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Abstract

Coevolution-based contact prediction, either directly by coevolutionary couplings resulting

from global statistical sequence models or using structural supervision and deep learning,

has found widespread application in protein-structure prediction from sequence. However,

one of the basic assumptions in global statistical modeling is that sequences form an at

least approximately independent sample of an unknown probability distribution, which is to

be learned from data. In the case of protein families, this assumption is obviously violated by

phylogenetic relations between protein sequences. It has turned out to be notoriously diffi-

cult to take phylogenetic correlations into account in coevolutionary model learning. Here,

we propose a complementary approach: we develop strategies to randomize or resample

sequence data, such that conservation patterns and phylogenetic relations are preserved,

while intrinsic (i.e. structure- or function-based) coevolutionary couplings are removed. A

comparison between the results of Direct Coupling Analysis applied to real and to resampled

data shows that the largest coevolutionary couplings, i.e. those used for contact prediction,

are only weakly influenced by phylogeny. However, the phylogeny-induced spurious cou-

plings in the resampled data are compatible in size with the first false-positive contact pre-

dictions from real data. Dissecting functional from phylogeny-induced couplings might

therefore extend accurate contact predictions to the range of intermediate-size couplings.

Author summary

Many homologous protein families contain thousands of highly diverged amino-acid

sequences, which fold into close-to-identical three-dimensional structures and fulfill

almost identical biological tasks. Global coevolutionary models, like those inferred by the

Direct Coupling Analysis (DCA), assume that families can be considered as samples of

some unknown statistical model, and that the parameters of these models represent evolu-

tionary constraints acting on protein sequences. To learn these models from data, DCA

and related approaches have to also assume that the distinct sequences in a protein family

are close to independent, while in reality they are characterized by involved hierarchical
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phylogenetic relationships. Here we propose Null models for sequence alignments, which

maintain patterns of amino-acid conservation and phylogeny contained in the data, but

destroy any coevolutionary couplings, frequently used in protein structure prediction. We

find that phylogeny actually induces spurious non-zero couplings. These are, however,

significantly smaller that the largest couplings derived from natural sequences, and there-

fore have only little influence on the first predicted contacts. However, in the range of

intermediate couplings, they may lead to statistically significant effects. Dissecting phylo-

genetic from functional couplings might therefore extend the range of accurately pre-

dicted structural contacts down to smaller coupling strengths than those currently used.

Introduction

Global coevolutionary modeling approaches have recently seen a lot of interest [1, 2], either

directly for predicting residue-residue contacts from sequence ensembles corresponding to

homologous protein families [3–5], in predicting mutational effects [6–8], or even in designing

artificial but functional protein sequences [9–12], or as an input to deep-learning based protein

structure prediction. The latter approach has recently lead to a breakthrough in predicting pro-

tein structure from sequence [13–17].

The basic idea of coevolutionary models, like the Direct-Coupling Analysis (DCA) [6], is

that the amino-acid sequences, typically given in the form of a multiple-sequence alignment

(MSA) of width (or aligned sequence length) L, can be considered as a sample drawn from

some unknown probability distribution P(a1, . . ., aL), with (a1, . . ., aL) being an aligned

amino-acid sequence. This probabilistic model is typically parameterized as P(a1, . . ., aL)/
exp{∑i<j Jij(ai, aj) + hi(ai)} via biases (or fields) hi(ai) representing site-specificities in amino-

acid usage (i.e. patterns of amino-acid conservation), and via statistical couplings Jij(ai, aj),
which represent coevolutionary constraints and cause correlated amino-acid usage in posi-

tions i and j [18].

In most cases, the parameters of these models are inferred by (approximate) maximum-

likelihood, under the assumption that the sequences in the MSA are (almost) independently

and identically distributed according to P(a1, . . ., aL). On one hand, this assumption is needed

to make model inference from MSA technically feasible. On the other hand, it is in obvious

contradiction to the fact that sequences in homologous protein families share common ances-

try in evolution, and therefore typically show considerable phylogenetic correlations, which

can be used to infer this unknown ancestry from data [19]. Phylogeny induces highly non-triv-

ial correlations between MSA columns [20], which however do not represent any functional

relationship.

Disentangling correlations induced by functional or structural couplings from phylogeny-

caused correlations turns out to be a highly non-trivial task [20–22]. Simple statistical correc-

tions have been proposed, like down-weighting similar sequences when determining statistical

correlations [3], or the average-product correction (APC) [23] applied to the final coevolution-

ary coupling scores. While sequence weighting has initially been reported to significantly

improve contact prediction, recent works show little effect [24], probably due to the fact that,

e.g., Pfam [25] is now based on reference proteomes and therefore less redundant than data-

bases used to be about a decade ago. APC was shown to be more of a correction of biases

related to amino-acid conservation than to phylogeny [26].

To make progress, we suggest a complementary approach. Instead of removing phyloge-

netic correlations from DCA-type analyses, we suggest null models having the same
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conservation and phylogenetic patterns of the original MSA of the protein family under con-

sideration, but strictly lack any functional or structural couplings.

Running DCA on artificial MSA generated by these null models, and comparing them to

the results obtained from natural MSA, we find some remarkable results: while the largest

eigenvalues of the residue-residue covariance matrix appears to be dominated by phylogenetic

effects, the strongest DCA couplings are hardly influenced by phylogeny. The spurious cou-

plings induced by phylogeny are, however, non-zero, and may limit the accuracy of contact

prediction when going beyond the first few strongest couplings. More precisely, our observa-

tions are quantitatively compatible with the idea, that already the first false-positive contact

prediction are caused by not correctly treating phylogeny in DCA. This shows also that meth-

ods properly dissecting phylogenetic and functional correlations in sequence data have a high

potential to substantially extend the contact predictions beyond current methods.

The paper is organized as follows. After this introduction, we provide theMaterials and
Methods, with a short review of DCA, but most importantly with the presentation of three null

models. The Results section compares the spectral properties of the residue-residue covariance

matrix of the real data with those of MSA generated by the null models, followed by an assess-

ment of the couplings inferred by DCA and their relation to residue-residue contacts. The

Conclusion sums up the results and discusses potentially interesting future directions. Support-

ing tables and figures are shown in S1 Text.

Materials and methods

Protein families, sequence alignments and Direct Coupling Analysis

Coevolutionary analysis is mostly applied to families of homologous proteins (or protein

domains), as provided by the Pfam database [25]. Multiple sequence alignments (MSA) can be

downloaded in the form of rectangular arrays D ¼ fami j i ¼ 1; . . . ; L; m ¼ 1; . . . ;Mg of

width L (aligned sequence length) and depthM (number of aligned sequences). The entries

ami 2 f� ;A;C; . . . ;Yg are either one of the 20 standard amino acids, or alignment gaps repre-

sented as “−”. Note that insertions are not aligned in Pfam alignments, and are therefore typi-

cal removed from the MSA before statistical model learning. Here L describes the sequence

length after removal of insertions. For the structural analysis, the Pfam MSA is mapped to

experimentally resolved PDB protein structures [27], and distances are measured as minimum

distances between heavy atoms. Following established standards in the coevolutionary litera-

ture, we use a cutoff of 8Å for residue-residue contacts.

For our work, we have selected three datasets:

• DS1: Detailed results are given for 9 Pfam protein families, with not too long sequences

(L< 250), not too large MSA (M< 10, 000 after removing duplicate sequences) and avail-

able PDB structures, see details in Table A in S1 Text.

• DS2: Statistical results are given for 60 Pfam protein families belonging to the PSICOV

benchmark set [28]. Only families withM< 12, 000 pairwise distinct sequences were consid-

ered, cf. Table B in S1 Text.

• DS3: We have also compiled and dataset of 20 smaller Pfam protein families with known

PDB structures, to study the influence of finite MSA depth on our findings, cf. Table C in S1

Text.

Global coevolutionary models, as those constructed by DCA, describe the sequence vari-

ability between the members of a protein family, i.e. between different rows of the MSA D, via

PLOS COMPUTATIONAL BIOLOGY Phylogenetic correlations and coevolutionary contact prediction
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a statistical model

Pða1; . . . ; aLjJ; hÞ ¼
1

Z
exp

X

1�i<j�L

Jijðai; ajÞ þ
X

1�i�L

hiðaiÞ

( )

; ð1Þ

parameterized via pairwise coevolutionary residue-residue couplings Jij(ai, aj) and single-resi-

due biases (or fields) hi(ai), while Z is a normalization factor also known as partition function.

In the simplest setting, these parameters are inferred from the data via maximum likelihood,

i.e.

fJ; hg ¼ argmaxJ;h

YM

m¼1

Pðam
1
; . . . ; amL jJ; hÞ : ð2Þ

This maximization leads directly to the fact, that the model P reproduces the empirical statis-

tics of single MSA columns and of column pairs,

fiðaiÞ ¼
X

fak jk6¼ig

Pða1; . . . ; aLÞ ;

fijðai; ajÞ ¼
X

fak jk6¼i;jg

Pða1; . . . ; aLÞ ;
ð3Þ

where fi(a) represents the fraction of amino acids a in column i, i.e. the residue-conservation
statistics, while the fij(a, b) describe the fraction of sequences having simultaneously amino

acids a and b in columns i and j, thereby representing residue covariation / coevolution, i.e. the

correlated usage of amino acids in pairs of columns, cf. Fig 1. The inference of the parameters

is a computationally hard task, since, e.g., the computation of the marginals in Eq (3) depends

on an exponential sum over Oð21LÞ terms. Many approximation schemes have been proposed,

we use plmDCA [29] based on pseudo-likelihood maximization, since it represents a well-

tested compromise between accuracy and running time.

A particularity of this approach is that Eq (2) assumes that the sequences in the MSA D

form an independently and identically distributed sample of P(a1, . . ., aL) and that the likeli-

hood can be factorized into a product over the rows of D. This assumption is incorrect; biolog-

ical sequences are the result of natural evolution and thus show hierarchical phylogenetic

relations. Phylogeny by itself leads to a non-trivial correlation structure between different resi-

due positions with a power-law spectrum [20], and this leads to non-zero but also non-func-

tional residue-residue couplings when using DCA. These may interfere with the functional

couplings, which are e.g. used for residue-residue contact prediction from MSA data, and

thereby negatively impact prediction accuracy.

It is notoriously hard to disentangle the two, cf. [21, 22]. The problem is that evolution is a

non-equilibrium stochastic process, whose dynamics in principle depends on the evolutionary

constraints represented, e.g., by the couplings and fields in the DCA model. Global model

inference from phylogenetically correlated data remains an open questions.

Here we follow a different route. We define different null models, which take residue con-

servation and in part also phylogeny into account, but do not show any intrinsic amino-acid

covariation. The null models allow us to create large numbers of suitably randomized sequence

ensembles, on which standard DCA can be run. The couplings resulting from randomized

data can be used to assess the statistical significance of the couplings resulting from the real

MSA D, and therefore to discard purely phylogeny-caused couplings. While, to the best of our

knowledge, this has never been done in the context of protein families and DCA, somehow
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similar techniques have been proposed in the context of phylogenetic profiling [30], but

applied to correlations rather than couplings.

Null model I: Profile-aware sequence randomization

The first null model is very simple. It randomizes the input MSA by conserving the single-col-

umn statistics fi(a), for all sites i = 1, . . ., L and all amino acids or gaps a 2 {−, A, . . ., Y}. This is

done by simple random but independent permutations of all MSA columns. This destroys all

correlations between positions (the coevolutionary ones) and between sequences (the phyloge-

netic ones), only the residue conservation patterns of the original MSA are preserved. For-

mally, the randomized sequences become an independently and identically distributed sample

from the profile model

Pprofileða1; . . . ; aLÞ ¼
YL

i¼1

fiðaiÞ : ð4Þ

So in principle there are no couplings between different residues at all. However, when running

DCA on this sample, inferred couplings will be non-zero due to finite sample size. They will take

distinct values from one randomization to the next, but there may be systematic biases due to the

distinct conservation levels, which are maintained as compared to the original Pfam MSA.

Null model II: Profile- and phylogeny-aware sequence randomization

The second null model is more complicated, since it preserves also (at least approximately) the

phylogenetic information contained in the original MSA. Here we assume that this informa-

tion is coded in the pairwise distances between sequences, i.e. in the matrix

fDHmnj1 � m < n � Mg of Hamming distances between all pairs of sequences, as is done in

distance-based phylogeny reconstruction [19, 31].

The aim of the second null model is to construct a randomized MSA which preserves both

the sequence profile given by the position-specific frequencies fi(a), and the matrix fDHmng of

Fig 1. Schematic representation of the information used by DCA and the null models. MSA contain several types of information about the sequence variability.

The sequence profile and residue covariation describe the statistics of individual MSA columns and column pairs, both are used in DCA. However, the MSA

contains also phylogenetic information, here represented by the matrix fDHmnj1 � m < n � Mg of Hamming distances between sequences, or by the (inferred)

phylogenetic tree. The different null models use the profile and phylogenetic information, but no residue covariation.

https://doi.org/10.1371/journal.pcbi.1008957.g001
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pairwise Hamming distances between sequences. This can be achieved by the following Mar-

kov chain Monte Carlo (MCMC) procedure acting on the entire alignment. Our method is ini-

tialized using a sample of null model I, i.e. all coevolutionary and phylogenetic information

from the original MSA is destroyed, but the profile is preserved. The resulting randomized

MSA after tMCMC steps is called ~Dt ¼ f~ami j i ¼ 1; . . . ; L; m ¼ 1; . . . ;Mg.
In step t! t + 1, one column i 2 {1, . . ., L} is selected randomly, as well as two rowsm, n 2

{1, . . .,M}. An exchange of the entries ~ami and ~ani is attempted, to obtain a new matrix ~Dtþ1.

This matrix is accepted with a Metropolis-Hastings acceptance probability pacc of

pacc ¼ min½1; expf� bðkDHð ~D tþ1Þ � DHðDÞk � kDHð ~DtÞ � DHðDÞkÞg� ; ð5Þ

otherwise the exchange is refused and the matrix ~Dt remains invariant in step t + 1. In this

expression, DH(D) stands for the matrix of Hamming distances between the rows of the origi-

nal MSA D, analogously for the randomized MSA, and ||�|| for the Frobenius norm of matri-

ces. This acceptance rule guarantees that each exchange, which brings the distance matrix

DHð ~DtÞ closer to the target matrix DH(D), is accepted. Exchanges going into the opposite

direction are accepted with a smaller probability depending exponentially on the formal

“inverse temperature” β. Here we use simulated annealing, i.e. we initialize β in a small value

and slowly increase it over time, in order to force the Hamming distances of the randomized

MSA closer an closer to the ones of the natural MSA. Fig A in S1 Text illustrates that very high

correlations (Pearson correlation > 0.97) between the two distances matrices are actually

obtained across protein families by our algorithm. Fig B in S1 Text shows the distance histo-

grams between natural and randomized sequences. We find that, with rare exceptions, ran-

domized sequences are at most at 60–70% sequence identity (minimal Hamming distance 30–

40%) to the closest natural sequences, showing that Null model II actually generates sequences,

which are distant from the original Pfam MSA.

Since the sequence profile remains unchanged by this procedure, and the natural distances

between sequences are approached, the randomized MSA thus contains approximately the

same conservation and phylogenetic properties of the biological sequence data. However,

potentially existing functional correlations between MSA columns are eliminated. The result-

ing data-covariance matrix is expected to have non-trivial properties in agreement with [20],

and DCA is expected to be able to reproduce this correlation structure via couplings Jij(a, b).

Repeating the randomization many times, we can assess the statistics of phylogeny-generated

couplings, and thereby the significance of the couplings found by running DCA on the original

protein sequences collected in D.

Note also that, in the limit where the formal inverse temperature in Eq (5) is set to β = 0, i.e.

in the case of infinite formal temperature T = β−1, we recover Null model I. One could use β
therefore as an interpolating parameter between these two Null models.

Null model III: Profile- and phylogeny-aware sequence resampling

To corroborate the results of Null model II, we have also used a complementary strategy using

explicitly an evolutionary model and a phylogenetic tree to resample sequences on this tree.

The evolutionary model we use is the Felsenstein model for independent-site evolution [32],

i.e. a model which does account for site-specific conservation profiles and phylogeny, but not

for any intrinsic correlation / coupling between different sites. In this context, the stationary

probability distribution of sequences is described by a profile model

Poða1; . . . ; aLÞ ¼
YL

i¼1

oiðaiÞ ; ð6Þ
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which has the same form of the profile model in Eq (4), but the factors are not given directly

by the empirical amino-acid frequencies in the MSA columns. All sites i = 1, . . ., L evolve inde-

pendently, and for each site i the probability of finding some amino acid b, given an ancestral

amino acid a some time t before, is given by

Pðai ¼ b j ai ¼ a; tÞ ¼ e� mtda;b þ ð1 � e� mtÞoiðbÞ ; ð7Þ

with μ being the mutation rate and δa,b the Kronecker symbol, which equals one if and only if

the two arguments are equal, and zero else. In this model, there is no mutation with probability

e−μt, and the amino acid in position i does not change, or at least one mutation with probability

1 − e−μt. In the latter case, the new amino acid b is emitted with its equilibrium probability

ωi(b). While being simple, the Felsenstein model of evolution is frequently used in phyloge-

netic inference.

The algorithm proceeds in the following way, using the implementation of [22]:

• A phylogenetic tree T is inferred from the MSA D using FastTree [33]. Instead of using

inter-sequence Hamming distances (like in Null model II), FastTree is using a maximum-

likelihood approach based on a model of independent-site evolution, i.e. no coevolutionary

information is taken into acocunt in tree inference.

• The mutation rate μ and all site-specific frequencies {ωi(a)} are inferred using maximum

likelihood.

• To resample the MSA according to this model, the root sequence is drawn randomly from

Pω, and stochastically evolved on the branches of T using the transition probability Eq (7).

• The resampled MSA is composed by the sequences resulting in the leaves of T .

This procedure allows thus to emit many artificial MSA being evolved on the same phylog-

eny and with the same stationary sequence distribution as the one inferred from the natural

sequences given in D, but no coevolutionary information is taken into account at any of the

four steps. Note that the emitted MSA are expected to be more noisy than the ones of Null

model II. In particular the column statistics will differ from fi(a), and also the inter-protein

Hamming distances DH will differ more from the ones in the training MSA, cf. Fig C in S1

Text showing that correlations between the DH matrices remain large but not as large as in

Null model II (Pearson correlations 0.7–0.95 for the protein families in dataset DS1).

Again DCA can be run on many of the resampled MSA, and the DCA couplings of the nat-

ural MSA can be compared with the statistics of the resampled ones, to assess their statistical

significance beyond finite-size and phylogenetic effects.

Results and discussion

The two Null models II and III, which both include phylogenetic correlations between pro-

teins, lead to qualitatively coherent, but quantitatively slightly different results, which reflect

the different randomization strategies. In the main text of this article, we will present almost

exclusively the results of Null model II, in comparison to the natural MSA and Null model I.

The results for Null model III are delegated to S1 Text, unless explicitly stated.

The spectral properties of the residue-residue correlation matrix are

dominated by phylogenetic effects

Following the mathematical derivations published in [20], we would expect that the residue-

residue covariance matrix C = {cij(a, b) | i, j = 1, . . ., L; a, b2{−, A, . . ., Y}} with cij(a, b) = fij(a,
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b) − fi(a)fj(b) is strongly impacted by phylogenetic correlations in the data. More precisely,

while totally random data would lead to the Marchenkov-Pastur distribution for the eigenvalue

spectrum of C, the hierarchical structure of data on the leaves of a phylogenetic tree leads to a

power-law tail of large eigenvalues.

It is thus not very astonishing, that both Null models II and III show fat tails in the spectrum

of their data covariance matrices C (even if Null model II does not fulfill the mathematical con-

ditions of the derivation in [20] because not generated according to a hierarchical process),

while the spectrum of Null model I has a substantially more compact support, cf. Fig 2, and

Figs D and E in S1 Text. The interesting observation is that, at the level of the eigenvalue spec-

trum, the natural data are hardly distinguishable from the phylogeny-aware Null models II

and III, in difference to Null model I.

This suggests the following conclusions: the dominant global residue-residue correlation

structure, as far as reflected by the largest eigenvalues of the C-matrix, results from phylogeny.

A comparison with principal-component analysis (PCA) relates these eigenvalues to the large-

scale organization of sequences in sequence space, e.g. into clusters of sequences. Note that the

eigenvectors are expected to contain complementary information, e.g. used for PCA or for the

identifcation of protein sectors [34, 35], defined as multi-residue groups of coherent evolution.

Phylogenetic effects induce couplings in DCA, but these are smaller than

couplings found in natural sequences

However, the couplings derived by DCA are not directly related to the largest eigenvalues of

the residue-residue covariance matrix. Actually, the computationally most efficient DCA

approximations based on mean-field [3] or Gaussian [36] approximations, relate the couplings

J to the negative of the inverse of C. The DCA couplings are therefore dominated by the small-

est eigenvalues of C, cf. also [37].

Here we use plmDCA, the resulting couplings therefore lack any simple relation to the

eigenvalues and eigenvectors of the residue-residue covariance matrix. In difference to stan-

dard plmDCA we do not use any sequence weighting, since it might interfere with the

Fig 2. Eigenvalue spectra of the covariance matrix of the natural MSA and for Null models I and II. We show the

cumulative distribution of the unified eigenvalue spectra for the 60-protein dataset DS2, i.e. the fraction of eigenvalues

larger than λ is shown as a function of λ. We observe that the phylogeny-aware Null model II shows the same fat tail

for large eigenvalues, which is also present in the natural data, while the non-phylogenetic Null model I has a more

compact support. The cutoff of the tail for large λ is an effect of the inter-family variability of the largest eigenvalues

among the 60 spectra, cf. Fig D in S1 Text for the 9 individual proteins in dataset DS1.

https://doi.org/10.1371/journal.pcbi.1008957.g002
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phylogenetic signal in a non-controlled way. In Fig 3, we plot histograms of the DCA cou-

plings (APC-corrected Frobenius norms FAPC of the coupling matrices for each residue pair,

i.e. the standard output of plmDCA, cf. [29] and the Introduction for a short explanation of

APC) for Null models I, II and the natural MSA D for the datasets DS2 of large and DS3 of

small-medium depth MSA. Equivalent results for the nine individual families in DS1 are

shown in Fig F in S1 Text, along with those for Null model III in Fig G in S1 Text.

We see that across all protein families, DCA couplings from natural data reach significantly

larger values than those derived from both Null models. The latter two miss in particular the

strong tail for large values; their supports being much more concentrated. For large MSA

(DS2), the phylogeny-aware Null model II generates larger couplings than the phylogeny-

unaware Null model I, i.e. they go beyond what is to be expected from finite-sample effects

alone. This latter difference almost vanishes for smaller MSA (DS3), where the coupling histo-

grams for Null models I and II almost coincide. Interestingly, the phylogenetic couplings of

Null model II are almost invariant with respect to family size, while finite-size effects (Null

model I) decrease with family size, and the tail of large couplings resulting from natural

sequences grows with family size.

It is very interesting that, while the spectra are similar for natural data and phylogeny-

aware null models, the dominant residue-residue couplings are neither explainable by phylog-

eny nor by finite sample size. They must consequently result from intrinsic evolutionary con-

straints acting on the proteins due to natural selection for correctly folded and properly

functioning proteins.

Residue-residue contact predictions are moderately impacted by

phylogenetic effects

This observation becomes even more interesting, when we compare the couplings of residue-

residue contacts and non-contacts. In Fig 4A, we show normalized coupling histograms for

the two subsets of residue pairs in dataset DS2. The tail of large couplings is present only in the

contacts, explaining why DCA and the closely related GREMLIN accurately predict contacts

when couplings are high enough [38, 39], cf. also the positive predictive value (PPV) in func-

tion of the coupling in Fig 3. As is visible in the Fig H in S1 Text for the nine individual protein

families, the contact prediction in a family depends crucially on the size of this tail of large

couplings.

Using Null model II, we cann assess the strength of phylogeny-induced spurious couplings

on the same subsets of contacts and non-contacts extracted for DS2, cf. Fig 4B and Fig I in S1

Text (and similarly Fig J in S1 Text for Null model III). We see that the two histograms for con-

tacts and non-contacts get almost identical to each other; due to the larger number of non-

contacts the largest couplings are therefore dominated by non-contacts across all studied pro-

tein families. Most interestingly, when we compare the non-contact histograms in both panels

of Fig 4, they are extremely similar. It appears that the strength of the non-contact couplings in

the natural data is mostly consistent with the phylogeny-induced spurious couplings in Null

model II.

The differences between these histograms translates into differences between PPV-curves

as shown in Fig 5. The upper panels show the results for the union of all predictions, i.e. the

largest DCA-couplings scores FAPC of all families come first, for the dataset DS2 of large MSA

(Panel A) and the DS3 of smaller MSA (Panel B). We see that the largest couplings derived

from the natural MSA are contacts in both cases, but much more contacts are found in the

larger MSA. However, in the lower panels we see that for smaller MSA only about 60% of the

considered families have such large scores, leading to an initial average PPV (each family
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Fig 3. DCA scores derived from natural sequence data and from MSA generated by Null models I and II, for datasets DS2 (panel A) of large MSA, and DS3

(panel B) of smaller MSA. For the protein families under study, we show the histograms of DCA coupling scores FAPC (APC corrected Frobenius norm of couplings,

the standard output of plmDCA), for the natural MSA and samples of Null models I and II. Here and in the following, histograms are normalized as probability

distributions, i.e. to area one under the curve. It becomes evident that phylogenetic effects create—at least for sufficiently deep MSA—larger couplings than to be

expected from finite sample size alone. However, couplings derived from the natural MSA have substantially larger values. The figures include also the positive

predictive value (PPV, scale on the right of each panel), providing the fraction of true contacts in between all couplings FAPC above some threshold θ, as a function of θ,

for plmDCA run on the natural MSA. We clearly see that almost all large couplings correctly predict contacts, while the PPV starts to drop once we reach FAPC reached

also by phylogenetic effects in Null model II. We find this to be true for all non-trivial contacts (sequence separation |i − j|> 4) as well as for long-distance contacts (|i
− j|> 24).

https://doi.org/10.1371/journal.pcbi.1008957.g003
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considered individually, and the individual PPV are averaged) of only about 0.6, while almost

all large MSA lead to initially accurate contact predictions. The figures also contain a contact

prediction for randomized data from Null model II. In the upper panels we observe a very

weak contact signal; it results from the fact that conserved sites tend to lead to larger phylog-

eny-induced spurious couplings, but they also tend to be concentrated in proteins, e.g. in

active sites or the protein core, and consequently to have a higher contact fraction.

Fig 4. Histogram of DCA scores derived from natural sequence data (Panel A) and Null model II (Panel B) for residue-residue contacts and non-contacts. For

the protein families in DS2, we show the histograms of DCA coupling scores (APC corrected Frobenius norm of couplings), separated for contacts and non-contacts

(defined using the representative protein structures in Table B in S1 Text). Only pairs with linear separation |i − j|> 4 along the chain are taken into account.

https://doi.org/10.1371/journal.pcbi.1008957.g004
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Fig 5. PPV for residue-residue contact prediction from natural data and Null model II. The positive predictive values for residue contact

prediction are shown for datasets DS2 (Panels A and C) and DS3 (Panels B and D), using the natural data (red, blue) and randomized data

from Null model II (green). The upper panels (A,B) show joint contact prediction for all proteins, the lower panels (C,D) the averages over the

individual PPV curves for all single families. All panels show also hypothetical PPV curves (purple), which might be reached by a method

removing phylogenetic biases; they articficially combine DCA scores obtained from natural MSA on contacts, and from Null model I on non-

contacts.

https://doi.org/10.1371/journal.pcbi.1008957.g005
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The histograms in Figs 3 and 4 are derived from individual samples of the Null models.

One might expect that they change from sample to sample. While this is the case for individual

couplings, the histograms remain remarkably unchanged when comparing samples, cf. Figs K

and L in S1 Text. These observations show us that, while phylogenetic effects result in non-

zero couplings between residues when DCA is applied, these couplings are relatively weak and

never reach the size of the couplings, which allow for a high-confidence contact prediction.

This idea is also corroborated by the quantitative assessment of the statistical significance in

the couplings derived from natural sequences, as compared to the ones generated by the Null

models. To this aim, we assign a z-score to each residue pair (i, j): Using 50 samples of Null

model II, we determine the mean and standard deviation of couplings derived from Null

model II, individually for each pair (i, j). We use these values to determine the z-score, i.e. the

number of standard deviations, the actual couplings (from natural MSA) is away from the

means for Null model II. In Fig 6, we observe, that this z-score is highly correlated with the

plmDCA score derived from natural MSA, across all families. Almost all DCA scores above

0.2–0.3 have highly significant z-scores above 3 or even more. Even larger correlations between

DCA and z-scores are observed in Null model III, cf. Fig M in S1 Text. One might be tempted

to use this statistical significance score instead of the DCA-coupling strength for contact

Fig 6. z-scores of couplings derived from the natural MSA, as compared to the distribution of couplings derived from Null model II. For each residue pair (i, j),
we calculate the z-score for the DCA score derived from natural data as compared to 50 realizations of Null model II. Panel A shows the data for the dataset DS2 of

large MSA, Panel B for DS3 of small-intermediate MSA.

https://doi.org/10.1371/journal.pcbi.1008957.g006
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prediction. In Fig 5 we show that the two lead to highly comparable results, with a slight

advantage for the standard FAPC after the first few predictions. This difference might result

from the before-mentioned observation that conserved positions tend to have larger phylog-

eny-induced couplings (and thus larger variances between different samples of Null model II),

causing a systematic reduction of the related z-scores.

Conclusion

Global coevolutionary modeling treats multiple-sequence alignments of homologous protein

sequences as collections of independently and identically distributed samples of some

unknown probability distribution P(a1, . . ., aL), which has to be reconstructed from data. The

assumption of independence is obviously violated due to the common evolutionary history, in

particular sequences from related species show strong phylogenetic correlations.

It is, however, notoriously difficult to unify the idea of a global model including coevolu-

tionary covariation between sites and phylogenetic correlations between sequences. Statistical

corrections may improve the situation slightly, but they are too simple to take the hierarchical

correlation structure into account, which is generated by the evolutionary dynamics on a phy-

logenetic tree.

Here we have proposed to approach this problem in a complementary way, by introducing

null models—i.e. randomized or re-emitted multiple-sequence alignments—which reproduce

conservation and phylogeny, but do not contain any real coevolutionary signal. When apply-

ing Direct Coupling Analysis as a prototypical global coevolutionary modeling approach, we

observe that phylogenetic correlations between sequences lead to a changed residue-residue

correlation structure, represented by a fat tail in the eigenvalue spectrum of the data covariance

matrix. It leads also to distributed couplings, which, however, are smaller than the largest cou-

plings found when applying DCA to natural sequence data, i.e. smaller than the couplings

used for residue-residue contact prediction. The latter are significantly larger than couplings

resulting from phylogeny, i.e. we can conclude that the first predicted contacts are influenced

only to a very limited degree by phylogenetic couplings.

However, it is also striking that, across the studies protein families, the phylogeny-caused

couplings in Null models II and III almost reach the DCA-score threshold found before for

accurate contact prediction. This suggests that the suppression of phylogenetic biases in the

data (or their better consideration in model inference), may shift this threshold down and

therefore allow for predicting much more contacts. The potential gain would be limited due to

the finite depths of the MSA, whose effects are assessed by Null model I. We can therefore

quantitatively assess the potential in removing phylogenetic effects by the following hypotheti-
calDCA output: on all contacts in our dataset DS2 and DS3 we use the standard plmDCA

scores derived from natural data, and on all non-contacts we remove phylogenetic effects by

using couplings derived by running plmDCA on samples of Null model I. The resulting hypo-
thetical PPV curves are given in Fig 5 as purple lines: they are substantially higher than the real

PPV obtained from the original data. In the case of the large MSA in DS2, we find a broad pla-

teau of almost perfect PPV close to one, starting to drop only after about 50 top residue pairs,

but staying above 90% even after 100 pairs, as compared to about 70% for the real DCA predic-

tions. Even in the small-to-medium-depth MSA of DS3 the potential effect of removing phylo-

genetic effects is considerable, even if the finite-sample effect is much more pronounced.

While in the real data only less than 60% of the considered protein start with a true-positive

prediction, the hypothetical phylogeny-removed prediction starts with a PPV above 70%.

Since coevolution-based scores are also input to most of the recent deep-learning-based
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contact predictors, we could imagine that corrections for phylogenetic effects would also

improve the accuracy of these methods.

Using many realization of the Null models, we can provide a z-score for the couplings

found in the original sequence data, and thereby assess their statistical significance beyond

effects of finite and phylogenetically correlated sampling. This is of interest in exploratory

studies: in a recent study, one of us has used Null model II in a collaboration aiming at finding

potential epistatic effects in a global analysis of more than 50,000 SARS-Cov-2 genomes [40].

Due to the obvious strong correlation between these very recently diverged genomes, potential

epistatic couplings have to be assessed carefully, and scoring them by Null model II has turned

out to be an essential element in the identification of a sparse, but statistical significant

genome-wide network of epistatic couplings.
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11. Reimer JM, Eivaskhani M, Harb I, Guarné A, Weigt M, Schmeing TM. Structures of a dimodular nonri-

bosomal peptide synthetase reveal conformational flexibility. Science. 2019; 366 (6466). https://doi.org/

10.1126/science.aaw4388 PMID: 31699907

12. Russ WP, Figliuzzi M, Stocker C, Barrat-Charlaix P, Socolich M, Kast P, et al. An evolution-based

model for designing chorismate mutase enzymes. Science. 2020; 369(6502):440–445. https://doi.org/

10.1126/science.aba3304 PMID: 32703877

13. Wang S, Sun S, Li Z, Zhang R, Xu J. Accurate de novo prediction of protein contact map by ultra-deep

learning model. PLoS computational biology. 2017; 13(1):e1005324. https://doi.org/10.1371/journal.

pcbi.1005324 PMID: 28056090

14. Jones DT, Kandathil SM. High precision in protein contact prediction using fully convolutional neural

networks and minimal sequence features. Bioinformatics. 2018; 34(19):3308–3315. PMID: 29718112

15. Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, et al. Protein structure prediction using

multiple deep neural networks in CASP13. Proteins: Structure, Function, and Bioinformatics. 2019;.

https://doi.org/10.1002/prot.25834 PMID: 31602685

16. Greener JG, Kandathil SM, Jones DT. Deep learning extends de novo protein modelling coverage of

genomes using iteratively predicted structural constraints. Nature communications. 2019; 10(1):1–13.

https://doi.org/10.1038/s41467-019-11994-0 PMID: 31484923

17. Yang J, Anishchenko I, Park H, Peng Z, Ovchinnikov S, Baker D. Improved protein structure prediction

using predicted interresidue orientations. Proceedings of the National Academy of Sciences. 2020; 117

(3):1496–1503. https://doi.org/10.1073/pnas.1914677117 PMID: 31896580

18. Weigt M, White RA, Szurmant H, Hoch JA, Hwa T. Identification of direct residue contacts in protein–

protein interaction by message passing. Proceedings of the National Academy of Sciences. 2009; 106

(1):67–72. https://doi.org/10.1073/pnas.0805923106 PMID: 19116270

19. Felsenstein J, Felenstein J. Inferring phylogenies. vol. 2. Sinauer associates Sunderland, MA; 2004.

20. Qin C, Colwell LJ. Power law tails in phylogenetic systems. Proceedings of the National Academy of

Sciences. 2018; 115(4):690–695. https://doi.org/10.1073/pnas.1711913115 PMID: 29311320

21. Obermayer B, Levine E. Inverse Ising inference with correlated samples. New Journal of Physics. 2014;

16(12):123017. https://doi.org/10.1088/1367-2630/16/12/123017

22. Rodriguez Horta E, Barrat-Charlaix P, Weigt M. Toward Inferring Potts Models for Phylogenetically Cor-

related Sequence Data. Entropy. 2019; 21(11):1090. https://doi.org/10.3390/e21111090

23. Dunn SD, Wahl LM, Gloor GB. Mutual information without the influence of phylogeny or entropy dramat-

ically improves residue contact prediction. Bioinformatics. 2008; 24(3):333–340. PMID: 18057019

24. Hockenberry AJ, Wilke CO. Phylogenetic weighting does little to improve the accuracy of evolutionary

coupling analyses. Entropy. 2019; 21(10):1000. https://doi.org/10.3390/e21101000 PMID: 31662602

25. El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families data-

base in 2019. Nucleic acids research. 2019; 47(D1):D427–D432. PMID: 30357350
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29. Ekeberg M, Lövkvist C, Lan Y, Weigt M, Aurell E. Improved contact prediction in proteins: using pseudo-

likelihoods to infer Potts models. Physical Review E. 2013; 87(1):012707. https://doi.org/10.1103/

PhysRevE.87.012707 PMID: 23410359

30. Cohen O, Ashkenazy H, Levy Karin E, Burstein D, Pupko T. CoPAP: coevolution of presence–absence

patterns. Nucleic acids research. 2013; 41(W1):W232–W237. PMID: 23748951

31. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees.

Molecular biology and evolution. 1987; 4(4):406–425. PMID: 3447015

32. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of

molecular evolution. 1981; 17(6):368–376. https://doi.org/10.1007/BF01734359 PMID: 7288891

33. Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large align-

ments. PloS one. 2010; 5(3):e9490. https://doi.org/10.1371/journal.pone.0009490 PMID: 20224823

34. Halabi N, Rivoire O, Leibler S, Ranganathan R. Protein sectors: evolutionary units of three-dimensional

structure. Cell. 2009; 138(4):774–786. https://doi.org/10.1016/j.cell.2009.07.038 PMID: 19703402

35. Rivoire O, Reynolds KA, Ranganathan R. Evolution-based functional decomposition of proteins. PLoS

Computational Biology. 2016; 12(6):e1004817. https://doi.org/10.1371/journal.pcbi.1004817 PMID:

27254668

36. Baldassi C, Zamparo M, Feinauer C, Procaccini A, Zecchina R, Weigt M, et al. Fast and accurate multi-

variate Gaussian modeling of protein families: Predicting residue contacts and protein-interaction part-

ners. PloS ONE. 2014; 9(3):e92721. https://doi.org/10.1371/journal.pone.0092721 PMID: 24663061

37. Cocco S, Monasson R, Weigt M. From principal component to direct coupling analysis of coevolution in

proteins: Low-eigenvalue modes are needed for structure prediction. PLoS computational biology.

2013; 9(8):e1003176. https://doi.org/10.1371/journal.pcbi.1003176 PMID: 23990764

38. Uguzzoni G, Lovis SJ, Oteri F, Schug A, Szurmant H, Weigt M. Large-scale identification of coevolution

signals across homo-oligomeric protein interfaces by direct coupling analysis. Proceedings of the

National Academy of Sciences. 2017; 114(13):E2662–E2671. https://doi.org/10.1073/pnas.

1615068114 PMID: 28289198

39. Anishchenko I, Ovchinnikov S, Kamisetty H, Baker D. Origins of coevolution between residues distant

in protein 3D structures. Proceedings of the National Academy of Sciences. 2017; 114(34):9122–9127.

https://doi.org/10.1073/pnas.1702664114 PMID: 28784799

40. Zeng HL, Dichio V, Horta ER, Thorell K, Aurell E. Global analysis of more than 50,000 SARS-CoV-2

genomes reveals epistasis between eight viral genes. Proceedings of the National Academy of Sci-

ences. 2020; 117(49):31519–31526. https://doi.org/10.1073/pnas.2012331117 PMID: 33203681

PLOS COMPUTATIONAL BIOLOGY Phylogenetic correlations and coevolutionary contact prediction

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008957 May 24, 2021 17 / 17

http://www.ncbi.nlm.nih.gov/pubmed/22101153
https://doi.org/10.1103/PhysRevE.87.012707
https://doi.org/10.1103/PhysRevE.87.012707
http://www.ncbi.nlm.nih.gov/pubmed/23410359
http://www.ncbi.nlm.nih.gov/pubmed/23748951
http://www.ncbi.nlm.nih.gov/pubmed/3447015
https://doi.org/10.1007/BF01734359
http://www.ncbi.nlm.nih.gov/pubmed/7288891
https://doi.org/10.1371/journal.pone.0009490
http://www.ncbi.nlm.nih.gov/pubmed/20224823
https://doi.org/10.1016/j.cell.2009.07.038
http://www.ncbi.nlm.nih.gov/pubmed/19703402
https://doi.org/10.1371/journal.pcbi.1004817
http://www.ncbi.nlm.nih.gov/pubmed/27254668
https://doi.org/10.1371/journal.pone.0092721
http://www.ncbi.nlm.nih.gov/pubmed/24663061
https://doi.org/10.1371/journal.pcbi.1003176
http://www.ncbi.nlm.nih.gov/pubmed/23990764
https://doi.org/10.1073/pnas.1615068114
https://doi.org/10.1073/pnas.1615068114
http://www.ncbi.nlm.nih.gov/pubmed/28289198
https://doi.org/10.1073/pnas.1702664114
http://www.ncbi.nlm.nih.gov/pubmed/28784799
https://doi.org/10.1073/pnas.2012331117
http://www.ncbi.nlm.nih.gov/pubmed/33203681
https://doi.org/10.1371/journal.pcbi.1008957

