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We study many-body localization (MBL) in a pair-hopping model exhibiting strong fragmentation of the
Hilbert space. We show that several Krylov subspaces have both ergodic statistics in the thermodynamic limit
and a dimension that scales much slower than the full Hilbert space but still exponentially. Such a property allows
us to study the MBL phase transition in systems including up to 64 spins. The different Krylov spaces that we
consider show clear signatures of a many-body localization transition, both in the Kullback-Leibler divergence
of the distribution of their level spacing ratio and their entanglement properties. However, they also present
distinct scalings with the system size. Depending on the subspace, the critical disorder strength can be nearly
independent of the system size or conversely show an approximately linear increase with the number of spins.

DOI: 10.1103/PhysRevB.103.134207

I. INTRODUCTION

Many-body localization (MBL) and its transition [1–4]
have been the subjects of numerous studies over the recent
decades. They are directly related to core physical concepts
and properties of the physics of closed quantum systems,
namely thermalization, transport, and the effects of disorder.
Interacting systems at weak disorder thermalize and present
ergodic features seemingly following the so-called strong
eigenstate thermalization hypothesis (ETH) [5–7]. It states
that, at high energy, a generic closed quantum system has all
its eigenstates display thermal values for all local observables.
At strong disorder, on the other hand, theoretical arguments
and numerical studies show a breakdown of the ETH in one
dimensional systems, arising from emergent integrability and
approximate integrals of motions [8–17]. The high-energy
eigenstates are then characterized by low entanglement, fol-
lowing an area law instead of a volume law as in the ergodic
phase [18–23]. While the existence of the MBL phase is
now generally well accepted, despite a recent debate [24–30],
describing the transition from the ergodic phase to the lo-
calized phase remains a numerical and theoretical challenge.
Indeed, the physics of MBL arises from the rich interplay
of various phenomena: many-body interactions allowing for
nonintegrability, (strong) disorder leading to localization, and
high-energy physics. Many theoretical studies rely on phe-
nomenological renormalization group arguments, based on
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various physical arguments on thermalization and predictions
of random matrix theory [31–40]. Numerical studies are also
limited by the complexity of the problems: matrix-product-
states based approaches [41–46] perform well deep inside the
MBL phase but become unreliable close to the transition due
to rapidly increasing entanglement, leaving exact diagonal-
ization and variants thereof, with its generally limited system
sizes, as the main source of exact numerical resources [28,47–
53]. The existence of MBL, as a means to break the strong
ETH beyond integrability, spurred the growth of interest
in other phenomena leading to such a breakdown [54–58].
Two majors archetypes have emerged: many-body quantum
scars [59–67] and Krylov fragmentation [68–74]. Systems
with quantum scars present a set of measure zero of highly
excited nonthermal eigenstates, typically characterized by
a sub-volume law entropy. The other eigenstates remain
thermal. The presence of these states has especially strong
consequences on nonequilibrium dynamics in such systems,
with partially suppressed thermalization [59,62]. Depending
on the initial state, the time evolution under a Hamiltonian
presenting these scar states can typically present much slower
relaxation of observables towards the thermal equilibrium
states, with slowly suppressed revivals at long times. Generic
methods to embed such states into a thermal spectrum have
been proposed [75,76] and scars have been proved to be re-
silient to the effect of disorder [67]. More relevant to this work
is the concept of Krylov subspaces or Hilbert space fragmen-
tation [68–74,77]. Due to the interplay between different U(1)
symmetries such as charge and dipole conservation, each sym-
metry sector of the Hilbert space shatters into an exponential
number of sectors or Krylov subspaces that are not connected
by the Hamiltonian dynamics. Importantly, these subspaces
are not fully labeled by quantum numbers. The exponential
number of small disconnected sectors leads to anomalous
and effectively localized dynamics[71,72,77]. Conversely,
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exponentially large Krylov subspaces have recently been the
subject of several studies [69,74]. Remarkably, in the same
model and in the absence of disorder, some of these Krylov
subspaces follow the ETH, while other subspaces have com-
pletely integrable statistics.

A natural question for these systems is the effect of dis-
order on these Krylov subspaces, and in particular whether it
can preserve the fragmented nature of the Hilbert space, and
lead to a localization of the different ergodic subspaces. In this
work, we identify sets of ergodic subspaces whose dimension
grows much slower than the total Hilbert space dimension,
albeit still in an exponentional fashion. This gives us the
possibility to investigate through exact (and full) diagonal-
ization one-dimensional systems of unprecedented physical
sizes. A similar approach was undertaken in two works in
the conventional XXZ model. A first study in the infinite
interaction limit was performed in Ref. [78]. There, subspaces
with a finite number of movers, whose dimensions scale
polynomially with system size showed Anderson localization
at arbitrary low disorder, while states with a finite density
of movers showed signs of many-body localization. System
sizes in the latter families remain comparable to standard
approaches. Second, in Ref. [79], strong disorder was found
to allow approximate separation of the Hilbert space into
quasiindependent subspaces. In these cases, the separation is
only either a strong-disorder or strong-interaction induced ap-
proximation. In our model, it is exact at all disorder strengths.
Our approach also shares some similarities with the studies
of frustrated models such as quantum dimers whose Hilbert
space shows slow exponential scalings and signs of MBL even
in two dimensions [80,81].

The outline of our paper is as follows. In Sec. II, we
introduce the pair-hopping model and its main properties and
symmetries. Section III is dedicated to Krylov subspaces.
After a formal definition and a discussion of the Krylov sub-
spaces studied in Ref. [69], we introduce our slowly growing
ergodic subspaces. We study the level spacing ratio statistics
in the pair-hopping model in Sec. IV. We discuss the dis-
tribution of the level spacing ratio of the full Hilbert space,
showcasing the need to consider the individual Krylov sub-
spaces. To probe the ETH-MBL transition within the Krylov
subspaces, we rely on the Kullback-Leibler divergence of
the level ratio distribution and the reference GOE and Pois-
son distributions [4,48,82]. We identify the critical disorder
strength as the point of maximum confusion. We show that
our Krylov subspaces present all signs of the MBL phase
transitions. The different critical disorders nonetheless have
radically different scalings with system size, ranging from
quasi absent finite-size effects to an approximately linear shift
(within the size we have access to). Our results underline
the importance of the structure of the Hilbert space in the
behavior of the MBL phase transition. We also briefly discuss
the existence of a mobility edge [1,2,49]. We then turn to the
von Neumann entanglement entropy (vNEE) of highly excited
states in Sec. V. The critical disorder strengths, identified
by the maximum of the standard deviation of the mid-chain
entanglement entropy [21], are in qualitative agreement with
our previous results. We also carefully discuss the scaling of
the vNEE with subsystem size which present unusual plateaus
due to the strongly constrained nature of our model.

II. PAIR HOPPING MODEL IN A TRANSVERSE FIELD

The pair hopping model [69,70,83] is an interacting model
of spinless fermions on a one-dimensional lattice whose
Hamiltonian is given by

H̃PP =
∑

j

J j (c
†
j c j+1c j+2c†

j+3 + H.c.), (1)

where c j (c†
j ) is the fermionic annihilation (creation) opera-

tor on site j, Jj are site-dependent pair hopping terms and
we fix the number of sites to L. Similar pair-hopping terms
appear naturally in different experimentally relevant setups,
such as electrons in a Landau level [70,84,85] and in the
Wannier-Stark problem [86–88]. The model can for example
be interpreted as the thin torus limit of a quantum Hall system,
where the screened Coulomb interaction has been truncated to
nearest orbitals. We take Jj uniformly sampled in [0.9, 1.1] in
order to break inversion symmetry and translation symmetry.
For convenience, we perform a Jordan-Wigner transform, and
work with the spin- 1

2 Hamiltonian

HPP =
∑

j

J j (σ
+
j σ−

j+1σ
−
j+2σ

+
j+3 + H.c.), (2)

and consider either open boundary conditions (OBC) or pe-
riodic boundary conditions (PBC) in the spin basis. PBC in
the spin basis are not equivalent to fermionic PBC due to
the presence of the fermionic string, but the observables we
consider in the remainder of this paper are largely unaffected.
This model preserves the total polarization (or charge in the
fermionic language)

Ptot =
L∑

j=1

σ z
j (3)

and the dipole moment (or center-of-mass position) defined
as

C =
⎧⎨
⎩

∑
j

jσ z
j if OBC

exp iπ
L

∑
j

jσ z
j if PBC

. (4)

Additionally, for L even with PBC and all L’s with OBC,
the pair hopping terms preserve the sublattice symmetry, i.e.,
Po − Pe, where Pe (Po) is the total charge of the even (odd)
sites, and therefore these two charges are also conserved quan-
tities. We denote with pe, po, ptot and c the quantum numbers
respectively associated to Pe, Po, Ptot and C.

We introduce disorder in the form of a transverse field (a
random on-site chemical potential in the fermionic language),
resulting in the total Hamiltonian

H = HPP +
L∑

j=1

Wjσ
z
j , (5)

where Wj is taken uniformly in [−W,W ]. This disorder does
not break any of the identified symmetries.

To better understand the physics of the hopping terms, it is
convenient to represent the system in terms of pair of spins,
using the notations introduced in Ref. [69]. For convenience,
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we assume L even in the rest of the paper. Let the local Hilbert
space be defined by

σ z|1〉 = |1〉, σ z|0〉 = −|0〉. (6)

The system is composed of

N = L/2 (7)

pairs of spins, decomposed in the basis

|↑〉 = |10〉, |↓〉 = |01〉, |−〉 = |00〉 and |+〉 = |11〉. (8)

We denote |↑〉 and |↓〉 as pseudospins, |+〉 and |−〉 as fractons
and the combination | + −〉 and | − +〉 as dipoles. While σ z’s
are still diagonal in this basis, the hopping terms of Eq. (1)
lead to some complex algebra. The transformation rules are
the following:

|↑↓〉 ↔ |↓↑〉, (9)

|↑ +−〉 ↔ |+− ↑〉, |↓ −+〉 ↔ |−+ ↓〉, (10)

|+ − +〉 ↔ |↑ + ↓〉 , |− + −〉 ↔ |↓ − ↑〉 . (11)

Pseudospins exchange with each other [Eq. (9)], and dipoles
can move each in one flavor of pseudospins [Eq. (10)]. Well-
chosen trio of fractons can transform into a fracton and a pair
of pseudospins, and conversely the presence of a fracton may
lead a pair of pseudospins to transform into a pair of fractons.

III. KRYLOV SUBSPACES

In this section, we introduce the notion of Krylov sub-
spaces, vector subspaces of the symmetry-resolved Hilbert
space which are stable under the application of the Hamil-
tonian. In particular, we present several families of Krylov
subspaces, ergodic at zero disorder despite their simple struc-
ture, whose dimension grows slowly with system size.

A. Definition

A natural approach to find the stable subspaces induced
by the fragmentation of the Hilbert space is to work with
Krylov subspaces [68,69,71–74]. Generally, the Krylov space
K1(|�〉, H ) generated by the state |�〉 and the Hamiltonian H
is defined as follows:

K1(|�〉, H ) = Span(|�〉, H |�〉, H2|�〉. . .). (12)

This definition has the drawback of being numerically
unstable for generic Hamiltonians as it requires the or-
thogonalization of a set of large vectors. The numerical
instability mainly arises from floating point computations:
Strict use of the above formula generally numerically leads
to a Krylov subspace spanning the whole symmetry-resolved
Hilbert space. This problem can be partially solved by a prop-
erly chosen cutoff. Nonetheless, it remains cumbersome when
the dimension of the Krylov subspace becomes large.

Instead, we use a graph-based definition of Krylov sub-
spaces, which almost always coincide with K1. We consider

the configuration basis (either in the spin or fermionic nota-
tions)

B =
{

N⊗
j=1

|α j〉 with α j ∈ {↑, ↓, +, −}
}

(13)

=
{

L⊗
j=1

|α j〉 with α j ∈ {0, 1}
}

. (14)

Let C be a subset of the configuration basis. We define the
auxiliary set F (C, H ) as

F (C, H ) = {|w〉 ∈ B|∃|u〉 ∈ C, 〈w|H |u〉 	= 0}, (15)

Note that F is not a vector space but a subset of the basis B.
We then define for a given configuration |�〉 ∈ B

K(0)(|�〉, H ) = F ({|�〉}, H ), (16)

K(n)(|�〉, H ) = F (K(n−1)(|�〉, H ), H ). (17)

With these notations, we define our Krylov space to be

K2(|�〉, H ) = Span

(+∞⋃
n=0

K(n)(|�〉, H )

)
. (18)

K2(|�〉, H ) is well-defined for any finite-dimensional Hilbert
space. As long as the hopping terms Ji are nonzero, K2 is
actually independent of the disorder realization. It can be
efficiently computed using a simple graph representation of
the Hamiltonian. Each vector |w〉 in B is a node of our graph.
Two nodes |w〉 and |w′〉 are connected if there exists j such
that

〈w|c†
j c j+1c j+2c†

j+3|w′〉 	= 0 or

〈w|c jc
†
j+1c†

j+2c j+3|w′〉 	= 0. (19)

Obtaining K2 is therefore equivalent to finding the connected
component of the graph containing the node |�〉. This def-
inition is numerically stable and straightforward to compute
using a graph exploration algorithm.

Note that contrary to K1, defined in Eq. (12), K2 strongly
depends on the basis B, which should be specifically crafted
for the studied model. Our choice of the configuration basis B
for the pair-hopping model ensures the following property:

K2(|�〉, H ) =
⋃

∀Jj ,Wj

K1(|�〉, H ). (20)

In fact, K1 and K2 here almost always coincide1 due to the
incommensurate coefficients in the Hamiltonian: There is no
systematic destructive interferences while repeatedly applying
the Hamiltonian. Therfore in the rest of this paper, we only
work with K2(|�〉, H ) and drop the subscript and explicit
dependence on the Hamiltonian in what follows.

1K1 and K2 here will differ only when Jj = 0 for a site j in the
chain. This forms a set of measure 0 in the space of Hamiltonians.

134207-3



HERVIOU, BARDARSON, AND REGNAULT PHYSICAL REVIEW B 103, 134207 (2021)

B. Ergodic Krylov subspace with a single pair of dipoles

In Refs. [69,74], the authors observed that exponentially
large subspaces with either Poissonian or ergodic statistics
might coexist in the absence of disorder. An especially con-
venient family of exponentially large ergodic subspaces were
generated by the pair of dipoles |− + +−〉 or |+ − −+〉 in a
sea of pseudo spins |↑〉 and |↓〉. In the absence of dipoles, the
pair-hopping Hamiltonian acts in the sea of pseudo spins, with
conservation of each flavor of pseudospins. Introducing a pair
of dipoles breaks down integrability, as each can only move
through a single flavor of pseudospins. The pair-hopping
Hamiltonian acting on this subspace conserves the number of
each flavor of pseudospin and fracton, leading to a remarkably
simple structure of the corresponding Krylov subspace.

The first Krylov subspace we consider is therefore gener-
ated by the state∣∣�1

n

〉 = |(↑↓)n − + + −(↑↓)n〉, (21)

where (w)n marks that we repeat n times the sequence w.
The system is comprised of N = 4n + 4 pairs of spins and
− + +− is placed exactly at the center of the chain. This
Krylov space was shown to be ergodic in the absence of a
transverse field[69] and its dimension can be readily com-
puted. For simplicity, we first consider periodic boundary
conditions. The dipoles | − +〉 and |+−〉 can be seen as sep-
arating the pseudospins into two sequences: either in between
|−+〉 and |+−〉 or outside of them. We denote by N↑ = 2n the
conserved total number of pseudospins ↑, and by n↑ (respec-
tively n↓) the number of ↑ (respectively of ↓) between |−+〉

and |+−〉. As a concrete example, the state

∣∣∣∣ ↑↑↓↑↑ − +
n↑+n↓=5︷ ︸︸ ︷

↑ ↓↓↓︸︷︷︸
n↓=3

↑ +− ↓↓↑↓↑↓
〉

(22)

belongs to K(|�1
n 〉, HPBC) with n = 4, N↑ = 8, n↑ = 2, and

n↓ = 3. The dimension of the Krylov subspace is simply given
by

dim K
(∣∣�1

n

〉)
PBC =

N↑∑
n↑,n↓=0

(
2N↑ − n↑ − n↓

N↑ − n↑

)(
n↑ + n↓

n↓

)

= (2N↑ + 1)!

N↑!2
≈ 2N

√
N

8e
√

2π
, (23)

using the Chu-Vandermonde identity for simplification, and
the Stirling’s approximation for the factorial. The dimension

of this Krylov subspace therefore scales as 2N = √
2

L
, i.e.,

much slower than the full Hilbert space’s dimension, which
scales as 2L.

For OBC, the two dipoles separate the chain in three.
There is a fixed number NL

↑ = n of pseudospins ↑ (↓) to the
left (right) of the dipoles. The n↓ ↓-pseudospins in between
| − +〉 and | + −〉 originally came from the left of | − + + −〉
via acting by HOBC; similarly the n↑ ↑ in between pseu-
dospins came from the right. Hence the state represented in
Eq. (22) also belongs to K(|�1

n 〉)OBC with NL
↑ = 4, n↑ = 2,

and n↓ = 3. The dimension of K(|�1
n 〉)OBC is thus given by

dim K
(∣∣�1

n

〉)
OBC =

NL
↑∑

n↑,n↓=0

(
2NL

↑ − n↑
NL

↑

)(
2NL

↑ − n↓
NL

↑

)(
n↑ + n↓

n↓

)
. (24)

Using twice the Chu-Vandermonde equality (see
Appendix A 1), we obtain

dim K
(∣∣�1

n

〉)
OBC =

(
4NL

↑ + 1

2NL
↑

)
≈ 2N

8
√

2πN
. (25)

The exponential scaling is similar, albeit with a more favor-
able prefactor.

For both boundary conditions, the reduced Hilbert space
scaling is not due to an extremal choice of quantum numbers
[such as the linear scaling of the one particle sector of a
particle number conserving U(1) model]. It is a simple con-
sequence of the presence of an extensive number (∝ N) of
freely exchanging pseudospins (composed of two real spins)
that make most of the degrees of freedom. A table summa-
rizing the properties of the Krylov subspace for numerically
relevant values of N can be found in Appendix A 1. Due to
the significantly smaller Krylov space’s dimension, we focus
on OBC for this family.

C. Slowly-growing ergodic Krylov subspaces

It is possible to construct a series of ergodic subspaces with
even more favorable scaling with system size, which cannot

be mapped to any simple quasiparticle picture. Working with
sets of |↑↓〉 and pairs of dipoles |− + +−〉 allows us to keep
a simple analytical structure of the Krylov subspace while
working in the sector (po, pe, c) = (0, 0, 0). If we fix the
number of dipoles to be constant when increasing system size,
the dimension of the resulting Krylov space ultimately grows
as 2N . A natural way to go beyond this limit is to alternate
between a finite number of pairs of pseudospins and the set of
two dipoles. The less pseudospins, the slower the growth of
the Hilbert space. The pair-hopping Hamiltonian in Eq. (1)
cancels the state | − + + − − + + − . . . 〉, which therefore
forms a Krylov subspace of dimension 1. We define the state
|�m

n 〉 for periodic boundary conditions as∣∣�m
n

〉 = |((↑↓)n − + + −)m〉, (26)

where (w)m again marks that we repeat m times the sequence
w. Hence,∣∣�2

3

〉 = |↑↓↑↓↑↓ − + +− ↑↓↑↓↑↓ − + +−〉. (27)

|�m
n 〉 is therefore a state of size N = (2n + 4)m, and can be

seen as several dipoles oscillating in a sea of pseudospins.
Note that |�1

n 〉 also belongs to this family when considering
periodic boundary conditions.
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TABLE I. We summarize the scaling of the Krylov subspaces
generated by the repeating sequences |((↑↓)n − + + −)m〉. The scal-
ing is irrational both in L and N for all values of n.

n 1 2 3 4 5

≈dim K(|�m
n 〉, H ) 1.342N 1.516N 1.621N 1.690N 1.739N

The dimensions and scaling of the Krylov spaces with total
system sizes at fixed n can also be computed analytically
using a transfer matrix approach, for both open and periodic
boundary conditions. The dimension asymptotically scales as
tm
+ where t+ is the largest eigenvalue of the transfer matrix T (n)

whose entries are given by

T (n)
x,y =

(
2n + x − y + 1

n

)
. (28)

We summarize in Table I the asymptotical scaling of the
Krylov subspaces dimension for different values of n. Details
of the computation of T (n) are kept in Appendix A 2. In par-
ticular, for n = 1, we show that t+ = 3 + 2

√
2 and that the

dimension of the Krylov space scales as

dim K
(∣∣�m

1

〉) ≈ (t+)m ∝ 1.342N ∝ 1.158L. (29)

In this example, the slow growth of the Krylov space cannot
be understood from a simple quasiparticle picture. Indeed we
prove in Appendix A 2 that there exists no p ∈ N∗ such that t p

+
is rational. The subspaces also always scale slower than 2N as
can be seen from Table I (see also Appendix A 2). Actually, 2N

matches the Krylov spaces scaling when n → +∞, keeping m
fixed. In the rest of the paper, we focus on the n = 1 and n = 2
families, i.e., the families with the two slowest scalings. We
will show in Secs. IV B and V that these two families have
indeed ergodic statistics at zero and low disorders.

IV. LEVEL SPACING RATIO STATISTICS

Level spacing statistics are a convenient tool to determine
whether a system is integrable or ergodic [4,48,82]. Random
matrices without conservation laws, i.e., describing noninte-
grable models, have level repulsion: the probability of having
two eigenstates with the same energy is vanishing. Integrable
models, on the other hand, are characterized by the pres-
ence of an extensive number of conserved quantities. Each
sector then behaves as an independent random matrix and
therefore there is no level repulsion between different sectors.
Additionally, given a symmetry sector, directly studying the
level spacing statistics requires unfolding the spectrum. In-
deed, in order to obtain universal signatures, we are required
to work with a uniform density of states. Several unfolding
procedures exist, but finite-size effects may lead to differ-
ent physical interpretations depending on the exact choice
of method [89–92]. Instead, an efficient way to characterize
quantitatively the level repulsion is to look at the level spacing
ratio defined as follow [93]. The study of this quantity does not
require flattening the density of states. Let {en} be the ordered
eigenspectrum of the Hamiltonian. We denote by rn the level

spacing ratio

rn = en+2 − en+1

en+1 − en
. (30)

Its probability distribution P(r) distinguishes between ergodic
and integrable models. For an integrable model, P(r) is the
Poisson distribution PPoi(r) = 1

(1+r)2 , while for nonintegrable
systems, it depends on the symmetries of the Hamiltonian and
is well-approximated by functionals of the form [94,95]

Pβ (r) = 1

Zβ

(r + r2)β

(1 + r + r2)1+ 3
2 β

. (31)

The real Hermitian Hamiltonians we consider fall into the
Gaussian orthogonal ensemble (GOE) [89] with Zβ = 8

27 and
β = 1. In practice, it is more convenient to study

r̃n = min

(
rn,

1

rn

)
(32)

which is bounded between 0 and 1 and therefore has no heavy
tails. For the classes, we are interested in, P(r̃) = 2P(r)θ (1 −
r). In the following, references to level ratio are references to
r̃.

Finally, we remind the reader of the definition of the
Kullback-Leibler (KL) divergence:

DKL(P, Q) =
∫

dxp(x) ln(p(x)/q(x)), (33)

where p and q are the probability densities associ-
ated to the distributions P and Q. It trivially satisfies
DKL(P, P) = 0. The KL divergence is asymmetric in (P,
Q). It corresponds to the relative entropy from Q to P,
that is to say the amount of additional information re-
quired to model P starting from the prior Q. Hence, when
DKL(Pnum(r̃), PPoi(r̃)) < DKL(Pnum(r̃), PGOE(r̃)), the numer-
ical distribution Pnum is better modelled by the Poisson
distribution.

A. Level spacing ratio statistics of the full Hilbert space

Before we turn to the study of the individual Krylov sub-
spaces themselves in Sec. IV B, we point out that it is crucial
to decompose the symmetry resolved Hilbert space into its
fractured components, in order to study any thermalization
properties and transition.

We study a system of length N = 16 (L = 32 spins) with
OBC in the symmetry sector pe = po = c = 0 [see Eqs. (3)
and (4)]. The dimension of this symmetry sector is 4.8 × 106,
beyond the reach of full diagonalization. It fractures into
approximately 2.5 × 105 Krylov subspaces, whose dimension
varies from 1 to 12870. To emphasize the role of the dipole
conservation, note that a system of 32 spins with only the
two U(1) sublattice symmetries has already a symmetry sector
(pe = 0, po = 0) that includes 165M states.

We compute the exact full spectrum taking advantage of
the decomposition into Krylov subspaces and identify whether
each Krylov subspace has GOE or Poissonian statistics by
computing the KL divergences defined in Eq. (33), using the
theoretical distributions as prior. We fix W = 0.01 in order
to avoid accidental degeneracies and limit finite-size effects,

134207-5



HERVIOU, BARDARSON, AND REGNAULT PHYSICAL REVIEW B 103, 134207 (2021)

and average over 100 disorder realizations. We consider the
Krylov subspace to have Poissonian statistics if

DKL(Pnum(r̃), PPoi(r̃)) < 0.03, (34)

and to have GOE statistics if

DKL(Pnum(r̃), PGOE(r̃)) < 0.03. (35)

Otherwise, we do not assign a label as the subspace is either
afflicted by finite-size effects or presents signs of criticality.
For comparison, the KL divergences between the Poisson and
GOE distributions are given by

DKL(PGOE(r̃), PPoi(r̃)) = 1

3
+ ln

√
3

2
≈ 0.189, (36)

DKL(PPoi(r̃), PGOE(r̃)) = 5π

2
√

3
− 3 − ln

27

8
≈ 0.318. (37)

In practice, as we do not compare the distributions directly
but histograms with 50 bins between 0 and 1, the effective
divergence DKL(PPoi(r̃), PGOE(r̃)) is slightly reduced to 0.305
[DKL(PGOE(r̃), PPoi(r̃)) is almost unaffected]. Our choice of
the cutoff comes from the following observation: distributions
that are maximally confusing with the KL divergence verify

DKL(Pnum(r̃), PPoi(r̃)) = DKL(Pnum(r̃), PGOE(r̃)) ≈ 0.05,

(38)
as will be discussed in Sec. IV B. Choosing a threshold lower
than 0.05 allows us to only select distributions that are con-
vincingly Poissonian or GOE. For the sake of simplicity,
we also focus only on Krylov spaces of dimension larger
than 50 to minimize the number of samples to average over.
This removes around 2.3 × 105 Krylov spaces associated to
1.8 × 106 states (41% of the symmetry sector), including
5 × 104 dark states, i.e., Krylov spaces consisting of a single
state. The fractions of dark states decreases with system size.
Figure 1 summarizes our results and the nature of the Krylov
spaces. Of the approximately 1.9 × 104 remaining spaces,
a significant fraction present intermediate statistics (around
1.1 × 104 spaces, comprising 1.1 × 106 states, i.e., 23% of
the symmetry sector). 4.2 × 103 Krylov spaces present clear
Poissonian statistics and the remaining 2.6 × 103 have GOE
statistics. They nonetheless represent a significant propor-
tion of the total symmetry sector, approximately 7.9 × 105

states (16% of the total symmetry sector) and 9.9 × 105 states
(20%), respectively.

We stress that the origin of the Poissonian statistics in
Fig. 1(a) is the integrability of the effective Hamiltonian
obtained when restricting the original Hamiltonian to some
Krylov subspaces [69,96]. For example, let |�XX 〉 be defined
by

|�XX 〉 = |↑↓↑ . . . 〉. (39)

The Krylov space generated by |�XX 〉 is simply

K(|�XX 〉) = Span

({
|α1α2 . . . 〉|α j =↑,↓,

∑
j

α j = 0

})
,

(40)

(c)

(b)

(a)

(d)

FIG. 1. [(a)–(c)] Histograms of the dimensions of the Krylov
subspaces for N = 16 in the symmetry sector pe = po = c = 0 de-
pending on their level spacing ratio distribution with W = 0.01. We
only represent subspaces with dimension larger than 50. In (a), we
represent the Krylov subspaces that present ergodic level spacing
ratio statistics and in (b) Poissonian. (c) provides the Krylov spaces
that cannot be classified by our KL divergence criteria defined in
Eqs. (34) and (35). In each panel, we also give the number of Krylov
spaces in that category, and the total dimension of these Krylov
spaces. (d) Distribution of the level ratio for the same system if we
do not resolve the Krylov spaces. Even if we discard the smallest
Krylov subspaces, the level spacing ratio distribution is virtually
undistiguishable from the Poisson distribution.
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where
∑

j α j = 0 is a short-hand notation for states with zero
pseudospin magnetization. The dimension of this space is( N

N/2

)
, i.e., it is exactly the largest Krylov subspace of the

symmetry-resolved Hilbert space considered in this section.
Following Eq. (9), the effective Hamiltonian in this sub-
space is the XX model in a transverse field, which is indeed
integrable and therefore has a spectrum following Poisso-
nian statistics. Similar family of integrable subspaces can be
straightforwardly computed using alternating sequences of
pseudospins and dipoles. For example, a state such as

|↑↑↓ + + + ↓↓↑↑ −− ↑↑↓〉 (41)

generates a Krylov subspace of dimension
(3

1

)2(4
2

)
, whose

effective Hamiltonian is the sum of three independent XX
chains in a transverse field. Indeed, the sequences + + + and
−− here completely block the propagation of any excitations
and are left unaffected by the Hamiltonian.

This mechanism also explains the large number of unas-
signed subspaces. If we consider states of the form∣∣�m1

n1

〉 ⊗ |+ + +〉 ⊗ ∣∣�m2
n2

〉 ⊗ |+ + +〉 ⊗ ∣∣�m3
n3

〉
, (42)

we obtain a Krylov subspace which is the tensor prod-
uct of three independent ergodic subspaces. Following
Refs. [96,97], the level statistics will neither be Poissonian
or GOE, even in the thermodynamic limit, but will present
intermediate signatures.

We now turn towards the study of the level spacing ra-
tio statistics in the full symmetry sector pe = po = c = 0,
without resolving the Krylov spaces. As shown in Fig. 1(d),
the statistics are essentially undistiguishable from Poisson.
In a given symmetry sector, the occupancies of each Krylov
subspace act as an exponential number of additional good
quantum numbers. Therefore there is no apparent level re-
pulsion. Theoretically, analytical formulas have been recently
derived [96,97] to predict the distribution of the level ratios for
matrices decomposing in several independent blocks. These
studies computed the level spacing ratio distribution obtained
from considering a small number (up to 12, but easily gen-
eralizable) of independent ergodic blocks as a single matrix.
In Ref. [97], it was numerically shown that the mean level
spacing ratio obtained from M ergodic blocks converges to-
ward the Poissonian statistics approximately as M−2. This
means that, already for M = 12, the two average values
differ only by 10−3. With the exponentially large number
of blocks, and the additional scrambling induced by our
Poissonian blocks, the precision required to differentiate our
numerically obtained distribution from the true Poissonian
distribution goes well-beyond any numerically achievable
sampling. Indeed, we numerically obtain that the full numeri-
cal distribution Pfull, including all the Krylov subspaces, has a
KL divergence with respect to PPoi of

DKL(Pfull (r̃), PPoi(r̃)) ≈ 9.7 × 10−8. (43)

B. Level spacing ratio statistics in a single Krylov subspace

To study the effects of disorder, we focus on the families of
Krylov subspaces defined in Sec. III. In particular, we specif-
ically do not consider the largest Krylov subspace. Indeed,
for OBC, the Hamiltonian restricted to this largest Krylov

space is equivalent to a random XX model in a transverse
field for all system sizes we considered. It is integrable and
localizes at arbitrarily low disorder. Let the reduced energy of
an eigenstate of energy E be

ε = E − Emin

Emax − Emin
, (44)

with Emin (Emax) the lowest (highest) energy of the reduced
Hamiltonian in the Krylov subspace. In the rest of this pa-
per, we focus on states in the bulk of the spectrum with
ε ∈ [0.4, 0.6].

We determine the level spacing ratio distribution by av-
eraging over a large number of realizations, ranging from
several thousands (for N = 8) down to 500 for the larger
systems (for N = 30). We represent in Figs. 2(a)–2(c) the
KL divergence of the distribution of the level spacing ratio in
the three families of Krylov subspaces defined in Secs. III B
and III C, using GOE and Poisson distributions as prior. For
all families, at low disorder, we observe a quick convergence
towards the GOE distribution of the level spacing ratio distri-
bution, when increasing the system size N . The three families
of Krylov subspaces appear indeed ergodic in the thermo-
dynamic limit. Crossing of the KL divergence universally
occurs for DKL(Pnum(r̃), PPoi(r̃)) ≈ 0.05. This implies that we
are maximally confused about which theoretical distribution
better approximates the numerical one at this value of the
KL divergence. Thus we take this crossing as a marker of the
phase transition.

We first turn to the Krylov spaces generated by |�m
1 〉

defined in Eq. (26), working with periodic boundary condi-
tions due to the favorable scaling. As shown in Fig. 2(a),
for m > 2, the crossing point of the KL divergences shows
very small finite-size effects at W 1

c ≈ 0.75 despite the small
Hilbert spaces. Note that the finite-size effects remain small
whether we perform a scaling with system size or with the
dimension of the Hilbert space. We have performed the same
analysis by studying the evolution of the mean level spacing
ratio (see Appendix C 1). For the second family generated by
|�m

2 〉, also with PBC, we observe similar results in Fig. 2(b).
Due to the faster growth of the Krylov subspaces, we are
effectively limited to smaller systems plagued by stronger
finite-size effects. For each m, we observe a transition from
an ergodic phase to a localized phase, albeit at a signif-
icantly larger disorder strength, despite the similar Hilbert
space dimensions and structures. The effective critical disor-
der strengths do not display any simple convergence behavior
when increasing m, at least within the accessible system sizes.
Finally, the family |�1

n 〉—studied with OBC due to the slower
scaling—also exhibits signs of an MBL phase transition, as
shown in Fig. 2(c). Interestingly enough, the crossing point
admits an approximately linear drift with increasing system
sizes [see inset in Fig. 2(c)]. Additionally, we observe in all
Krylov subspaces that the critical disorder strength strongly
depends on the relative energies of the eigenstates. Mobility
edges [1,2,49] are therefore also present in these constrained
systems. More details can be found in Appendix C 2.

Note that the three Krylov spaces considered here originate
from the same initial Hamiltonian (up to boundary condi-
tions) and therefore for a given W and N have the same
disorder and hopping amplitudes in configuration space. Still,
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FIG. 2. Level spacing ratio statistics for the Krylov subspaces
generated by the state |�m

1 〉 (a), |�m
2 〉 (b) and |�1

n 〉 (c) for
ε ∈ [0.4 0.6] and different values of m and n. We compute
DKL(Pnum, PPoi ) (full line) and DKL(Pnum, PGOE ) (dotted line). The
red dotted line represent DKL(PPoi, PGOE ) [see Eq. (37)] and the full
red line DKL(PGOE, PPoi ) [see Eq. (36)]. For very weak disorder and
small Krylov space dimensions, the level spacing ratio distributions
present strong finite-size effects due to the sparsity of the model and
quasidegeneracies. Nonetheless, when increasing system sizes, all
three families convincingly have ergodic statistics. For all systems,
we observe an effective transition from GOE to Poisson statistics.
The critical disorder is identified with the crossing points of the two
divergences. Note the different effective critical disorder (Wc ≈ 0.75
for |�m

1 〉, Wc ≈ 1.15 for |�m
2 〉) for the first two families with PBC.

For the subspaces generated by |�1
n 〉 (OBC), on the other hand,

we observe an approximately linear shift of the effective critical
disorder with increasing system sizes, as is shown in inset. Error bars
(generally too small to be seen) are obtained through subsampling of
our data.

the corresponding critical values, as predicted by the level
spacing ratio distributions, and scaling behavior are radically
different. K(|�3

2〉) and K(|�4
1〉) both correspond to N = 24,

K(|�1
3 〉) and K(|�2

2〉) to N = 16, and K(|�1
4 〉) and K(|�2

1〉) to
N = 12 and yet admit different transition points. Conversely,
the Krylov space dimension alone is also not a good indicator
of the critical disorder: both K(|�2

2〉) (N = 16) and K(|�1
4 〉)

(N = 20) have a dimension close to 2.2 × 104. K(|�2
2〉) ap-

pears to localize at a larger disorder than K(|�1
4 〉) even

though the disorder in the Fock basis is averaged over less
sites.

The family K(|�1
n 〉) shows a strong drift of the critical

disorder towards larger values with increasing system sizes.
This could be a sign of an absence of a transition for these
subspaces in the thermodynamic limit. Paradoxically, this
family also has a structure very close to an integrable one.
Indeed, the Hamiltonian acting on the sea of pseudospins |↑〉
and |↓〉 reduces to a noninteracting XX Hamiltonian. The
pair of dipoles breaks integrability by stitching together a set
of triplets—the sea of pseudospins to the left, in-between,
and to the right of the pair of dipoles—of integrable spaces.
Yet, while the XX Hamiltonian is localized at an arbitrar-
ily low disorder, with an effective critical disorder strength
decreasing with system size, we observe the exact opposite
for |�1

n 〉.
The different behavior observed in our Krylov subspaces

reinforces the need to separate the Krylov subspaces if we
want to study the MBL phase transition and the effect of
disorder. In Appendix C 3, we show some additional numer-
ical results showing the level spacing ratio statistics obtained
when mixing the subspaces generated by |�3

2〉 and |�4
1〉. We

observe a significant difference between the distribution at low
disorder and PGOE, and a smoother crossover when studying
the KL divergences.

V. ENTANGLEMENT ENTROPY
IN A CONSTRAINED MODEL

In the previous section, we have seen that the differ-
ent Krylov subspaces appear to undergo an MBL phase
transition at different critical disorder strengths, according to
their level spacing ratio distributions. We now turn to the
study of the von-Neumann entanglement entropy (vNEE) of
the many-body eigenstates as another complementary probe
of this transition. For a subsystem A, the vNEE of the pure
state |�〉 is given by

S(A) = −Tr(ρA ln ρA) with ρA = TrA|�〉〈�|, (45)

where TrA marks the trace on the degrees of freedom not in
A. We denote by HA (respectively HA) the Hilbert space of
ρA (respectively ρA). In terms of the entanglement entropy,
the MBL phase transition can be seen as a transition from
thermal volume-law to an area law [20–23]. In one dimension,
the volume law is to be understood as

S(A) ∝ sth lA for lA � L (46)

with lA the number of sites (degrees of freedom) in A. sth

takes the value ln 2 in the thermal phase for conventional
spin-1/2 systems. The strongly constrained model we study
sees very irregular growth of the Hilbert space HA with sub-
system size. Instead, we consider the entanglement entropy to
be ergodic if it verifies

S(A) ≈ SPage(A), (47)

where the Page entropy [98] SPage is the average entanglement
entropy of uniformly distributed random states. In the absence
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FIG. 3. Entanglement entropy as function of the subsystem size for several disorder strengths W for |�5
1〉 [(a) and (b)], |�3

2〉 [(c) and (d)],
and |�1

4 〉 [(e) and (f)]. [(a), (c), and (e)] vNEE. [(b), (d), and (f)] vNEE normalized by the Page entropy given in Eq. (54). For all Krylov
subspaces, we observe a clear transition between a volume law at low disorder, where the entropy varies little with disorder strength. The slight
dip in the middle of the chain for the normalized vNEE is characteristic of finite-size systems [98] as mj and Mj in Eqs. (52) and (53) become
of the same order. It is unrelated to any breakdown of the volume law. At stronger disorder, the vNEE transitions towards an area law. In the
inset in (a), we display ln m as defined in Eq. (49) for lA in [[1, 30]]. The irregular growth explains the pattern seen in the entropy in the ergodic
and MBL phases. Error bars are too small to be seen.

of symmetries or of Hilbert space fragmentation, the Page
entropy SPage(A) is given by

SPage(A) ≈ ln m − m

2M
for 1 � m < M, (48)

with m = min(dim HA, dim HA), (49)

M = max(dim HA, dim HA). (50)

The Page entropy trivially satisfies the volume law as ln m is
roughly proportional to the number of degrees of freedom in
A. Due to the presence of the multiple U(1) symmetries, we
have to take into account the splitting of the wave functions
down to submatrices in different symmetry subsectors. Cor-
respondingly, the Hilbert space (or Krylov subspace) can be
split into

H =
⊕

j

HA, j ⊗ HA, j, (51)

where the subspaces HA, j and HA, j have the dimension

mj = min(dim HA, j, dim HA, j ), (52)

Mj = max(dim HA, j, dim HA, j ), (53)

such that2dimH = ∑
j

m jMj . The Page entropy is then

given by

SPage(A) =
∑

j

[
mjMj

dimH

(
ln mj − mj

2Mj

)
− mjMj

dimH ln
mjMj

dimH

]
.

(54)

The area law remains here defined as

S(A) = O(1) when lA, L → +∞. (55)

2In principle, due to constraints not directly taken into account
by the symmetries, it is possible that dimH <

∑
j

m jMj . Then, our

generalized formula in Eq. (54) is no longer valid. It is not the case
in our model.
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We compute the entanglement entropy in the different
Krylov spaces introduced in Secs. III B and III C, and average
over all states with ε ∈ [0.4, 0.6] and over a large number of
disorder realizations (see Sec. IV B). We work in the original
spin basis (|0〉, |1〉). We assume PBC for |�1

m〉 and |�2
m〉, and

OBC for |�1
n 〉 due to the favorable scalings. In Fig. 3, we show

the scaling of the vNEE S(lA) as a function of the subsystem
size, where A is the segment made of the lA consecutive
spins [[1, lA]] for different disorder values for |�5

1〉, |�3
2〉, and

|�1
4 〉. The entropy we obtain therefore matches the one we

would obtain in the pseudospins basis when lA is even. At low
disorder values, the vNEE remains roughly proportional to
the Page entropy, following the aforementioned volume law.
The entropy varies only weakly with the disorder strength. At
stronger disorder, we observe a crossover towards an area law
where the entanglement remains (nearly) constant over several
decades. This area law is typical of the predicted MBL phase
and shows no signs of increasing again at larger scales.

The exact pattern followed by the vNEE depends on the
Krylov subspaces, and can be very irregular. In particular, the
family |�m

1 〉, for the cut we chose, has S(3l + 1) = S(3l +
2) = S(3l + 3) for l � 1. It is not a consequence of any
effective three-spin quasiparticles but a nontrivial interplay
between the pair-hopping terms and the chosen starting state
(see Appendix B). Additionally, as can be seen in Fig. 3(a),
in the ergodic phase, the growth of the entanglement entropy
from one plateau to the next alternates between large and
small jumps. This irregular growth pattern comes from the
lack of translation invariance at the single spin level in the
starting generating state (while it remains invariant by trans-
lation of 12 spins). The dimension of the reduced density
matrix grows faster when lA goes through a higher entropy
jump. This irregular growth also affects the MBL phase. A
larger growth of the reduced Hilbert space translates into
more states connected by a pair-hopping term going through
the entanglement cut. As the entanglement entropy at large
disorder mainly arises from local resonant pairs, this struc-
ture leads to the observed alternating high and low plateaus.
More details on the growth of the dimension of the reduced
density matrix and the pairing structure can be found in
Appendix B).

To pinpoint the transition, it is convenient to study the
standard deviation of the entanglement entropy (typically at
the midchain point) [21]. The transition point is taken to be
at its maxima: the system can there be either in a thermal
state with high volume-law entanglement or in a localized
states with low entanglement. In Fig. 4, we show the standard
deviation of the entanglement entropies obtained for all states
with ε ∈ [0.4, 0.6] and for different disorder realizations for
the Krylov subspace we considered. For all families, the
larger the system, the more peaked the standard deviation
is. For the family generated by |�m

1 〉, the peaks clearly
concentrate around the critical disorder value Wc ≈ 0.75. For
|�m

2 〉 there is no clear tendency emerging. Finally, for |�1
n 〉,

the effective critical disorder values increase quasilinearly
with system size, preventing pinpointing any phase transition.
The obtained values are in qualitative agreement with those
obtained considering the level spacing ratio. Due to the limited
number of sizes available in each family, we cannot perform a
reliable scaling analysis.
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FIG. 4. Standard deviation of the mid-chain entanglement en-
tropy for |�m

1 〉 (a), |�m
2 〉 (b) and |�1

n 〉 for different m and n as a
function of the disorder strength W . The maximum of the standard
deviation is supposed to capture the phase transition. For |�m

1 〉 (a), we
observe a clear and more and more marked peak around W = 0.75.
For |�m

2 〉 (b), it is harder to extract a tendency within the system
size available, due to a strong finite size effect. Finally, for |�1

n 〉 (c),
we observe an approximately linear increase of the effective critical
disorder with system sizes. In all cases, the predictions qualitatively
agree with the ones obtained from the level spacing ratio statistics.
Error bars are too small to be seen.

VI. DISCUSSIONS AND CONCLUSIONS

In this paper, we have provided numerical evidence of
a many-body localization type transition within the ergodic
Krylov subspaces of constrained models presenting a strong
fragmentation of the Hilbert space. Due to the slow scaling
of the Hilbert space dimensions, we have been able to study
systems comprised of up to 64 spins using exact diagonal-
ization. We observe the transition from an approximate linear
scaling of the entanglement entropy at low-disorder to a clear
area law over significantly larger scales than conventionally
studied. We see no signs of a general breakdown of the many-
body localization phenomenon in these large systems, though
the Krylov spaces’ dimensions remain comparable to other
models which have been studied. Within the same constrained
model, the different Krylov subspaces see a transition oc-
curring at wildly different disorder strengths. This reinforces
the importance of considering separately each Krylov space
to study the localization properties of systems that see such
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subspaces (b) to the critical disorder strengths. Error bars for entanglement are obtained by fitting randomly generated sequences with similar
properties of our data and measuring the variation of the interpolated maximum.

a fragmentation of the full Hilbert space: without doing so,
any sign of the transition will be blurred towards Poissonian
statistics. More importantly, we see no significant correlations
between effective critical disorder strengths and Krylov space
dimensions or system sizes, as illustrated in Fig. 5.

The role of the structure of the Krylov space is therefore
key to explaining the MBL phase transition in these models,
and a detailed study is left for future works. The subspaces
generated by the families |�m

1 〉 appear to present a stable MBL
phase transition in the thermodynamic limit, independent of
whether we consider the level spacing ratio distributions or
the entropy properties, and whether we perform scaling as
a function of system size or Krylov space dimension. On
the other hand, the subspaces generated by |�1

n 〉 show an
approximately linear scaling of the critical disorder strengths
with system size, within the sizes and the numerical preci-
sion we have access to. It raises the question whether this
subspace actually always thermalizes in the thermodynamic
limit. This is especially remarkable given that this subspace
and the action of the constrained Hamiltonian on it appear
the closest to an effective integrable XX model given the
presence of a single pair of dipoles in a sea of integrable
spins.
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APPENDIX A: COMPUTATION OF THE DIMENSION
OF THE KRYLOV SUBSPACES

1. Krylov subspaces generated by |�1
n〉

We discuss in this Appendix the simplification of the for-
mulas given in Eqs. (23) and (24). We start with periodic
boundary conditions, where the dimension of the Krylov sub-
space is given by:

dim K
(∣∣�1

n

〉)
PBC =

N↑∑
n↑,n↓=0

(
2N↑ − n↑ − n↓

N↑ − n↑

)(
n↑ + n↓

n↓

)
.

(A1)

We reorganize the double summation introducing
s = n↑ + n↓,

dim K
(∣∣�1

n

〉)
PBC =

2N↑∑
s=0

min(N↑,s)∑
n↑=max(0,s−N↑ )

(
2N↑ − s

N↑ − n↑

)(
s

n↑

)
.

(A2)

The bounds of the sum on n↑ can be simplified as either one
of the binomial coefficient is 0 for n↑ < max(0, s − N↑) or
n↑ > min(N↑, s). Namely, we get

dim K
(∣∣�1

n

〉)
PBC =

2N↑∑
s=0

N↑∑
n↑=0

(
2N↑ − s

N↑ − n↑

)(
s

n↑

)
. (A3)

From here, application of the Chu-Vandermonde identity

k∑
j=0

(
m

j

)(
n

k − j

)
=

(
n + m

k

)
(A4)
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TABLE II. We summarize the properties of the Krylov space for the family generated by |�1
n 〉. The columns 3 to 5 (6 to 8) are for the

OBC (PBC) case. The third and sixth columns list the dimensions of the Krylov subspaces according to Eqs. (23) and (24). The dimension
of the Krylov spaces approximately grows as 2N . The fourth and seventh columns show the connectivity of the Hamiltonian C (here defined
as the ratio of the number of nonzero nondiagonal terms in the Hamiltonian over the Hilbert space dimension). Finally, the fifth and eighth
columns list the dimensions dim ρOBC

1
2

of the reduced density matrix for a cut exactly in the middle of the chain, i.e., separating the two +s in

the generating state for different system sizes.

n N dim K(|�1
n 〉, HOBC) C(HOBC) dim ρOBC

1
2

dim K(|�1
n 〉, HPBC) C(HPBC) dim ρPBC

1
2

2 12 126 4.75 16 630 5.33 80
3 16 1716 6.77 64 12012 7.38 448
4 20 24310 8.8 256 218790 9.41 2304
5 24 352716 10.82 1024 - - -

leads to

dim K
(∣∣�1

n

〉)
PBC =

2N↑∑
s=0

(
2N↑
N↑

)
= (2N↑ + 1)!

N↑!2
. (A5)

We now turn to open boundary conditions. The dimension
of the Krylov space (denoted here dOBC for convenience) is
given by

dOBC =
NL

↑∑
n↑,n↓=0

(
2NL

↑ − n↑
NL

↑

)(
2NL

↑ − n↓
NL

↑

)(
n↑ + n↓

n↓

)
(A6)

=
2NL

↑∑
s=0

min(NL
↑ ,s)∑

n↑=max(0,s−NL
↑ )

(
2NL

↑ − n↑
NL

↑

)(
2NL

↑ + n↑ − s

NL
↑

)

×
(

s

n↑

)
(A7)

=
2NL

↑∑
s=0

NL
↑∑

n↑=0

(
2NL

↑ − n↑
NL

↑

)(
2NL

↑ + n↑ − s

NL
↑

)(
s

n↑

)
(A8)

=
NL

↑∑
n↑=0

(
2NL

↑ − n↑
NL

↑

)( 2N↑∑
s=0

(
2NL

↑ + n↑ − s

NL
↑

)(
s

n↑

))
. (A9)

Using the Chu-Vandermonde identity
n∑

m=0

(
m

j

)(
n − m

k − j

)
=

(
n + 1

k + 1

)
, (A10)

and the fact that the term in the second sum is zero for s �
2NL

↑ + 1, we obtain

dOBC =
NL

↑∑
n↑=0

(
2NL

↑ − n↑
NL

↑

)(
2NL

↑ + n↑ + 1

NL
↑

)
. (A11)

Now we introduce t = 2NL
↑ − n↑ such that

dOBC =
2NL

↑∑
t=N↑

(
t

NL
↑

)(
4NL

↑ + 1 − t

NL
↑

)
(A12)

=
2NL

↑∑
t=0

(
t

NL
↑

)(
4NL

↑ + 1 − t

NL
↑

)
. (A13)

Similarly, we can instead introduce t̃ = 2NL
↑ + n↑ + 1 to ob-

tain

dOBC =
3NL

↑ +1∑
t̃=2N↑+1

(
4NL

↑ + 1 − t̃

NL
↑

)(
t̃

NL
↑

)
(A14)

=
4NL

↑ +1∑
t̃=2N↑+1

(
t̃

NL
↑

)(
4NL

↑ + 1 − t̃

NL
↑

)
. (A15)

This leaves us with

dOBC = 1

2

4NL
↑ +1∑

t=0

(
4NL

↑ + 1 − t

NL
↑

)(
t

NL
↑

)
(A16)

= 1

2

(
4NL

↑ + 2

2NL
↑ + 1

)
=

(
4NL

↑ + 1

2NL
↑

)
, (A17)

where we used Eq. (A10) a second time and obtain Eq. (25)
in the main text. Note that as far as we know, this special
identity for the triple sum of binomials is not registered in
conventional tables. It can be generalized to

d (X,Y ) =
X,Y∑

x,y=0

(
2X − x

X

)(
2Y − y

Y

)(
x + y

x

)

=
(

2X + 2Y + 1

X + Y

)
, (A18)

where we used, following Eq. (A11),

d (X,Y ) =
2X∑

x=0

(
2X − x

X

)(
2Y + x + 1

Y

)
, (A19)

d (X,Y ) =
2Y∑

y=0

(
2Y − y

Y

)(
2X + y + 1

X

)
, (A20)

the two changes of variables tx = 2X − x and ty = 2Y + y +
1, and applied Eq. (A10). The main characteristics of |�1

n 〉 and
of the corresponding effective Hamiltonian are summarized in
Table II.

2. Krylov subspaces generated by |�m
n 〉

We now turn to the asymptotic dimension scaling of the
Krylov spaces generated by |�m

n 〉. Let us first consider pe-
riodic boundary conditions for simplicity. ↑’s can move in
between the two dipoles to their left (but not beyond), and
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similarly for ↓’s to their right. We denote x j = 0, . . . , n and
y j = 0, . . . , n the number of pseudospins of the jth sequence
of pseudo spins that have moved to their left and to their right.
For example, we consider the Krylov subspace generated by
|�3

2〉, i.e.,

|↑ ↓↑↓ − + +− ↑↓↑↓ − + +− ↑↓↑↓ − + +−〉. (A21)

A typical configuration connected to this initial state looks
like∣∣∣∣↑↑ ↓ − + ↑↓↑︸︷︷︸

y1 = 1
x2 = 2

+− ↓ − + ↓↑︸︷︷︸
y2 = 1
x3 = 1

+− ↑ − + ↓↓︸︷︷︸
y3 = 2
x1 = 0

+ −
〉
.

(A22)

It satisfies (x1, y1) = (0, 1) as only one of the ↓ pseudospins
of the first subsequence of ↑↓↑↓ has moved the right of the
first (leftmost) dipole −+, and none to the left of the last
(rightmost) dipole +−. As can be straightforwardly observed,
it also satisfies (x2, y2) = (2, 1) and (x3, y3) = (1, 2).

The corresponding Krylov subspace’s dimension then
reads

dim K(|�m
n 〉)PBC =

n∑
x1,y1,···=0

(
2n − x1 − y1

n − y1

)(
y1 + x2

y1

)

×
(

2n − x2 − y2

n − y2

)
. . .

(
ym + x1

ym

)
.

(A23)

This can be rewritten as

dim K(|�m
n 〉)PBC =

n∑
x1,y1=0

f (x1, y1)gm(y1, x1), (A24)

with

f (x, y) =
(

2n − x − y

n − y

)
(A25)

and

gm(y1, x1) =
∑

x2,y2,...

(
y1 + x2

y1

)(
2n − x2 − y2

n − y2

)
. . .

(
ym + x1

ym

)

=
n∑

z=0

T (n)
y1,zgm−1(z, x1), (A26)

where the (n + 1) × (n + 1) transfer matrix T (n) has entries
given by

T (n)
x,y =

n∑
z=0

(
2n − y − z

n − z

)(
x + z

z

)
=

(
2n + 1 + x − y

n

)
,

(A27)

and x, y = 0, . . . , n. Defining the matrices Fx,y = f (x, y) and
G0

x,y = (x+y
x

)
, we obtain the simple expression:

dim K
(∣∣�m

n

〉)
PBC = Tr(F [T (n)]m−1G0). (A28)

Thus the dimension of the Krylov subspace scales as (t (n) )m

with t (n) the largest eigenvalue of T (n), as it corresponds to
the translation by a single motif (↑↓)n − + + −. Using the

relation N = (2n + 4)m, we readily obtain that the dimension
of K(|�m

n 〉)PBC scales as (t (n) )N/(4+2n) = (t (n) )L/(8+4n).
Let us consider n = 1 as a concrete example. The matrix

T (1) is given by

T (1) =
(

3 2
4 3

)
. (A29)

Its eigenvalues are t (1)
± = 3 ± 2

√
2, and therefore

dim K
(∣∣�m

1

〉)
PBC ≈ (t (1)

+ )m = (t (1)
+ )

N
6 = (t (1)

+ )
L
12 (A30)

≈ 1.341N ≈ 1.158L. (A31)

The dimension of the Hilbert space cannot be understood from
a simple quasiparticle picture. Indeed, there exists no p ∈ N∗

such that (t (1)
+

1
12 )p is rational. The proof goes as follows: if

such a p exists, then there exists p̃ ∈ N∗ such that (T (1) ) p̃ has
rational eigenvalues. Eigenvalues of (T (1) ) p̃ are roots of the
polynomial det((T (1) ) p̃ − λI ), which has integer coefficients,
and a leading coefficient of 1. The eigenvalues are therefore
real irrational integers, whose intersection with Q are integers
only. They are given by

1
2 ((3 − 2

√
2) p̃ + (3 + 2

√
2) p̃)

±
√

1
4 ((3 − 2

√
2) p̃ + (3 + 2

√
2) p̃)2 − 1. (A32)

The first parenthesis is trivially an integer, while the second
term is of the form

√
A2 − 1, with A ∈ N and A > 1. This

second term is therefore never an integer, and (T (1) ) p̃ can have
neither integer nor rational eigenvalues.

For open boundary conditions, the Krylov subspace dimen-
sion can be obtained from a similar formula:

dim K
(∣∣�m

n

〉)
OBC =

∑
y1,...

(
2n − y1

n

)(
y1 + x2

y1

)

×
(

2n − x2 − y2

n − y2

)
. . .

(
2n − xm

n

)
(A33)

=
∑
y1,xm

f (0, y1)gm(y1, xm) f (xm, 0), (A34)

The dimension of the OBC Krylov subspace therefore scales
as in the periodic case.

In Tables III and IV, we summarize the dimensions of the
Krylov subspace and of the reduced density matrix for a half-
chain cut.

APPENDIX B: SCALING OF THE REDUCED DENSITY
MATRIX AND ENTANGLEMENT PROPERTIES OF |�m

1 〉
In the Krylov subspace built from |�m

1 〉, the reduced den-
sity matrix follows an interesting simple pattern. As can be
seen in Fig. 3(a), each cut l = 3 j + 1, l = 3 j + 2 and l =
3 j + 3 has the same entropy for j � 1 and PBC, i.e.,

S(lA = 3 j + 1) = S(lA = 3 j + 2) = S(lA = 3 j + 3).
(B1)

For OBC, this property is true already at j = 0. In this Ap-
pendix, we show that the reduced density matrices obtained
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TABLE III. We summarize the properties of the Krylov space defined for the generating sequence (↑↓ − + +−)m. The column 3 to 5 (6
to 8 are for the OBC (PBC) case. Note that for OBC, we add a sequence ↑↓ at the right end of the generating state for symmetry. The third and
sixth columns list the dimensions of the Krylov subspaces. The dimension of the Krylov spaces approximately grows as 1.341N . The fourth
and seventh columns show the connectivity of the Hamiltonian C (here defined as the ratio of the number of nonzero nondiagonal terms in
the Hamiltonian over the Hilbert space dimension). Finally, the fifth and eighth columns list the dimensions dim ρOBC

1
2

of the reduced density

matrix for a cut exactly in the middle of the chain.

m NPBC dim HPBC C(HPBC) dim ρPBC
1
2

NOBC dim HOBC C(HOBC) dim ρOBC
1
2

1 6 6 2.167 5 8 10 2.7 4
2 12 34 4.03 12 14 58 4.60 10
3 18 198 6.01 29 20 338 6.59 24
4 24 1154 8 70 26 1970 8.59 58
5 30 6726 10 169 32 11482 10.59 140
6 36 39202 12 408 38 66922 12.59 338

for these cuts are actually identical. It can be proven by rewrit-
ing |�m

1 〉 in terms of states combining three consecutive spins.
We use the compact notation |ν1ν2ν3〉 = |4ν1 + 2ν2 + ν3〉
where ν j = 0 or 1. In this notation, |�m

1 〉 can be written as
|(4474)m〉. The relevant transformation rules induced by the
pair-hopping terms now read

|44〉 ↔ |30〉 and |47〉 ↔ |33〉. (B2)

All other configurations of |0〉, |3〉, |4〉, and |7〉 are canceled
by the four fermions hopping terms and preserved by the
transverse field. No state containing |1〉, |2〉, |5〉, |6〉, and |8〉
is therefore connected to |�m

1 〉. The Krylov subspace only
contains (a subset of the) states built from the triplets |0〉, |3〉,
|4〉, and |7〉.

For clarity, we start with the OBC case, and discuss
the PBC case later. We will consider separately the case
j = 0, 1, and 2 by direct inspection. Then we will address
the generic j value. For any given starting state, we can
write the single-site density matrix of the left most state
explicitely as

ρ(lA = 1) = α|0〉〈0| + β|1〉〈1| + (γ |0〉〈1| + H.c.), (B3)

where α, β are positive real coefficients and γ is a complex
constant. Using the transformation rules in Eq. (B2), the con-
figurations |44〉 can only be mapped to |30〉 or |43〉. This
means the configuration of the first triplet is either |3〉 or |4〉.
Once we fix the first spin, the next two are determined. Using

Eq. (B3), we obtain the following expressions for the reduced
density matrices at lA = 2 and lA = 3.

ρ(lA = 2) = α|01〉〈01| + β|10〉〈10| + (γ |01〉〈10| + H.c.),

(B4)

ρ(lA = 3) = α|011〉〈011| + β|100〉〈100|
+ (γ |011〉〈100| + H.c.). (B5)

The coefficients of the density matrices, and therefore the
vNEE, remain the same whether we cut after the first, sec-
ond or third spin. Now, we turn to a cut through the second
triplet [corresponding to j = 1 in Eq. (B1)]. The triplet itself
can be either |4〉, |3〉, or |0〉. On the other hand, also tak-
ing into account the first triplet, lead to the following three
combinations

|44〉 = |1001 00〉, |43〉 = |1000 11〉 and |30〉 = |0110 00〉.
(B6)

Therefore, fixing the first 4 spins, i.e., the first triplet and the
first spin of the second triplet again entirely determines the
states of the second and third spin. Eq. (B1) is therefore also
valid for j = 1. A similar reasoning can be applied to the third
triplet and j = 2, with the sequences:

|307〉, |433〉, |434〉, and |447〉. (B7)

To straightforwardly extend the results to the rest of the
system, it is enough to consider all possible four triplets
sequences in the Krylov subspace. There are only 44 such

TABLE IV. We summarize the properties of the Krylov space defined for the generating sequence (↑↓↑↓ − + +−)m. The column 3 to
5 (6 to 8 are for the PBC (OBC) case. Note that for OBC, we add a sequence ↑↓ at the right end of the generating state for symmetry. The
third and sixth columns list the dimensions of the Krylov subspaces. The dimension of the Krylov spaces approximately grows as 1.516N . The
fourth and seventh columns show the connectivity of the Hamiltonian C (here defined as the ratio of the number of nonzero nondiagonal terms
in the Hamiltonian over the Hilbert space dimension). Finally, the fifth and eighth columns list the dimensions dim ρOBC

1
2

of the reduced density

matrix for a cut exactly in the middle of the chain.

m NPBC dim HPBC C(HPBC) dim ρPBC
1
2

NOBC dim HOBC C(HOBC) dim ρOBC
1
2

1 8 30 3.23 19 12 126 4.72 16
2 16 786 6.32 96 20 3441 7.81 91
3 24 21873 9.47 514 28 96054 10.97 472
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TABLE V. List of the 44 possible combinations of triplets of
spins arising in |�m

1 〉

0333 0744 3304 3470 4447 4744 7443
0334 3033 3330 4307 4473 7033 7444
0347 3034 3343 4333 4474 7034
0473 3047 3344 4334 4703 7047
0474 3073 3430 4347 4704 7303
0730 3074 3443 4433 4730 7304
0743 3303 3444 4434 4743 7430

sequences (out of 212 = 4096 possible spin configuration and
44 = 256 combination of triplets), given in Table V. They can
be obtained by brute force for m = 3 (m = 2 for PBC), and
the limited propagation of the dipoles through the pseudospins
ensures that no other configurations arise for larger systems.
For all these sequences, fixing the first three triplets and the
first spin of the fourth triplet is enough to determine the whole
sequence. Equation (B1) is therefore valid for any j. For
PBC, the same analysis can be performed, leading to the same
property and pattern observed in Fig. 3(a). The only difference
is that the reduced density matrix does change going from the
first spin to the second spin as the left-most triplet can be |4〉,
|3〉, and |0〉. For further spins and triplets, the proof is similar
to the one we derived for OBC.

Additionally, the growth of the reduced Hilbert space
from one three-site plateau to the next is very irregular, as
shown in Fig. 3(a). The alternating small and large jumps
in entropy observed in the ergodic phase translates into al-
ternating low and high entanglement plateaus in the MBL
phase at strong disorder. Both phenomena can be explained
by simple perturbative expansion arguments in the triplet
language. At strong disorder, the dominant energy terms are
the disorder terms, and we can assume that the eigenstates
are generally close to product states in the z spin basis,
and therefore in the triplet basis. Nonzero contributions to
the entropy mainly come from local resonances, with two
nearestneighbr triplet forming a pair due to the correspond-
ing hopping term. In Table VI, we summarize how many

TABLE VI. Number of pairs of states created by the hopping
terms connecting the triplet j (that is to say the sites 3 j + 1, 3 j + 2,
and 3 j + 3) and the triplet j + 1 for the Krylov spaces generated
from the state |�m

1 〉 for different values of m, taking PBC. The
remaining terms can be obtained due to the invariance by translation
of 12 sites. Due to the pattern of the generating state, we alternate
between large and small numbers of connected states. This pattern
explains the alternating large and small increase of entropies in the
ergodic phase, and the alternating high and low entropy links in the
MBL phase seen in Fig. 3(a).

Hopping term j ↔ j + 1 0 − 1 1 − 2 2 − 3 3 − 4

Number of pairs of states in |�1
1〉 1 2 1 2

Number of pairs of states in |�2
1〉 5 12 5 12

Number of pairs of states in |�3
1〉 29 70 29 70

Number of pairs of states in |�4
1〉 169 408 169 408

Number of pairs of states in |�5
1〉 985 2378 985 2378

0.0 0.5 1.0 1.5 2.0

0.40

0.45

0.50

<
r̃

>

(a)
Poisson

GOE

m = 2

m = 3

m = 4

m = 5

0.0 0.5 1.0 1.5 2.0

0.40

0.45

0.50

<
r̃

>

(b)

Poisson

GOE

m = 1

m = 2

m = 3

0.00 0.25 0.50 0.75 1.00 1.25 1.50
W

0.40

0.45

0.50

<
r̃

>

(c)

Poisson

GOE

n = 2

n = 3

n = 4

FIG. 6. Mean value of the level spacing ratio for the three fam-
ilies |�m

1 〉, |�m
2 〉, and |�1

n 〉 for different values of m and n. We
generically observe a crossover from the GOE value towards the
Poisson value. The observed behavior is compatible with the results
based on the KL divergence in the main text.

pairs of states the hopping terms can generate depending
on where they are applied on the Krylov spaces generated
by |�m

1 〉.
We treat as an example the case m = 1. With periodic

boundary conditions, the Krylov subspace consists of only
six states: |i〉 ≡ |4474〉, |ii〉 ≡ |3074〉, |iii〉 ≡ |4334〉, |iv〉 ≡
|0473〉, |v〉 ≡ |0333〉, and |vi〉 ≡ |0347〉. The pair-hopping
terms linking the first two triplets only transform the state
|i〉 into |ii〉 (and vice versa). Similarly, those connecting the
3rd and 4th triplets only transform |v〉 into |vi〉. On the
other hand, the pair-hopping terms connecting the second and
the third triplet maps |i〉 into |iii〉 and |iv〉 into |vi〉. The
alternating low and high number of pairs perfectly explain
the observed entropy patterns. If this number is small, the
average entropy in the MBL phase is lower as a limited
number of local resonant pairs can exist. Conversely, at low
disorder, the number of pairs reflect the number of connec-
tions in the configuration basis, that is to say the growth of
the reduced Hilbert space when increasing system size. A
lower number of pairs implies that the subspace grows less
and therefore that the entropy increases less in the ergodic
phase.

APPENDIX C: ADDITIONAL NUMERICAL DATA

In this Appendix, we present briefly some additional nu-
merical results mentioned in the main text.
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FIG. 7. Estimated critical disorder strengths Wc for the three
families |�m

1 〉 (a), |�m
2 〉 (b), and |�1

n 〉 (c) for different values of
m and n, as a function of the normalized energy. We compute the
distribution of level ratio of states with normalized energies ε ∈
[εt − 0.025, εt + 0.025] for a range of εt . We estimate the critical
disorder strength using the KL divergence as shown in Sec. IV B. For
all three families, we observe a significant variation of the transition
point with energy level. Error bars are obtained through subsampling
of our data.

1. Mean level spacing

We first turn towards the computation of the mean value of
the energy level ratio. The mean level ratio is simply defined
as the average of the distribution introduced in Eq. (32). It is a
good indicator of the MBL phase transition as it crosses from
0.5307 for a GOE distribution to 0.38629 for Poisson distribu-
tion [93]. On the other hand, it generally shows a significant
shift with system size and captures only partially the behavior
of the distributions through the phase transition. In Fig. 6, we
represent the mean level ratio for the three Krylov subspaces
we consider. We observe in all cases, a crossover from GOE
statistics to Poisson statistics. The behavior in each family
is qualitatively different, with a sharper transition for |�m

1 〉,
significant changes with system size for |�m

2 〉 (compared to
the other two Krylov subspaces), and a slower transition for
|�1

n 〉. We also observe a significant shift of the transition point
with system size for the family generated by |�1

n 〉. These
results are consistent with those obtained by studying the KL
divergence in the main text.

2. Mobility edge

As was observed [1,2,21,49] in similar models, a MBL
transition typically presents a mobility edge, that is to say,
the critical disorder strength depends on the energy of
the eigenstates. The same mobility edge can also be ob-
served in our constrained model, as illustrated in Fig. 7. We
compute the level spacing ratio distribution of states of nor-
malized energies ε ∈ [εt − 0.025, εt + 0.025] for εt varying
from 0.075 to 0.925. We then estimate the critical disorder
strengths as shown in Sec. IV B: it corresponds to the disorder
strengths where the KL divergences of the numerical distri-
bution with the Poisson distribution or GOE one are equal.
For all three spaces, we observe that the critical disorder
strength significantly varies with the energy target, over a
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FIG. 8. (a) Distribution of the level spacing ratio when mixing
the Krylov subspaces generated by |�4

1〉 and |�3
2〉, corresponding

to N = 24. We observe a significant divergence from the ergodic
GOE distribution at zero disoder, which converges slowly towards
the Poisson distribution at higher disorder. (b) KL divergence of
that distribution with the two reference distributions. The red lines
mark the divergences between Pnum and PPoi ). The discrepancy at low
disorder is better seen in DKL(Pnum, PPoi ) than in DKL(Pnum, PGOE ).
The phase transition is not as sharp than in Sec. IV B (see Fig. 2).
Error bars are too small to be seen.

range and shape comparable to those observed in other mod-
els [49].

3. Level spacing ratio for two mixed Krylov subspaces

Finally we study the level spacing ratio statistics obtained
from mixing two Krylov subspaces seeing a transition at dif-
ferent disorder strengths. More precisely here, we consider
the two Krylov subspaces generated by |�4

1〉 (of dimension
1154) and |�3

2〉 (of dimension 21873), taken with peri-
odic boundary conditions with N = 24. We compute the
level spacing ratio distributions by mixing the spectra ob-
tained in the two spaces for the same disorder realiations. In
Fig. 8, we show our results for eigenstates with ε ∈ [0.4, 0.6],
averaging over 200 disorder realizations. The distribution
of the level spacing ratio shows a significant departure
from the GOE distribution at low disorder and converges
towards the Poisson distribution at higher disorder. The behav-
ior of the KL divergence between the numerical distributions
and our two reference distributions also shows a qualitative
and quantitative difference with the distributions studied in
Sec. IV B [see Figs. 2(a) and 2(b)]. The difference at low
disorder is better seen when studying DKL(Pnum, PPoi ), with
a saturation value significantly lower than DKL(PGOE, PPoi ).
We also observe a crossover to the Poisson distribution, with
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a critical disorder strength in between the ones obtained in
both subspaces. Unsurprisingly, the transition also appears

much less sharp than in our study of the isolated Krylov
spaces.
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[18] M. Žnidarič, T. Prosen, and P. Prelovšek, Many-body localiza-
tion in the heisenberg xxz magnet in a random field, Phys. Rev.
B 77, 064426 (2008).

[19] J. H. Bardarson, F. Pollmann, and J. E. Moore, Unbounded
Growth of Entanglement in Models of Many-Body Localiza-
tion, Phys. Rev. Lett. 109, 017202 (2012).

[20] B. Bauer and C. Nayak, Area laws in a many-body localized
state and its implications for topological order, J. Stat. Mech,
(2013) P09005.

[21] J. A. Kjäll, J. H. Bardarson, and F. Pollmann, Many-Body
Localization in a Disordered Quantum Ising Chain, Phys. Rev.
Lett. 113, 107204 (2014).

[22] D. J. Luitz, Long tail distributions near the many-body localiza-
tion transition, Phys. Rev. B 93, 134201 (2016).

[23] X. Yu, David D. J. Luitz, and B. K. Clark, Bimodal entan-
glement entropy distribution in the many-body localization
transition, Phys. Rev. B 94, 184202 (2016).
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