}(0)$. This shows that the broadly used autocorrelation function does not fully characterize the ability to bunch into higher Fock states exhibiting non-classical signatures. In particular, this example demonstrates that the capability is more sensitive to vacuum mixture, as a state obtained from two copies of these single photons would have a positive Wigner function. Due to their trivial capability, such states are not a useful resource for the preparation of large Fock states that could be used, e.g., for quantum metrology [18–20] or error correction [24–26].

The necessary condition for a non-trivial capability $n > 1$ is to reach a single-photon component $P_1 > 2/3$ [40]. Above this threshold, the capability moderately grows with P_1. As can be seen in Fig. 2, the state corresponding to the green bar (set 3 in Table 1) has a multi-photon component $P_{2+} = 0.02$ and the capability of Fock state $|2\rangle$. The state associated with the red bar (set 4) has the capability of Fock state $|4\rangle$ despite having a similar single-photon component as the previous state but a larger, still low, probability $P_{2+} = 0.05$. For a given P_1, an increase in P_{2+} may thereby lead to a larger capability. Actually, this increase in P_{2+} comes in that case with a decrease in the vacuum component, indicating that the bunching is less affected by multi-photon contributions than a vacuum admixture. We have shown in additional simulations that at a fixed vacuum contribution, the capability decreases with the multi-photon component.

Finally, for $P_1 > 0.8$, the capability is expected to rapidly increase and to diverge at $P_1(\infty) = 0.885$, where an arbitrary capability can be reached [40]. The experimental results agree well with this prediction and highlight the nonlinearity of the quantifier. The verification of this trend is an important benchmark for the development of single-photon sources. The data sets indicated with blue bars have at least capability 14. For set 7, note that its $g^{(2)}(0) = 0.05$ does not significantly differ from that of the states with the trivial Fock-state capability. A capability of 14 is also achieved for lower single-photon fidelities P_1 and higher multi-photon contributions P_{2+}, even for a state with four times larger $g^{(2)}(0) = 0.2$. However, these states might have a lower capability than set 7 due to the saturation to 14 because of computational power.

5. DISCUSSION: EFFECT OF LOSS AND TRUNCATION

Figure 3 presents the output of the computational quantifier with 14 input states randomly chosen from data set 7, i.e., the set with the highest heralding efficiency and lowest multi-photon component. Figure 3(a) first provides the cut through the Wigner function. The output Wigner function is fitted by the one of a lossy Fock state [14], with a fitted attenuation parameter $\eta = 0.9205 \pm 0.0005$. The fit shows that the oscillations of the
output Wigner function in phase space coincide with the ones of the attenuated Fock state [14]. The photon-number statistics of the output state and attenuated Fock state are compared in Fig. 3(b). The good cutoff of the multi-photon contributions with more than 14 photons in the statistics of the output state is another feature that further demonstrates the high quality of the initial single-photon states. Such a result was made possible only for single-photon states with limited multi-photon contributions and a very low vacuum admixture, as provided by the OPO-based source used in this work.

We now come to an additional characterization of the quantifier, i.e., its evolution with optical losses. This quantifier depth, in analogy to non-classicality depth [49], is tested by considering attenuation for two states randomly chosen from different data sets. Figure 4 shows the Fock-state capability as a function of the attenuation parameter η, for the state with $P_1 = 0.91$ and $P_2 = 0.02$ (blue in Fig. 2) and the state with $P_1 = 0.72$ and $P_2 = 0.05$ (red in Fig. 2). Both states exhibit a low $g^{(2)}(0)$ parameter (which is preserved with attenuation), but different initial capabilities 14 and 4, respectively. As can be seen, the capability depends nonlinearly on the attenuation η. This is in contrast to the negativity of the single-photon Wigner function, which decreases linearly with attenuation. As a result, the capability allows more sensitive benchmarking of single-photon states than the negativity of the Wigner function.

The results in Fig. 4 are also superimposed with two plots that give the evolution of the capability with optical losses for states whose photon-number statistics are truncated, i.e., neglecting the multi-photon contribution. The discrepancy in the Fock-state capability between the experimental states and the truncated ones demonstrates that the multi-photon contributions play a significant role in such bunching experiments. The truncation of multi-photon contributions can be a limiting approximation when multi-photon interference is involved.

6. CONCLUSION

In conclusion, with the advance of quantum technologies, novel procedures and applications put challenging demands on resources and required benchmarking [50]. In this broad context of utmost importance, we have employed the Fock-state bunching capability to collectively benchmark experimental single-photon states for the first time. We have investigated the behavior of this test with photon statistics and loss. This quantifier, which is highly nonlinear, has a clear operational meaning in terms of photon merging and moreover takes into account the unavoidable dispersion of individual copies of single-photon states.

Due to high-purity states based on a state-of-the-art OPO, this work has experimentally verified the numerically predicted threshold, $P_1 > 0.885$, to observe a large Fock-state capability. A capability of at least 14 has been demonstrated due to the very low two-photon component and the large heralding efficiency. Importantly, we have shown that the capability is more sensitive to optical losses than the single-photon negativity of the Wigner function and fidelity. Based on our numerical data, we also deduced that a moderate increase in the ratio of the multi-photon contributions to the vacuum does not decrease the capability. This shows that despite the negative impact of multi-photon contributions, they prevent the bunching of single-photon states into a single Fock state less severely than optical losses.

In the present implementation, we have estimated photon-number distributions from homodyne detection. Multiplexed single-photon detectors [51,52] or photon-number resolving superconducting detectors [53–55] should enable a direct measurement of the Fock-state bunching capability. Also, this benchmark does not depend on the nature of the source and can thereby be used to characterize microwave photons in superconducting circuits [15], plasmons at metal–dielectric surfaces [38,39], phonons in trapped-ion [56] or optomechanics experiments [57], and collective excitations in atomic ensembles [58–60]. Finally, the multi-photon interference quantifier can be modified to investigate the capability of other resource states, e.g., squeezed states or Schrödinger cat states [13,61], to produce different target states such as NOON states [18–20] or superpositions of squeezed states (GKP states) [62], opening a new avenue for testing the potential of light emitters for advanced quantum state engineering.
Funding. Horizon 2020 Framework Programme (FET proactive HOT 732894, FETFLAG Quantum Internet Alliance 820445, Marie Curie Fellowship HELIOS IF-749213, QuanERA-ERA-NET ShocQ 731473, Twinning project NonGaui 951371; MEYS project 8C20002; Grantová Agentura České Republiky (20-16577S); Agence Nationale de la Recherche (HyLight project ANR-17-CE30-0006); D1M Ile-de-France Sirtex (PhD Fellowship).

Acknowledgment. The authors thank K. Huang and O. Morin for their contributions in the early stage of the experiment. R.F. acknowledges Czech Science Foundation and national funding from the MEYS. G.G. acknowledges support by the European Union and P.Z. by the European Union’s Horizon 2020 Research and Innovation Framework Programme. T.D. acknowledges a Ph.D. Fellowship from D1M Ile-de-France Sirtex.

Disclosures. The authors declare no conflicts of interest.

Data Availability. Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Supplemental document. See Supplement 1 for supporting content.

REFERENCES
