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The presence of metal Na nanoparticles causes the bright, thermally unstable colors of villiaumite, NaF, and halite, NaCl. These nanoparticles have been suspected since a long time to be caused by external irradiation. Metal nanoparticles, often referred to as metal colloids, cause surface plasmon resonance effects, characterized by a single Lorentzian-shaped absorption band.

The color of these minerals is due to metal Na nanoparticles of 2.5-3 nm. A key point is that the resonance wavelength, which corresponds to the maximum of the absorption band, is inversely related to the value of the refractive index of the embedding mineral. This causes the position of the main absorption band to be offset downwards by 140 nm in halite relative to villiaumite. As a consequence, the optical transmission window is shifted from the long to the short wavelength domain, explaining the color of blue halite and red villiaumite, respectively. Similar refractive index dependence may explain the purple color of fluorite, caused by metallic Ca nanoparticles.

Finally, the origin of the villiaumite irradiation may be the presence of Th-rich (about 8.8wt%

ThO 2 ) nano-inclusions, about 500 nm large, illustrating the specific geochemistry of peralkaline rocks where villiaumite is found.

INTRODUCTION

One of the outstanding properties of alkali halides is their optical transparency from the vacuum UV to the far infrared. Though they are intrinsically colorless, they sometimes show a thermally unstable coloration, which, in the absence of chemical impurities, has long been recognized to result from radiation damage (e.g., [START_REF] Przibram | Verfärbung und Lumineszenz[END_REF][START_REF] Stormer | Villiaumite and the occurrence of fluoride minerals in igneous rocks[END_REF].

The simplest radiation-induced defect is the so-called F center, i.e. an electron trapped in an anion vacancy. The F center creates a singly occupied electronic level in the band gap, which colors the crystal. The aggregation of two or three F centers on nearest neighbor sites, gives rise to binary M-and ternary R-centers, respectively. Eventually, color centers aggregate to form metallic alkali nanoparticles, also referred to as colloids, caused by an irradiation at room temperature or higher temperatures (see e.g., [START_REF] Schwartz | Effect of electronic energy loss and irradiation temperature on color-center creation in LiF and NaCl crystals irradiated with swift heavy ions[END_REF]. Optical properties of metal nanoparticles have unique characteristics that give rise to brilliant colors. For instance, during external irradiation of synthetic halite, the change from a yellow color due to F-centers to a bright blue color indicates the formation of Na metal nanoparticles [START_REF] Kreibig | Optical properties of metal clusters[END_REF].

Natural halite, NaCl, presents various radiation-induced colors (Zelek et al., 2015), but blue hues with a broad range of saturation are the most frequent (Supplemental Figure 1). The blue color has been assigned to colloidal Na metal formed by irradiation with ionizing radiation [START_REF] Rossman | Mineral spectroscopy server[END_REF]. Radiation defects in halite provide information on the sedimentary history of salt deposits [START_REF] Sonnenfeld | The color of rock salt -a review[END_REF][START_REF] Zelek | Lattice deformation of blue halite from Zechstein evaporate basin: Klodawa Salt Mine, Central Poland[END_REF]2015) or the stability of nuclear waste repositories [START_REF] Levy | Radiation damage studies on synthetic NaCl crystals and natural rock salt for radioactive waste disposal applications[END_REF]. Recently, they have been used to assess the exposure duration of the surface of icy moons [START_REF] Poston | Spectral behavior of irradiated sodium chloride crystals under Europa-like conditions[END_REF] and ordinary chondrites [START_REF] Chan | Organic matter in extraterrestrial water-bearing salt crystals[END_REF], subject to cosmic radiation. Villiaumite, NaF, is an accessory phase formed during a late pegmatitic stage associated with peralkaline nepheline syenites [START_REF] Stormer | Villiaumite and the occurrence of fluoride minerals in igneous rocks[END_REF][START_REF] Marks | A global review on agpaitic rocks[END_REF]. It is generally characterized by its intense carmine red color (Supplemental Figure S2).

The origin of the red color of natural villiaumite has not yet been investigated, though it is suspected to arise from radiation damage [START_REF] Rossman | Mineral spectroscopy server[END_REF]. By contrast, blue halite received much attention, with pioneering studies on samples from Strassfurt, Germany [START_REF] Przibram | Verfärbung und Lumineszenz[END_REF][START_REF] Doyle | Coagulation, optical absorption and photoconductivity of colloid centres in alkali halides[END_REF][START_REF] Howard | Blue halite[END_REF][START_REF] Arun | Ion beam radiation effects on natural halite crystals[END_REF] and, more recently, Kłodawa, Poland [START_REF] Wesełucha-Birczynska | Blue halite colour centre aggregates studied by micro-Raman spectroscopy and X-ray diffraction[END_REF]Zelek et al., 2014 and 015) and Morleben, Germany [START_REF] Arun | Ion beam radiation effects on natural halite crystals[END_REF] salt mines. This study shows that the red color of villiaumite is a result of a surface plasmon resonance [START_REF] Kreibig | Optical properties of metal clusters[END_REF] due to Na metal nanoparticles. The optical spectra of blue halite have a similar origin. The outstanding color change between blue halite and red villiaumite is rationalized in terms of the dependence of the wavelength resonance of the nanoparticles on the refractive index of the embedding mineral. The same formalism may be extended to explain the origin of the purple color of fluorite, due to the presence of calcium metallic nanoparticles. The origin of the villiaumite irradiation may be the presence of Th-rich (about 8.8wt% ThO 2 ) nano-inclusions, about 500 nm large, illustrating the geochemistry of peralkaline rocks where villiaumite is found.

MATERIALS AND METHODS

Villiaumite crystals come from the agpaitic suite of nepheline syenites of the type locality of the Los Archipelago, Guinea [START_REF] Lacroix | Sur l'existence du fluorure de sodium cristallisé comme élément des syénites néphéliniques des îles de Los[END_REF][START_REF] Moreau | The Los Archipelago nepheline syenite ring-structure: a magmatic marker of the evolution of the Central and Equatorial Atlantic[END_REF]. A sedimentary navy blue halite from Strassfurt (Germany) was used for comparison. Optical absorption spectra were measured at room temperature and at 10K in the spectral range 200-3300 nm (50,000 cm -1 -3,030 cm -1 ), using a double-beam computerized Perkin-Elmer Lambda 1050 UV-Visible-NIR spectrophotometer. The spectral resolution varies from 0.8 nm in the UV region to 2 nm in the near IR -visible region. A He-cryostat under vacuum (around 3.4 × 10 -7 mbar) was used to record spectra at 10 K. The optical absorption spectra were obtained in transmission mode on cleaved crystals (Supplemental Figure S3). The spectra were normalized to sample thickness and background corrected using a polynomial function. The data are presented and analyzed as a function of wavelength, as the absorption is caused by surface plasmon resonance effects interpreted in terms of the Mie theory (see e.g., [START_REF] Kreibig | Optical properties of metal clusters[END_REF]. Preliminary scanning electron microscopy with field emission gun (SEM-FEG) analyses were obtained at 15 kV and a beam current of 200 nA with a Zeiss Ultra 55 instrument fitted with a high-resolution Schottky FEG and a UHR Gemini® column. Semi-quantitative analyses were performed using a Bruker Quantax XFlash 4010 energy-dispersive X-ray spectrometer.

RESULTS AND DISCUSSION

Optical absorption spectra of villiaumite

The samples investigated present an intense red color, which disappears in a couple of minutes at 500 °C and after 2 hrs at 400°C. The room temperature optical absorption spectrum (Supplemental Figure S4) shows the presence of a background due to light scattering by inclusions and fractures that result from the easy {100} cleavage of this cubic mineral. After subtracting this background contribution, the most salient feature is an intense absorption band at 494 nm. The two other contributions are a shoulder near 415 nm and a small band at 328 nm (Figure 1a). This spectrum is similar to the one of villiaumite from Mont Saint Hilaire, Canada [START_REF] Rossman | Mineral spectroscopy server[END_REF], which is dominated by a main absorption band peaking at 510 nm.

The optical absorption spectra have been fitted using a minimum of components, chosen to correspond to spectroscopic events. Gaussian and Lorentzian lineshapes of the spectral components have been tested. Indeed, by contrast to the Gaussian shape of absorption bands caused by color centers (see e.g. Jenkins et al., 2000;[START_REF] Hoya | Ab initio study of F-centers in alkali halides[END_REF], surface plasmon resonances exhibited by metallic nanoparticles give rise to Lorentzian-shaped absorption bands, as predicted by Mie theory [START_REF] Kreibig | Optical properties of metal clusters[END_REF][START_REF] Weerkamp | Radiation damage in NaCl. I. Optical-absorption experiments on heavily irradiated samples[END_REF][START_REF] Ruiz-Fuertes | Reversible tuning of Ca nanoparticles embedded in a superionic CaF 2 matrix[END_REF]. A good fit of the main band is achieved by using a Lorentzian function peaking at 494 nm.

The full width at half-maximum (FWHM) of this band, 86 nm, is larger than that of the other contributions due to color centers. This Lorentzian lineshape explains the presence of a long tail extending towards long wavelengths, at the origin of the intense red hue of villiaumite. Such a Lorentzian line-shape characterizes the optical spectra of free neutral Na clusters [START_REF] Selby | Photoabsorption spectra of sodium clusters[END_REF], Na nanoparticles in NaCl [START_REF] Weerkamp | Radiation damage in NaCl. I. Optical-absorption experiments on heavily irradiated samples[END_REF] and NaF [START_REF] Seifert | The influence of defects and defect clusters on alkali atom desorption stimulated by low energy electron bombardment of alkali halides[END_REF] or Ca nanoparticles in CaF 2 [START_REF] Ruiz-Fuertes | Reversible tuning of Ca nanoparticles embedded in a superionic CaF 2 matrix[END_REF]Ryskin et al., 2020).

The two minor contributions at 328 nm and 414 nm have a Gaussian lineshape. The former corresponds to a F-center, widely investigated in synthetic NaF [START_REF] Seifert | The influence of defects and defect clusters on alkali atom desorption stimulated by low energy electron bombardment of alkali halides[END_REF][START_REF] Tiwald | Ab initio perspective on the Mollwo-Ivey relation for F centers in alkali halides[END_REF][START_REF] Hoya | Ab initio study of F-centers in alkali halides[END_REF]. The latter may be assigned to a R-center (Amenu- [START_REF] Amenu-Kpodo | Color centers in sodium fluoride[END_REF][START_REF] Bryukvina | Formation and properties of metallic nanoparticles in lithium and sodium fluorides with radiation-induced color centers[END_REF][START_REF] Bryukvina | Relationships between lithium and sodium nanoparticles and color centers formation in LiF and NaF crystals with hydroxide and magnesium ions impurities[END_REF]. Recent ab-initio calculations [START_REF] Tiwald | Ab initio perspective on the Mollwo-Ivey relation for F centers in alkali halides[END_REF][START_REF] Hoya | Ab initio study of F-centers in alkali halides[END_REF] have shown that the absorption energy E a of the F-center (in eV) may be approximated by: E a = 16.5 a -1. 76 (1)

where a is the anion-cation distance. Relation (1) gives a physical ground to the classical empirical Mollwo-Ivey relation [START_REF] Ivey | Spectral location of the absorption due to color centers in alkali halide crystals[END_REF]. The predicted values, 345 ands 415 nm, are in good agreement with the experimental values, 328 and 414 nm. In the optical absorption spectrum of villiaumite from Mont Saint Hilaire, Canada [START_REF] Rossman | Mineral spectroscopy server[END_REF], the main absorption band at 510 nm shows a slightly different lineshape and additional weak contributions around 400 nm. As in natural blue halite (Zelek et al., 2015), the relative proportion of isolated defect centers and metallic nanoparticles may vary among the samples.

Evidence of a plasmon resonance in villiaumite

As indicated above, a Lorentzian lineshape is consistent with a surface plasmon resonance.

The position of this resonance is similar to that in synthetic NaF [START_REF] Chandra | Taxonomy of F-aggregate centers in NaF[END_REF][START_REF] Bryukvina | Formation and properties of metallic nanoparticles in lithium and sodium fluorides with radiation-induced color centers[END_REF][START_REF] Bryukvina | Relationships between lithium and sodium nanoparticles and color centers formation in LiF and NaF crystals with hydroxide and magnesium ions impurities[END_REF]. The resonance wavelength may be predicted from the Mie theory by considering spherical metal particles [START_REF] Doyle | Absorption of light by colloids in alkali halide crystals[END_REF][START_REF] Hunault | Nondestructive redox quantification reveals glassmaking of rare French gothic stained glasses[END_REF]. In this approximation, the average size of the nanoparticles is derived from:

R = V f λ p 2 /(2πcΔλ) ( 2 
)
where R is the average radius of the metallic clusters, V f is the Fermi velocity of the electrons in the bulk metal (for Na, V f = 1.07 × 10 6 m.s -1 ), λ p is the characteristic wavelength at which the surface plasmon resonance (SPR) occurs, Δλ is the full width at half-maximum and c is the speed of light. This predicts an average diameter of Na nanoparticles slightly smaller than 3 nm. At 10 K, this absorption band only slightly shifts by about 10 nm towards higher wavenumbers, without any narrowing. This is consistent with an assignment to a surface plasmon resonance, which does not change in energy or amplitude with temperature, by contrast to the transitions related to color centers [START_REF] Kreibig | Optical properties of metal clusters[END_REF].

Color centers in alkali halides have a limited thermal stability above room temperature relative to Na colloids, [START_REF] Schwartz | Effect of electronic energy loss and irradiation temperature on color-center creation in LiF and NaCl crystals irradiated with swift heavy ions[END_REF]. This explains why, in the geological samples, a plasmon resonance is predominant over the electronic transitions expected from these color centers.

Similar mechanisms have been observed in glasses where alkali ions can act as electron traps upon irradiation and form metal colloids [START_REF] Boizot | Migration and segregation of sodium under β-irradiation in nuclear glasses[END_REF]. Such processes are thermally activated and demonstrate that alkali ions agglomerate to form bigger complexes after trapping electrons at temperatures reaching a few hundreds °C.

Comparison with halite

The shape of the optical absorption spectrum of blue halite from Stassfurt is similar to some of the blue halites above mentioned. It is almost identical to the first absorption spectra published on blue halite (also from Stassfurt: Doyle, 1960) (Supplemental Figure S5). The main absorption band peaks at 640 nm, the same value as reported by previous authors (e.g., [START_REF] Doyle | Coagulation, optical absorption and photoconductivity of colloid centres in alkali halides[END_REF][START_REF] Howard | Blue halite[END_REF]. Using several Gaussian-Lorentzian spectral components, assigned to Na colloids and various color centers, gives a good fit [START_REF] Zelek | Lattice deformation of blue halite from Zechstein evaporate basin: Klodawa Salt Mine, Central Poland[END_REF]2015). However, fitting the spectra is non equivocal. Here, we use a minimum number of spectral components, as for villiaumite. The main band, at 640 nm, is fitted with a single Lorentzian component (Fig. 1b), because it arises from a surface plasmon resonance of Na nanoparticles (e.g., [START_REF] Weerkamp | Radiation damage in NaCl. I. Optical-absorption experiments on heavily irradiated samples[END_REF].

The FWHM, 105 nm, is similar to the values found in the Klodawa mine (Wesełucha-irc s a et al., 2012) and larger than in villiaumite (86 nm) . Minor additional Gaussian-shape contributions at 430, 531 and 744 nm may be assigned to F-, R-(3 neighboring F-centers) and M

(2 neighboring F-centers) color centers, respectively. The actual position of these bands is shifted relative to that expected from relation (1), at 473, 550 and 705 nm for the F-, R-and M-centers-, respectively. The same centers are found in the halite from Klodawa mine and a similar discrepancy with the Mollwo-Ivey relation is observed (Wesełucha-irc s a et al., 2012).

Finally, a fourth minor Gaussian contribution occurs at 385 nm as in other natural halites ( o le, Wesełucha-irc s a et al., 2012), but its origin is unclear.

Scaling the spectra of red villiaumite and blue halite

The halite spectrum presents similarities with that of villiaumite, but occurs at larger wavelengths. As a consequence, the transmission window does not occur in the same spectral region, being located on the long or short wavelength side of the main band in red villiaumite and blue halite, respectively (Figures 1a and1b). This explains the difference in the color of these minerals, despite both show a broad Lorentzian shape plasmon resonance with spectral properties independent of temperature, which is assigned to the presence of Na nanoparticles. For spherical particles that are smaller than the wavelength of light, the value of the resonance wavelength depends on the refractive index of the surroundings [START_REF] Kreibig | Optical properties of metal clusters[END_REF]. The wavelength of maximum absorption  max may be predicted within the Mie theory, following the Doyle relation [START_REF] Doyle | Absorption of light by colloids in alkali halide crystals[END_REF][START_REF] Davenas | Correlation between absorption bands and implanted alkali ions in LiF[END_REF][START_REF] Seifert | The influence of defects and defect clusters on alkali atom desorption stimulated by low energy electron bombardment of alkali halides[END_REF]:

 max = c (1+2n 0 2 ) 1/2 (3)
where n 0 is the refractive index of the host medium and  c is the critical wavelength for the onset of ultra-violet transparency of sodium. The ratio between the  max values in villiaumite and halite, allows elimination of the  c term. The ratio calculated from the refractive index of these minerals is 1.13 to compare to an experimental value of 1.29. This explains qualitatively the redshift of the plasmon band with the increasing refractive index of the mineral. The underestimation of this shift when using relation (3) may come from non-spherical shape effects or size distribution of the Na colloids in geological samples with a complex histor relative to laborator samples…

IMPLICATIONS

The comparison of the optical absorption spectra of halite and villiaumite provides a nice illustration of Mie theory, through the dramatic influence of the refractive index of halides on the energy of the plasmon resonance of the embedded metal nanoparticles. Temperatures up to 300-500°C (Zelek et al., 2015;[START_REF] Weerkamp | Radiation damage in NaCl. I. Optical-absorption experiments on heavily irradiated samples[END_REF], crystal dislocations and substituted impurities favor the aggregation of color centers leading to the formation of Na colloids. This explains the predominance of these colloids in natural halides [START_REF] Seifert | The influence of defects and defect clusters on alkali atom desorption stimulated by low energy electron bombardment of alkali halides[END_REF], as demonstrated by their bright colors. The formation of Na colloids goes with that of free dihalogen molecules, as in the villiaumite from Kola Peninsula, Russia [START_REF] Celinski | Trace determination and pressure estimation of fluorine F 2 caused by irradiation damage in minerals and synthetic fluorides[END_REF] and can only occur once the crystal cooled down to avoid the annealing of these colloids. It is of interest that natural purple fluorites also owe their color to the presence of Ca nanoparticles. Their optical absorption spectra show an intense, broad absorption band near 560 nm that has been suggested to come from Ca metal colloids (Bill and Calas, 1983;[START_REF] Rossman | Mineral spectroscopy server[END_REF][START_REF] Gaft | Red photoluminescence and purple color of naturally irradiated fluorite[END_REF]Ryskin et al., 2020). The same band is found in additively colored synthetic CaF 2 [START_REF] Angervaks | Optical study of calcium precipitates in additively colored CaF 2 crystals[END_REF]. This absorption band has a Lorentzian shape, which indicates a plasmon resonance origin (Ryskin et al., 2020). Its position, near 560 nm, is intermediate between that in red villiaumite, 494 nm, and blue halite, 640 nm. This absorption band allows light transmission in both the red and blue regions of the spectrum, resulting in the characteristic purple color of irradiated fluorites. It may be pointed out that the position of the colloid band ranges in the order villiaumite (494 nm)fluorite (560 nm)-halite (640 nm), i.e. the same ranking as for the refractive indices, 1.3253, 1.4338 and 1.5442, hence qualitatively following the prediction of Relation (3).

Natural halite exhibits a broad range of colors, navy-blue, blue, purple or colorless arising from various proportions of color centers and Na colloids [START_REF] Wesełucha-Birczynska | Blue halite colour centre aggregates studied by micro-Raman spectroscopy and X-ray diffraction[END_REF]. [START_REF] Zelek | Lattice deformation of blue halite from Zechstein evaporate basin: Klodawa Salt Mine, Central Poland[END_REF] have shown that this may result from the complex sedimentary geology that governs in the mine the spatial distribution of halite and sylvinite, as 40 K is suspected to be the main radiation source. In villiaumite, radiation damage is caused by a specific geological context.

Agpaitic rocks are always enriched in Th and U (Sorensen, 1992). Though XRD only indicates the presence of NaF, preliminary SEM-EDS investigations of our samples (Figure 2) show the presence of nanospheres, about 500 nm large, which show a preferential alignment that apparently guides the {100} cleavage steps. These nanoinclusions contain about 8.8wt% ThO 2 (Supplemental Figure S6) and may be at the origin of a permanent irradiation of the mineral, able to create defects once the mineral cooled down to a few hundreds °C. This explains the presence of isolated color centers, which otherwise have a limited thermal stability (Schwartz et al., 1994) and the stability of the Na nanoparticles that are at the origin of the red color. The presence of thorium in the villiaumite from the Khibiny and Lovozero alkaline massifs in the Kola Peninsula, Russia [START_REF] Chukanov | On the problem of the formation and geochemical role of bituminous matter in pegmatites of the Khibiny and Lovozero alkaline massifs, Kola Peninsula, Russia[END_REF] has been explained by its complexation by organic matter, which was revealed by infrared spectroscopy. Preliminary infrared spectra on the villiaumite from the Los Archipelago also reveal the presence of aliphatic hydrocarbon groups and carboxylates in our samples (A. Geisler, unpublished report). The red color of villiaumite, prized in mineral collections, appears to be also a useful "color indicator" of the conditions of emplacement of the evolved stages of peralkaline systems. 
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 1 Figure 1. Room temperature optical absorption spectra of red villiaumite (a) and blue halite (b).

Figure 2 .

 2 Figure 2. Scanning Electron Microscopy micrograph in backscattered electron mode of a
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