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Abstract
Aim: Future climate changes may affect species distribution and their genetic diver-
sity, hampering species adaptation to a new climate or tracking the suitable condi-
tions. Amphibians have high sensitivity to environmental degradation and changes 
in temperature and humidity. Thus, the expected climatic changes by the end-of-
century (EOC 2100) may cause local or complete extinction of some species. Here, 
we address the effects of climate change on genetic and phylogeographical diversity, 
together with the geographical distribution of the South American treefrog Scinax 
squalirostris Lutz, 1925. Furthermore, we assess how protected areas will conserve 
its genetic variation.
Location: South America.
Methods: We combined Ecological Niche Modelling and genetic simulations to pre-
dict the effects of climate change on the geographical distribution, genetic diversity, 
structure and phylogeographical diversity of Scinax squalirostris, using two scenarios 
of CO2 emission. We also performed a spatial analysis to investigate the effective-
ness of the current Protected Areas (PAs) to preserve the species’ genetic and phy-
logeographical diversity.
Results: Scinax squalirostris' geographical range will potentially increase in the future 
due to the expansion of suitable areas towards its southern distribution, despite the 
shrinking of suitable areas in the northern part of its current distribution. Besides 
the shifts in suitable areas, our findings point to a genetic homogenization across 
the geographical range of S. squalirostris due to the displacement and loss of genetic 
ancestry clusters. Although existing PAs are conserving the current genetic diver-
sity, they conserve less phylogeographical diversity than expected by chance. Scinax 
squalirostris may shift its distribution into areas with lower number of PAs, compro-
mising its future conservation.
Main conclusions: Climate change will potentially increase S. squalirostris range size, 
however, not towards regions where most of the current established PAs are located, 
hence driving to homogenization and loss of genetic diversity, and leading to a gap of 
conservation within PAs.
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1  | INTRODUC TION

Anthropogenic impacts on biodiversity such as habitat fragmen-
tation, invasive species, hunting pressures and climate changes 
have been associated with current species extinctions (Bellard 
et al., 2016; Fahrig, 2003; Loyola et al., 2014; Purvis et al., 2000). 
Global climate is changing drastically, leading to an increase of 
0.6°C of the world average temperature (Jones et al., 2001) in the 
last century, due to the anthropogenic emission of greenhouse 
gases (Solomon, 2007; IPCC, 2014, 2018). It is expected an increase 
of ~2°C to 4°C by mid-century (Brown & Caldeira,  2017; Fischer 
et al., 2018; New et al., 2011). Global warming may force species to 
change their current distribution range to track new suitable areas 
(Chen et al., 2011). However, some species may not be able to follow 
their optimal climatic niche as they might have limited dispersal ca-
pacity or cannot disperse across natural or anthropic barriers (Urban 
et al., 2012), driving them to either adapt to the new conditions or to 
become extinct. Species with low dispersal capacity may have higher 
extinction rates and population declines than vagile species (Duan 
et al., 2016).

Climate change can impact species distribution by reducing 
the climatic suitability across their range, diminishing their fit-
ness, impacting the intraspecific genetic diversity, increasing ge-
netic stochasticity in small populations and, therefore, fixation of 
poorly adapted haplotypes (Pauls et al., 2013; Urban et al., 2013). 
Genetic diversity represents species’ evolutionary potential to 
adapt to environmental changes (Urban et al., 2012, 2013). High 
levels of genetic diversity across evolutionary independent intra-
specific lineages may favour evolutionary responses to climatic 
changes, but low genetic diversity may reduce their evolutionary 
potential, making them prone to extinction (Spielman et al., 2004; 
Frankham, 2005; Rizvanovic et  al.,  2019). Thus, identifying pop-
ulations and lineages that might be more vulnerable to climate 
change is a concern of biology and conservation genetics (D'Amen 
et al., 2013).

Ecological Niche Modelling (ENM) is widely used to pre-
dict changes in the geographical distribution of species under 
climate change (Collevatti et  al.,  2015; Lima et  al., 2014, 2017; 
Thomas et  al.,  2004). This framework uses the current distribu-
tion data of species to model their fundamental environmental 
niches and forecast potential distributions under various climatic 
scenarios (Peterson et  al.,  2011), enabling the understanding of 
spatial dynamics and the impact of climatic changes on species 
distribution in the future (Mendoza-González et al., 2013; Simon 
et al., 2013; Vasconcelos et al., 2018; Zhang et al., 2012). Future 
distributions are forecasted by projecting the current suitable 
climatic conditions of species onto the future climatic scenarios 
(Lima et al., 2017; Midgley et al., 2002). These projections assume 

that species conserve their current environmental niche and they 
will be able to track future suitable climatic conditions (Elith & 
Leathwick, 2009).

Coupling ENM with simulations of genetic parameters within 
and among populations can improve our understanding of climate 
change effects on genetic diversity and population genetic struc-
ture (Lima et al., 2017). Understanding the effects of climate changes 
on genetic diversity can help to predict how populations will cope 
with rapid future changes (Corn,  2005; Duan et  al.,  2016), and to 
protect the viability and genetic diversity of species in the future 
(Mendelson et al., 2006; Schwartz et al., 2007).

Amphibians are one of the most threatened groups by climate 
change, they are amongst the most vulnerable vertebrates, declin-
ing even faster than birds and mammals (Foden et al., 2013; Stuart 
et al., 2004). Approximately, 50% of all amphibian populations are 
declining or endangered (Alroy,  2015; Duan et  al.,  2016; Gibbons 
et  al.,  2000; Houlahan et  al.,  2000; Stuart et  al.,  2004). Because 
amphibians rely heavily on environmental conditions (Duellman & 
Trueb,  1994), climate change is expected to cause the extinction 
of around 40% of the amphibian species, with greater impact on 
endemic groups (Foden et al., 2013; Gibbons et al., 2000; Thomas 
et  al.,  2004), making them the most threatened group of animals 
(Mendelson et al., 2006; Stuart et al., 2004). Amphibians have low 
vagility, high sensitivity to changes in environmental temperature 
and humidity, mainly due to their permeable skin and life cycle, 
which includes stages in both water and land for most of them 
(Duellman & Trueb, 1994; Storfer et al., 2009; Stuart et al., 2004). 
Changes in temperature and precipitation can lead to changes in 
geographical distribution and the abundance of amphibian popula-
tions (Chen et  al.,  2011). Furthermore, climate changes can affect 
the hydroperiod: the time period that a temporary pond retains 
water available for amphibian populations to mate and metamor-
phose (Carey & Alexander, 2003; Rowe & Dunson, 1995). The South 
American treefrog Scinax squalirostris Lutz, 1925 is a model group 
to study the impact of climate change on South American herpeto-
fauna because of its wide distribution throughout the central-west, 
southeast and south of South America (Figure 1; Frost, 2021). It in-
habits diverse habitats such as open formations, forests, grasslands 
and rushes. It breeds in small and temporary ponds or cattle ponds 
(Neves et al., 2019; Vaz-Silva et al., 2020).

Here, we address the effects of future climate change on the 
geographical distribution, genetic and phylogeographical diversity 
of Scinax squalirostris. We use Ecological Niche Modelling coupled 
with genetic simulations, conditioned to climatic and topographic 
variables, to model the dynamics of genetic clusters through time. In 
addition, we perform a clustering analysis of the current genetic and 
phylogeographical diversity to analyse their conservation within the 
current Protection Areas (PAs) scheme.

K E Y W O R D S

Bayesian clustering, conservation, Ecological Niche Modellings, global warming, Hylidae, 
phylogenetic diversity
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2  | METHODS

2.1 | Population sampling and genetic data

We sampled 219 individuals in 26 localities across the distribution of 
Scinax squalirostris (Brazil, Uruguay and Paraguay), with a sampling 
effort ranging from 1 to 10 individuals per locality (Figure 1; Table 
S1 in Appendix S1). From all individuals, we collected tissues (mus-
cle and liver) to extract DNA using the Dneasy Blood & Tissue Kit 
(Qiagen®, Chatsworth, CA).

To obtain genetic data, we sequenced two fragments of the mito-
chondrial DNA (hereafter mtDNA): the 12S ribosomal subunit (prim-
ers 12Sa-12Sb; Reeder, 1995) and a fragment of the cytochrome B 
gene (cytB, primers MVZ15L, Moritz et al., 1992 and H15149, Kocher 
et al., 1989; see Appendix S2 for GenBank accession numbers). We 
also sequenced the nuclear (hereafter nDNA) RAG-1 gene (413 bp, 
Heinicke et al., 2007; see Appendix S2 for GenBank accession num-
bers). These gene sequences are often used to access genetic diver-
sity and phylogeography of amphibians (Barrow et al., 2020; Fusinato 
et al., 2013; Mota et al., 2020) because they have low substitution 

F I G U R E  1   Geographical distribution of Scinax squalirostris and environmental suitability predictions from ecological niche modelling. (a) 
The 246 occurrence records (black dots) used in ecological niche modelling; (b) Distribution of suitability under current climate conditions; (c) 
Future distribution of suitability under 4.5 RCP; (d) Future distribution of suitability under 8.5 RCP. Black dots in b, c and d represent the 26 
sampled populations from where genetic data were collected

(a)
(b)

(c) (d)
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rates and high polymorphism among populations. In fact, with rela-
tively short sequences we obtained high polymorphism and genetic 
diversity (see results below). Details for the primers, PCR conditions 
and amplifications are summarized in Appendix S3. We sequenced 
all fragments in forward and reverse directions, and consensus was 
obtained using the software SEQSCAPE 2.7 (Applied Biosystems). 
Further, we used CLUSTAL OMEGA (Sievers et al., 2011) to obtain 
the multiple sequence alignments. Coding sequences were tested for 
saturation by plotting transitions and transversions with TN93 dis-
tance (Tamura & Nei, 1993) using DAMBE software (Xia, 2013). We 
excluded from the final alignment the third codon position of cytB, 
which showed high levels of saturation (Figure S1 in Appendix S4).

2.2 | Genetic and phylogeographical diversity

We used concatenated sequences (mtDNA and nDNA = 1,002 bp) 
to obtain an estimation of genetic diversity parameters using 
ARLEQUIN 3.11 (Excoffier et al., 2005). We estimated nucleotide (π), 
haplotype (h) diversities (Nei, 1987), and the number of haplotypes 
(k) for each population and overall populations.

Classical genetic diversity metrics (π, h and k) measure the amount 
of effective diversity, ignoring their genealogical or phylogenetic 
relationships (Chao et al., 2010; Gaggiotti et al., 2018; Jost, 2006). 
Hence, even high values of genetic diversity may represent low lin-
eage or phylogeographical diversity among populations (e.g. the di-
versity of lineages at different locations). Therefore, we applied a 
metric based on Phylogenetic Diversity (Faith, 1992), calculating the 
minimum spanning path of a set of haplotypes in a coalescent tree, 
defined hereafter as Phylogeographical Diversity (PGeoD). PGeoD 
was calculated using R package picante (Kembel et al., 2010).

To infer the coalescent tree, we ran a Bayesian coalescent anal-
ysis implemented in BEAST (Drummond et al., 2013) with the hap-
lotypes obtained from concatenated mtDNA and nDNA sequences 
(for more details see Appendix S3). We used an uncorrelated lognor-
mal molecular clock and for tree prior we used Coalescent Constant 
model. Two independent analyses were run for 100 million genera-
tions, sampled every 2,300 generations, in a computational platform 
Cyberinfrastructure for Phylogenetic Research CIPRES 3.3 (Miller 
et  al.,  2015). Convergence, stationarity and effective sample size 
(ESS ≥ 200) were checked using TRACER 1.6 (Rambaut et al., 2013). 
We combined runs and trees after removing a 20% burn-in with 
LOGCOMBINER (Rambaut et  al.,  2013), and the Maximum Clade 
Credibility (MCC) tree was obtained with TREEANNOTATOR 
(Rambaut et al., 2013; newick Appendix S5).

2.3 | Ecological niche modelling

We obtained occurrence records from literature and open-access 
digital repositories, such as VertNet (http://portal.vertn​et.org), 
GBIF (the Global Biodiversity Information Facility-http://www.gbif.
org/) and SpeciesLink project (http://splink.cria.org.br/) to model 

the potential distribution of S. squalirostris both in the present and 
at the end-of-century (EOC, 2100). Occurrence records were care-
fully examined for taxonomic errors and all records were checked to 
correct or exclude errors due to duplicates, missing or mismatched 
geographic coordinates (e.g. coordinates of scientific institutions, 
country capitals and in the ocean), and coordinates out of the 
Neotropical realm, resulting in 387 occurrences. We eliminated du-
plicates and reduced the effects of spatial autocorrelation by thinning 
the occurrence data with a distance of 2.5 km (Mantel correlogram 
between climatic and geographic distances) using the spThin R pack-
age (Aiello-Lammens et al., 2015) resulting in 246 unique occurrence 
records, spanning dates from 1925 to 2020 (Figure 1a; Appendix S6). 
Occurrence records were mapped onto Neotropic grid cells of 0.5° 
to calibrate the ENMs.

We downloaded 19 bioclimatic variables from the EcoClimate da-
tabase (www.ecocl​imate.org; Lima-Ribeiro et al., 2015) representing 
the present climate conditions (1950–1999), and future scenarios 4.5 
and 8.5 RCP (Representative Concentration Pathways, http://tntcat.
iiasa.ac.at/RcpDb; 2080–2100) of CO2 emission. The scenario 4.5 
RCP (rising radioactive forcing pathway leading to 4.5 W/m2 in 2100) 
predicts a temperature increase of 1.8°C and stabilization before 
the end-of-century (EOC) due to the decrease in emissions of green-
house gas. The scenario 8.5 RCP (rising radioactive forcing pathway 
leading to 8.5  W/m2 in 2100) predicts a temperature increase of 
3.7°C by the EOC, and a continued rising due to constant increase 
in representative concentration pathways (IPCC,  2014). We chose 
these scenarios (4.5 and 8.5) as they might be the most likely future 
scenarios, since CO2 emissions have not been decreased and miti-
gation strategies have not been achieved (Brown & Caldeira, 2017; 
Fischer et al., 2018). These climatic conditions are derived from six 
Atmosphere-Ocean General Circulation Models (AOGCMs) (CCSM, 
CNRM, GISS, IPSL, MIROC and MRI). For each AOGCM, in present 
time, we selected bioclimatic variables based on variance inflation 
factor (<10) to avoid collinearity among predictor variables using 
the usdm R package (Naimi et al., 2014). The selected variables were 
mean diurnal range (BIO2), isothermality (BIO3), temperature sea-
sonality (BIO4), mean temperature of the wettest quarter (BIO8), 
mean temperature of the driest quarter (BIO9), annual precipitation 
(BIO12), precipitation of the wettest month (BIO13), precipitation 
of the driest month (BIO14), precipitation seasonality (BIO15), pre-
cipitation of the wettest quarter (BIO16), precipitation of the driest 
quarter (BIO17), precipitation of the warmest quarter (BIO18) and 
precipitation of the coldest quarter (BIO19). All climatic layers were 
used in a spatial resolution of 0.5º cell size.

The current and future potential distributions of the treefrog 
were inferred using 10 presence-only or presence–absence algo-
rithms (Table S2 in Appendix  S1). We randomly sampled pseudo-
absences across the Neotropics, excluding cells with presence, 
maintaining the same number of absences as presence data. We fit-
ted ENM models using fivefold cross-validation, repeated 20 times, 
and partitioning 70% of the data in training set (calibration) and 30% 
in testing set (evaluation). ENM was run with sdm R package (Naimi & 
Araujo, 2016). Model accuracy was assessed using the area under the 

http://portal.vertnet.org
http://www.gbif.org/
http://www.gbif.org/
http://splink.cria.org.br/
http://www.ecoclimate.org
http://tntcat.iiasa.ac.at/RcpDb
http://tntcat.iiasa.ac.at/RcpDb
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receiver operator characteristic (AUC) (Allouche et al., 2006) and the 
true skill statistic (TSS), which take into account both omission and 
commission errors (Allouche et al., 2006). We used a weighted aver-
aging of TSS statistics to ensemble the models (Araújo & New, 2007; 
Table S3 in Appendix S1).

The combination of all ENMs and AOGCMs resulted in 60 in-
dependent predictive maps (10 ENMs  ×  6 AOGCMs) for each pe-
riod of time (present, 4.5 and 8.5 RCPs). We applied a hierarchical 
ANOVA using the predicted suitability of all models (10 ENMs × 6 
AOGCMs × 3 time periods) as a response variable to identify and 
map the uncertainties due to the modelling components. Hence, the 
ENMs and AOGCMs components were nested into the time compo-
nent, but crossed by a two-way factorial design within each period 
of time (see Terribile et al., 2012). To quantify the range sizes and 
range shifts among the three time periods, we transformed the suit-
ability maps into binary maps (presence/absence) using a threshold 
of 0.5. Then, we calculated range size as the number of presence 
cells, for each one of the 60 predictive maps. Range shift was calcu-
lated as the difference in range sizes between the present-day and 
4.5 or 8.5 RCP predictive maps.

2.4 | Simulations of genetic and phylogeographical 
diversity under climatic changes

To understand how climate change may affect genetic and phylo-
geographical diversities, we simulated the extinction of populations 
under several extinction thresholds for the two future climatic sce-
narios (4.5 and 8.5 RCP). We assumed that only populations occur-
ring in areas with suitability higher than an extinction threshold will 
persist and contribute to the gene pool for the next generations (see 
Collevatti et al., 2011). As we do not know the real extinction thresh-
old to predict population extinction, we applied a sensitivity analy-
ses changing the extinction thresholds from 0.3 to 0.9, based on the 
minimum and maximum suitability range of the current populations 
(Table 1), to evaluate how much our conclusions are dependent on 
extinction thresholds values.

For each combination of extinction thresholds and climate 
change scenarios (4.5 RCP and 8.5 RPC), we calculated genetic di-
versity and PGeoD for the remaining populations. Genetic diver-
sity was calculated using the software ARLEQUIN 3.11 (Excoffier 
et al., 2005). PGeoD was calculated by dropping the extinct haplo-
types from a sample of 1,000 coalescent trees and re-calculating the 
minimum, maximum and median PGeoD of those coalescent trees in 
each scenario of population extinction.

2.5 | Forecasting the dynamics of genetic clusters

We performed spatially explicit simulations to predict the dynamics 
of genetic clusters conditioned to climatic changes using the soft-
ware POPs (Jay et al., 2015). This software implements a Bayesian 
clustering based on genetic, geographic and environmental variables. 

It assigns individuals to genetic clusters based on genetic ancestry 
and models the effect of climatic and landscape variables in such 
cluster assignments, thus predicting changes in the genetic struc-
ture in response to environmental changes (Jay et al., 2012). For the 
simulations, we selected two environmental variables for current 
and future scenarios: minimum temperature of the coldest quarter 
and precipitation of the wettest quarter, which explained 66% and 
26%, of the variation among populations, respectively, based on 
the coefficient of variation. In addition, we selected topographic 
variables that may affect the dispersal and occurrence of anurans, 
such as slope and altitude (Table 1). We performed simulations for 
mitochondrial and nuclear haplotypes separated and excluded rare 
haplotypes due to convergence analyses (Table S4 in Appendix S1). 
In order to define the rare haplotypes, we made an abundance rank 
curve and selected those with 85% of the relative frequency, thus 
excluding haplotypes present in less than 15% of the individuals.

We simulated genetic clusters under current climatic conditions 
combining genetic, climatic and topographic variables. The analy-
sis was performed using Markov Chain Monte Carlo (MCMC) im-
plemented in POPS (Jay et al., 2015). The MCMC runtime was set 
for 50,000 sweeps and the burn-in period for 5,000 sweeps using 
models with admixture. To define the number of clusters (K), we run 
the simulations four times for each K varying between 2 and 23 for 
both mitochondrial and nuclear data. The subset of runs minimizing 
the deviation information criterion (DIC, Spiegelhalter et al., 2002) 
and the lowest DIC values were selected. Finally, we predicted the 
genetic clusters for both future scenarios (4.5 and 8.5 RCP) condi-
tioned on future climatic and topographic conditions. We measured 
the shifts in ancestry between contemporary and predicted ances-
try coefficients (intraspecific turnover, Jay et al., 2012) for both 4.5 
and 8.5 RCP future scenarios to understand the impact of climate 
change on the spatial genetic structure. Cluster predictions were 
projected within a minimum polygon convex of species’ occurrences 
instead of the ENM binary map because some populations currently 
occupy unsuitable areas and would have been excluded from cluster 
mapping. Topographic variables were extracted by overlaying the 
occurrence points of the S. squalirostris populations onto a Digital 
Elevation Model (DEM) raster from the ALOS—Advanced Land 
Observing Satellite database (https://www.eorc.jaxa.jp/ALOS/en/
index.htm) in ArcGIS® 10.2 (ESRI, 2014). As we expect no changes 
in altitude and slope up to 2100, we used the current values for the 
future simulations.

2.6 | Conservation of genetic and 
phylogeographical diversity

We verified the effectiveness of the current protected areas (PAs) to 
conserve genetic and phylogeographical diversity of S. squalirostris 
across its geographical range (Figure 2). To calculate the expected 
genetic diversity across the geographical range, we obtained the 
genetic richness and PGeoD of S. squalirostris. We defined the ge-
netic richness as the number of haplotypes in a population divided 

https://www.eorc.jaxa.jp/ALOS/en/index.htm
https://www.eorc.jaxa.jp/ALOS/en/index.htm
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by their number of individuals to take into account variation in sam-
pling effort. Additionally, we excluded populations with less than 5 
individuals to avoid underestimation of genetic richness due to low 
sampling effort. Because most of sampled populations were outside 
PAs, we applied a kriging interpolation of the genetic richness and 
PGeoD onto a raster of the current species distribution predicted 
by the ENM, with a resolution of 0.5º (Figure S4 in Appendix S4). 
For analysis, we used a spherical semivariogram implemented in 
the R package gstat (Gräler et  al.,  2016). We also tested the cor-
relation between genetic richness and PGeoD considering spatial 
autocorrelation (Dutilleul et al., 1993), implemented in the R package 
SpatialPack (Vallejos et al., 2018). We calculated the median correla-
tion of PGeoD and genetic richness for each coalescent tree from a 
distribution of 1,000 trees and their 95% quantile interval.

We obtained PAs polygons from Protected Planet website (www.
prote​ctedp​lanet.net). For each PA, we extracted the interpolated ge-
netic richness that overlapped with their polygons. Then, we performed 
PAs clustering using k-means method (Hartigan & Wong, 1979), imple-
mented in k-means function of R package stats (R Core Team, 2020). 
The clusters were optimized by minimizing the sum of squares within 
groups. The number of groups was optimized by a grid search rang-
ing from 2 to 15 clusters. The same procedure was repeated with 
PGeoD. To evaluate PAs effectiveness to conserve genetic richness, 

we compared the mean genetic richness within and outside PAs by 
generating 10,000 random samplings with replacement of the genetic 
richness from cells outside PAs with the same number of cells within 
PAs. Subsequently, we calculated a t statistic and calculated the prob-
ability of observing the difference in mean genetic richness within and 
outside PAs with 95% confidence level.

To evaluate the effectiveness of PAs to conserve PGeoD, we cal-
culated the standardized effective size Mean Phylogenetic Diversity 
(ses.MPD; Webb et al., 2002) using a random sample of lineages as 
null model. Positive values of MPD indicate that PAs are protecting 
more evolutionary distinct lineages than expected by chance, whereas 
negative values indicate that less evolutionary information is protected 
in PAs than expected by chance. We ran Mean Phylogenetic Diversity 
analysis implemented in the R package picante (Kembel et al., 2010). All 
analyses in R were run in version 3.6.3 (R Core Team, 2020).

3  | RESULTS

3.1 | Ecological niche modelling: forecasting

ENMs showed good statistical accuracy (Mean AUC  =  0.92 
(SD = 0.03), Mean TSS = 0.79 (SD = 0.08), recovering the current 

F I G U R E  2   Spatial distributions of 
clusters of Protection Areas (PAs), based 
on k-mean clusters analysis. (a) Spatial 
distribution of genetic richness and the 
PAs clusters; (b) Relationship of estimated 
genetic richness and PA size. (c) Spatial 
distribution of PGeoD and the PA clusters; 
(d) Relationship of estimated PGeoD and 
PAs size. Polygons’ colour representing 
Protection Areas corresponds to the 
clusters in the k-mean cluster analysis 
following the figure legends

http://www.protectedplanet.net
http://www.protectedplanet.net
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distribution of S. squalirostris; however, three of the sampled 
populations are currently within areas of low suitability, in 
the northern areas of the species distribution (Figure 1b). The 
ENM forecasted a shift and increase in the potential distribu-
tion range of S. squalirostris for both future climatic scenarios 
(4.5 and 8.5 RCP), as an outcome of the expansion of suitable 
areas towards its southern and western current distribution, 

and a shrinking of northern suitable areas (Figure 1; Figure S2 
in Appendix S4).

Hierarchical ANOVA showed that ENM algorithms were the 
main factor of variation (a median of 87%) in the predicted suitabil-
ity maps (Table S5 in Appendix S1), but areas with higher suitability 
uncertainty were on cells outside S. squalirostris’ distribution (Figure 
S3 in Appendix  S4). Variation of suitability within S. squalirostris’ 

F I G U R E  3   Geographical distribution of nucleotide and haplotype genetic diversity, number of haplotypes and Phylogeographical 
diversity for Scinax squalirostris populations. (a) Haplotype diversity (h); (b) Nucleotide diversity (π); (c) Number of haplotypes (k); (d) 
Phylogeographical diversity (PGeoD). For details on population codes and localities see Table S1 in Appendix S1

(a)
(b)

(c)
(d)
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distribution was explained by ENM algorithms and changes through 
time (Figure S3b,c in Appendix S4), representing the effects of cli-
matic changes on S. squalirostris’ distribution.

3.2 | Simulations of genetic and phylogeographical 
diversity under climatic changes

Populations of S. squalirostris showed high haplotype and nucleotide 
diversities (Table 1; Figure 3a–c). Highest diversity was found across 
South Brazil, matching the areas of higher suitability for S. squaliro-
stris (Figures 1 and 3). Populations showed low phylogeographical di-
versity ranging from 8% to 23% of total PGeoD (Table 1; Figure 3d).

Our simulations of extinction thresholds (Figure  4) showed that 
~50% of the genetic diversity (e.g. number of haplotypes and PGeoD) 
will be potentially lost with a threshold higher than 0.6 for both climate 
change scenarios (Figures 4a,d, 5 and 6). The decrease in genetic di-
versity was steeper under 8.5RCP scenario. Haplotype and nucleotide 
diversity had similar pattern of diversity loss, increasing diversities at 
higher extinction thresholds, until haplotype and nucleotide diversities 
collapsed due to the extinction of most populations (Figure 4b,c).

3.3 | Forecasting the dynamics in genetic clusters

We found 4 mitochondrial genetic clusters (Figure  7a; K  =  4, 
DIC  =  1,040.66; Tables S6–S8 in Appendix  S1) and 9 nuclear ge-
netic clusters (Figure  7e; K  =  9, DIC  =  765.39; Tables S9–S11 in 
Appendix S1), both conditioned to environmental and topographic 
variables (e.g. precipitation, temperature, altitude and slope). The 
correlation between estimated and predicted admixture coefficients 

of geographical and environmental covariates was 0.99 for both mi-
tochondrial and nuclear data, indicating that predictions of environ-
mental variables were accurate.

Overall, spatially explicit simulations showed loss of genetic vari-
ability over time, due to environmental climate changes (Figure  7). 
Three out of four climatic clusters were potentially lost for mitochon-
drial DNA (clusters 2 and 3) for both scenarios of climate changes 
(Figure 7b,c), leading to a genetic homogenization across S. squaliros-
tris’ geographical range (Figure 7c). Nuclear data showed a geographi-
cal displacement in clusters (Figure 7e–g) and loss of clusters for both 
scenarios, remaining only one cluster (cluster 1; Figure 7f,g). In addi-
tion, the simulations evinced a homogenization in the spatial distri-
bution of the genetic variability in Central, Northeast and East Brazil 
for 8.5 RCP (Figure 7g). Genetic cluster 1, for both mitochondrial and 
nuclear sequences, remained constant for both scenarios. Ancestry 
turnover analysis showed congruent response to climate changes and 
spatial genetic structure, with high spatial shifts in genetic clusters for 
both mitochondrial and nuclear sequences (Figure 7d,h).

3.4 | Conservation of genetic and 
phylogeographical diversity

Genetic richness and PGeoD showed positive and weak correlation 
(median ρ = 0.25, 95% quantile interval = 0.04–0.46). Interpolated 
genetic richness within PAs was classified into 5 groups (Figure 2; 
Figure S5 in Appendix S4; Table S12 in Appendix S1), as well as the 
interpolated PGeoD (Figure 2b,c; Table S12). PAs clusters were clas-
sified into 3 size classes: smaller than 0.2 km2, 0.2–0.4 km2 and larger 
than 0.4 km2. PAs smaller than 0.2 km2 were split into 3 diversity 
clusters. Genetic richness and PGeoD were different in smaller PAs 

F I G U R E  4   Simulation of shifts in 
genetic and phylogeographical diversity 
under different suitability thresholds 
based on 26 populations of Scinax 
squalirostris. (a) Number of haplotypes (k); 
(b) Haplotype diversity (h); (c) Nucleotide 
diversity (π); (d) Phylogeographical 
diversity (PGeoD). 4.5 RCP are 
represented by dashed line and 8.5 RCP 
scenarios by solid line. Colour area in 
(d) represents minimum and maximum 
of PGeoD loss among coalescent 
trees
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F I G U R E  5   Shifts in geographical distribution of phylogeographical diversity across the simulations under different extinction thresholds 
of 4.5 scenario RCP for the 26 populations of Scinax squalirostris. For details on population codes and localities, see Table S1 in Appendix S1

F I G U R E  6   Shifts in geographical distribution of phylogeographical diversity across the simulations under different extinction thresholds 
of 8.5 scenario RCP for the 26 populations of Scinax squalirostris. For details on population codes and localities, see Table S1 in Appendix S1
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F I G U R E  7   Spatial distribution of genetic clusters conditioned to environmental variables simulated for Scinax squalirostris, for 
mitochondrial (a, b and c) and nuclear data (e, f and g), for present-day (a and e), 4.5 RCP scenario (b and f), 8.5 RCP scenario (c and g). Each 
colour set represents a cluster in the figure legend. Shifts in ancestry between contemporary and predicted ancestry coefficients for both 
future scenarios based on the simulation of genetic clusters of all individuals of Scinax squalirostris. (d) Shifts in ancestry for the four genetic 
clusters based on mitochondrial data. (h) Shifts in ancestry for the nine genetic clusters based on nuclear data
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clusters, but did not differ in larger PAs. Genetic richness within PAs 
cells was not different from cells outside PAs (t = −1.08, p = .27). On 
the other hand, PAs are conserving fewer PGeoD than expected by 
a random draw of lineages (ses.MPD = −9.7, p < 1 × 10–4).

4  | DISCUSSION

Our findings suggest that climate change can potentially affect S. 
squalirostris, leading to an expansion of the geographical range to-
wards southern South America, but a retraction in the northern part 
of its range. Although the range expansion may seem to be a positive 
response, this outcome will cause losses of both genetic and phylo-
geographical diversity and homogenization of the genetic variability 
among populations.

ENMs showed a decrease in suitability in the Central-West and 
Southeast Brazil and both shift and expansion of suitable areas to-
wards the South Brazil, and Central and West Argentina. It has been 
widely reported that South American herpetological species, both 
broadly or restricted distributed, will face retraction and/or shifts in 
geographical distribution as a consequence of climatic change (Medina 
et al., 2020; Mesquita et al., 2013; Vasconcelos & Nascimento, 2016; 
Vasconcelos et  al.,  2018; Vilela et  al.,  2018; Zank et  al.,  2014). For 
example, Scinax fuscomarginatus, widely distributed from the north-
ern border of the Amazon basin to Northwest Argentina, and Scinax 
fuscovarius and Dendropsophus minutus, distributed across the Central 
Brazil and Central Argentina (Frost, 2021), show a reduction of 31%, 
43% and 52%, respectively, of suitable areas by 2050 (Vasconcelos & 
Nascimento, 2016) suggesting that a reduction in suitable areas in the 
future is a common outcome for amphibians in response to climate 
change, most likely due to their sensitivity to environmental condi-
tions (Lopez-Alcaide & Macip-Ríos, 2011; Schivo et al., 2019; Velasco 
et al., 2021; Vilela et al., 2018; Zank et al., 2014). However, it may have 
hidden genetic consequences.

Our results pointed out the potential increase in the nucleotide 
and haplotype diversity as populations with low genetic diversity be-
come extinct, remaining populations from the southern distribution, 
which have high genetic diversity. However, the number of haplotypes 
and PGeoD will decrease with the extinction of populations, evidenc-
ing a potential genetic filtering at the species level, leading to the 
persistence of few lineages and haplotypes, and homogenization of 
genetic ancestry remaining only one genetic cluster for mitochondrial 
and nuclear DNA. Thus, although some populations will have high ge-
netic diversity, S. squalirostris will lose haplotypes, diversity of evolu-
tionary lineages and genetic differentiation among populations, which 
may hinder the species response to climatic changes and increase its 
risk of extinction (Foden et al., 2013; Wright et al., 2008).

Temperature regimes are expected to change dramatically under 
the 4.5 and 8.5 RCP scenarios resulting in the homogenization of ge-
netic clusters throughout the S. squalirostris’ range. S. squalirostris is 
adapted to cold and dry climates. Hence the temperature increases 
and changes in precipitation regimes predicted for the EOC might af-
fect the geographical distribution and the spatial patterns of genetic 

diversity distribution. S. squalirostris reproduces and its tadpoles de-
velop in several types of waterbodies, mainly in temporary ponds (Vaz-
Silva et al., 2020). Temperature increase may modify the hydroperiod, 
increasing evaporation rates thus decreasing the time for reproduction 
and development of the tadpole (Mathews, 2010). Amphibian tadpoles 
may show plasticity in relation to changes in hydroperiod, by accelerat-
ing metamorphosis rates, which may cause the adult size and life span 
to shrink (Liess et al., 2013), leading to population decline (McMenamin 
et  al.,  2008). Furthermore, ectothermic species tend to have limited 
physiological ability to adjust to climate changes (Sheldon, 2019), due 
to the low plasticity in thermal tolerance (Gunderson & Stillman, 2015). 
However, some species may circumvent this physiological constrain by 
changing their activity period (Sheldon, 2019).

Despite the fact that genetic diversity is a surrogate of species 
response to environmental changes (Urban et  al.,  2013), fitness-
related traits are expressed by a polygenic regulatory network 
(Franks & Hoffmann, 2012), which needs a mapping at the genomic 
level to properly assign the loss of genetic variability to a reduction 
in climate change adaptability. Also, interpolated macro-scale vari-
ables do not capture micro-climatic and microhabitat conditions that 
may provide suitable local environments acting as buffers against 
extreme climate changes (Jucker et al., 2020; Scheffers et al., 2014). 
The success of microhabitat buffering may vary according to the 
species' life history. Free-living larval stage species, such as Scinax 
squalirostris, may be less vulnerable to climate change than directly 
developed amphibians (Scheffers et  al.,  2013). Nonetheless, mi-
crohabitat need to be protected against land use conversion to be 
effective. Microhabitat fragments will not support suitable popula-
tions for the long term as evidenced by macroecological and macro-
evolutionary studies (Rolland et al., 2018; Souza et al., 2019).

Scinax squalirostris is distributed in a region with a high number of 
PAs, which may protect its microhabitats. However, the current net-
work scheme of PAs is not protecting its phylogeographical diversity. 
As a consequence, S. squalirostris may lose the genetic information 
accumulated along with its evolution in response to climate changes 
(Hoffmann & Willi, 2008). Furthermore, there is no guarantee that S. 
squalirostris will track the suitable climatic conditions, due to the high 
speed of climate changes (Arenas et al., 2012; Chen et al., 2011), the 
low dispersal capacity (Blaustein et al., 1994; Hillman et al., 2014), or 
failing to disperse through natural or anthropogenic barriers (Urban 
et al., 2012). The forecasted expansion of the species distribution is 
towards a region with high urbanization (Lopez et al., 2015), inten-
sive crop farming (Laufer & Gobel, 2017; Lopez et al., 2015; Moreira 
& Maltchik,  2015) and cattle grazing (Lopez et  al.,  2015; Medan 
et  al.,  2011). Such anthropogenic disturbances may compromise 
population persistence in the future.

Our findings show that high genetic richness and PGeoD can be 
preserved in small PAs (<0.2 km2). Even though average genetic rich-
ness was not different between PAs and outside PAs, there is an un-
derrepresentation of PGeoD within PAs. Small PAs have the highest 
genetic richness and PGeoD. The southern boundaries of the potential 
distribution in the future have a low number of PAs, and thus, if the 
species tracks the changes of suitable habitats towards the southern, 
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its conservation will be threatened by the lack of PAs, constraining 
effective conservation practice (Lourenço-de-Moraes et  al.,  2019; 
Magalhães et  al.,  2017; Quan et  al.,  2017). Therefore, establishing 
more PAs in S. squalirostris southern distribution is highly important 
to maintain its genetic and phylogeographical diversity in the future. 
Given the low density of PAs in the South of Brazil, the expansion 
and implementation of new Priority Conservation Areas will benefit 
other amphibian species (either widespread or restricted) that will also 
be negatively affected by climate change (see also Schivo et al., 2019; 
Vasconcelos & Nascimento, 2016; Zank et al., 2014).

The reduction in suitable areas and the decline of amphibian 
species within PAs due to climate change are of major concern 
in conservation planning (Loyola et  al.,  2008, 2014; Vasconcelos 
et  al.,  2018). Scinax squalirostris’ populations from Central-West 
and Southeast Brazil have distinct morphological and acoustic 
characteristics compared with populations from South Brazil (Faria 
et al., 2013; Giaretta et al., 2020; Pombal et al., 2011). Our findings 
show that populations from the Central-West and Southeast Brazil 
have lower genetic diversity and will have lower suitability in the 
EOC. Therefore, lineages from these areas will be highly threatened 
and have a higher probability of going extinct. The loss of cryptic lin-
eages may also affect ongoing diversification processes and hence 
future biodiversity (Bálint et al., 2011). Therefore, under more un-
predictable and rapid climate changes, protection of the genetic and 
phylogeographical diversity becomes increasingly important for the 
survival of populations and species (Coates et al., 2018; Lourenço-
de-Moraes et al., 2019; Moritz & Faith, 1998). It is important to be 
aware that there is a gap in genetic sampling from Southwest popu-
lations that could be underestimating the number of genetic clusters 
and phylogeographic diversity. We also acknowledge the limitations 
of our results because we used a low number of loci. For instance, 
a higher number of loci would provide more lineages, increasing 
the phylogeographical diversity. However, although we sequenced 
1,000 bp, including both mitochondrial and nuclear DNA, we found 
63 haplotypes for mtDNA and 73 haplotypes for nuclear DNA, in 
219 individuals. With relatively short sequences, we obtained high 
polymorphism and genetic diversity. Furthermore, despite the 
number of loci, these regions have been successfully used to ac-
cess genetic and phylogeographic diversity in amphibians (Barrow 
et al., 2020; Fusinato et al., 2013; Mota et al., 2020). We believe that 
the genetic data, which are widely used in the literature, together 
with the sampling effort of S. squalirostris throughout its geograph-
ical distribution (26 locations), can provide a favourable dataset to 
answer our questions about its occurrence and impacts on the ge-
netic diversity due to climate change.

In conclusion, our results show that populations of S. squaliros-
tris can, at first sight, be positively affected by climatic changes, by 
increasing their range size and shifting suitable areas in the EOC. 
However, the retraction of suitable areas in the northern distribu-
tion boundaries may decrease its genetic and phylogeographical 
diversity, along with the number of genetic clusters, compromis-
ing the response of the species to the fast environmental changes. 
Further studies covering a larger genome sampling will improve our 

understanding of S. squalirostris adaptation to climate change. The 
current geographic distribution of the species encompasses a high 
number of PAs, however, the predicted range change in the future 
might shift its distribution away from the currently established PAs, 
encompassing a lower number within its range, thus protecting less 
of their genetic and phylogeographic diversity. Finally, our findings 
point out the need of establishing PAs in South Brazil and Northeast 
Argentina as a strategy for long-term conservation of S. squalirostris.
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