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ABSTRACT 14 

The presence of metal Na nanoparticles causes the bright, thermally unstable colors of 15 

villiaumite, NaF, and halite, NaCl. These nanoparticles have been suspected since a long time to 16 

be caused by external irradiation. Metal nanoparticles, often referred to as metal colloids, cause 17 

surface plasmon resonance effects, characterized by a single Lorentzian-shaped absorption band. 18 

The color of these minerals is due to metal Na nanoparticles of 2.5-3 nm. A key point is that the 19 

resonance wavelength, which corresponds to the maximum of the absorption band, is inversely 20 

related to the value of the refractive index of the embedding mineral. This causes the position of 21 

the main absorption band to be offset downwards by 140 nm in halite relative to villiaumite. As a 22 

consequence, the optical transmission window is shifted from the long to the short wavelength 23 

domain, explaining the color of blue halite and red villiaumite, respectively. Similar refractive 24 



index dependence may explain the purple color of fluorite, caused by metallic Ca nanoparticles. 25 

Finally, the origin of the villiaumite irradiation may be the presence of Th-rich (about 8.8wt% 26 

ThO2) nano-inclusions, about 500 nm large, illustrating the specific geochemistry of peralkaline 27 

rocks where villiaumite is found. 28 

 29 
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 32 

INTRODUCTION 33 

One of the outstanding properties of alkali halides is their optical transparency from the 34 

vacuum UV to the far infrared. Though they are intrinsically colorless, they sometimes show a 35 

thermally unstable coloration, which, in the absence of chemical impurities, has long been 36 

recognized to result from radiation damage (e.g., Przibram, 1953; Stormer and Carmichael, 1970). 37 

The simplest radiation-induced defect is the so-called F center, i.e. an electron trapped in an 38 

anion vacancy. The F center creates a singly occupied electronic level in the band gap, which 39 

colors the crystal. The aggregation of two or three F centers on nearest neighbor sites, gives rise 40 

to binary M- and ternary R-centers, respectively.  Eventually, color centers aggregate to form 41 

metallic alkali nanoparticles, also referred to as colloids, caused by an irradiation at room 42 

temperature or higher temperatures (see e.g., Schwartz et al., 2008). Optical properties of metal 43 

nanoparticles have unique characteristics that give rise to brilliant colors. For instance, during 44 

external irradiation of synthetic halite, the change from a yellow color due to F-centers to a bright 45 

blue color indicates the formation of Na metal nanoparticles (Kreibig and Vollmer, 1995). 46 



Natural halite, NaCl, presents various radiation-induced colors (Zelek et al., 2015), but blue 47 

hues with a broad range of saturation are the most frequent (Supplemental Figure 1). The blue 48 

color has been assigned to colloidal Na metal formed by irradiation with ionizing radiation 49 

(Rossman, 2010). Radiation defects in halite provide information on the sedimentary history of 50 

salt deposits (Sonnenfeld, 1995; Zelek et al., 2014 and 2015) or the stability of nuclear waste 51 

repositories (Levy et al., 1983). Recently, they have been used to assess the exposure duration of 52 

the surface of icy moons (Poston et al., 2017) and ordinary chondrites (Chan et al., 2018), subject 53 

to cosmic radiation. Villiaumite, NaF, is an accessory phase formed during a late pegmatitic stage 54 

associated with peralkaline nepheline syenites (Stormer and Carmichael, 1970; Marks and Markl, 55 

2017). It is generally characterized by its intense carmine red color (Supplemental Figure S2). 56 

The origin of the red color of natural villiaumite has not yet been investigated, though it is 57 

suspected to arise from radiation damage (Rossman, 2010). By contrast, blue halite received 58 

much attention, with pioneering studies on samples from Strassfurt, Germany (Przibram, 1953; 59 

Doyle, 1960; Howard and Kerr, 1960; Arun et al., 2017) and, more recently, Kłodawa, Poland 60 

(Wesełucha-Birczynska et al., 2012; Zelek et al., 2014 and 015) and Morleben, Germany (Arun et 61 

al., 2017) salt mines. This study shows that the red color of villiaumite is a result of a surface 62 

plasmon resonance (Kreibig and Vollmer, 1995) due to Na metal nanoparticles. The optical 63 

spectra of blue halite have a similar origin. The outstanding color change between blue halite and 64 

red villiaumite is rationalized in terms of the dependence of the wavelength resonance of the 65 

nanoparticles on the refractive index of the embedding mineral. The same formalism may be 66 

extended to explain the origin of the purple color of fluorite, due to the presence of calcium 67 

metallic nanoparticles. The origin of the villiaumite irradiation may be the presence of Th-rich 68 

(about 8.8wt% ThO2) nano-inclusions, about 500 nm large, illustrating the geochemistry of 69 

peralkaline rocks where villiaumite is found. 70 



 71 

MATERIALS AND METHODS 72 

Villiaumite crystals come from the agpaitic suite of nepheline syenites of the type locality of 73 

the Los Archipelago, Guinea (Lacroix, 1908; Moreau et al., 1998). A sedimentary navy blue 74 

halite from Strassfurt (Germany) was used for comparison. Optical absorption spectra were 75 

measured at room temperature and at 10K in the spectral range 200–3300 nm (50,000 cm
-1

- 3,030 76 

cm
-1

), using a double-beam computerized Perkin-Elmer Lambda 1050 UV–Visible-NIR 77 

spectrophotometer. The spectral resolution varies from 0.8 nm in the UV region to 2 nm in the 78 

near IR - visible region. A He-cryostat under vacuum (around 3.4 × 10
−7

 mbar) was used to 79 

record spectra at 10 K. The optical absorption spectra were obtained in transmission mode on 80 

cleaved crystals (Supplemental Figure S3). The spectra were normalized to sample thickness and 81 

background corrected using a polynomial function. The data are presented and analyzed as a 82 

function of wavelength, as the absorption is caused by surface plasmon resonance effects 83 

interpreted in terms of the Mie theory (see e.g., Kreibig and Vollmer, 1995). Preliminary 84 

scanning electron microscopy with field emission gun (SEM-FEG) analyses were obtained at 15 85 

kV and a beam current of 200 nA with a Zeiss Ultra 55 instrument fitted with a high-resolution 86 

Schottky FEG and a UHR Gemini® column. Semi-quantitative analyses were performed using a 87 

Bruker Quantax XFlash 4010 energy-dispersive X-ray spectrometer. 88 

 89 

RESULTS AND DISCUSSION 90 

Optical absorption spectra of villiaumite 91 

The samples investigated present an intense red color, which disappears in a couple of minutes 92 

at 500 °C and after 2 hrs at 400°C. The room temperature optical absorption spectrum 93 

(Supplemental Figure S4) shows the presence of a background due to light scattering by 94 



inclusions and fractures that result from the easy {100} cleavage of this cubic mineral. After 95 

subtracting this background contribution, the most salient feature is an intense absorption band at 96 

494 nm. The two other contributions are a shoulder near 415 nm and a small band at 328 nm 97 

(Figure 1a). This spectrum is similar to the one of villiaumite from Mont Saint Hilaire, Canada 98 

(Rossman, 2010), which is dominated by a main absorption band peaking at 510 nm. 99 

The optical absorption spectra have been fitted using a minimum of components, chosen to 100 

correspond to spectroscopic events. Gaussian and Lorentzian lineshapes of the spectral 101 

components have been tested. Indeed, by contrast to the Gaussian shape of absorption bands 102 

caused by color centers (see e.g. Jenkins et al., 2000; Hoya et al., 2017), surface plasmon 103 

resonances exhibited by metallic nanoparticles give rise to Lorentzian-shaped absorption bands, 104 

as predicted by Mie theory (Kreibig and Vollmer, 1995; Seinen et al., 1994; Ruiz-Fuertes et al., 105 

2019). A good fit of the main band is achieved by using a Lorentzian function peaking at 494 nm. 106 

The full width at half-maximum (FWHM) of this band, 86 nm, is larger than that of the other 107 

contributions due to color centers. This Lorentzian lineshape explains the presence of a long tail 108 

extending towards long wavelengths, at the origin of the intense red hue of villiaumite. Such a 109 

Lorentzian line-shape characterizes the optical spectra of free neutral Na clusters (Selby et al., 110 

1991), Na nanoparticles in NaCl (Seinen et al., 1994) and NaF (Seifert et al., 1994) or Ca 111 

nanoparticles in CaF2 (Ruiz- Fuertes et al., 2019; Ryskin et al., 2020). 112 

The two minor contributions at 328 nm and 414 nm have a Gaussian lineshape. The former 113 

corresponds to a F-center, widely investigated in synthetic NaF (Seifert et al., 1994; Tiwald et al., 114 

2015; Hoya et al., 2017). The latter may be assigned to a R-center (Amenu-Kpodo and Neubert, 115 

1965; Bryukvina and Martynovich, 2012; Bryukvina et al., 2018). Recent ab-initio calculations 116 



(Tiwald et al., 2015; Hoya et al., 2017) have shown that the absorption energy Ea of the F-center 117 

(in eV) may be approximated by: 118 

Ea= 16.5 a
-1.76

          (1) 119 

where a is the anion-cation distance. Relation (1) gives a physical ground to the classical 120 

empirical Mollwo-Ivey relation (Ivey, 1947). The predicted values, 345 ands 415 nm, are in good 121 

agreement with the experimental values, 328 and 414 nm. In the optical absorption spectrum of 122 

villiaumite from Mont Saint Hilaire, Canada (Rossman, 2010), the main absorption band at 510 123 

nm shows a slightly different lineshape and additional weak contributions around 400 nm. As in 124 

natural blue halite (Zelek et al., 2015), the relative proportion of isolated defect centers and 125 

metallic nanoparticles may vary among the samples. 126 

 127 

Evidence of a plasmon resonance in villiaumite 128 

As indicated above, a Lorentzian lineshape is consistent with a surface plasmon resonance. 129 

The position of this resonance is similar to that in synthetic NaF (Chandra and Holcomb, 1969; 130 

Bryukvina and Martynovich, 2012; Bryukvina et al., 2018). The resonance wavelength may be 131 

predicted from the Mie theory by considering spherical metal particles (Doyle, 1958; Hunault et 132 

al., 2017). In this approximation, the average size of the nanoparticles is derived from: 133 

R = Vfλp
2
/(2πcΔλ)          (2) 134 

where R is the average radius of the metallic clusters, Vf is the Fermi velocity of the electrons in 135 

the bulk metal (for Na, Vf = 1.07 × 10
6
 m.s

-1
), λp is the characteristic wavelength at which the 136 

surface plasmon resonance (SPR) occurs, Δλ is the full width at half-maximum and c is the speed 137 

of light. This predicts an average diameter of Na nanoparticles slightly smaller than 3 nm. At 10 138 

K, this absorption band only slightly shifts by about 10 nm towards higher wavenumbers, without 139 

any narrowing. This is consistent with an assignment to a surface plasmon resonance, which does 140 



not change in energy or amplitude with temperature, by contrast to the transitions related to color 141 

centers (Kreibig and Vollmer, 1995). 142 

Color centers in alkali halides have a limited thermal stability above room temperature relative 143 

to Na colloids, (Schwartz et al., 2008). This explains why, in the geological samples, a plasmon 144 

resonance is predominant over the electronic transitions expected from these color centers. 145 

Similar mechanisms have been observed in glasses where alkali ions can act as electron traps 146 

upon irradiation and form metal colloids (Boizot et al., 2000). Such processes are thermally 147 

activated and demonstrate that alkali ions agglomerate to form bigger complexes after trapping 148 

electrons at temperatures reaching a few hundreds °C. 149 

 150 

Comparison with halite 151 

The shape of the optical absorption spectrum of blue halite from Stassfurt is similar to some of 152 

the blue halites above mentioned. It is almost identical to the first absorption spectra published on 153 

blue halite (also from Stassfurt: Doyle, 1960) (Supplemental Figure S5). The main absorption 154 

band peaks at 640 nm, the same value as reported by previous authors (e.g., Doyle, 1960; 155 

Howard and Kerr, 1960). Using several Gaussian-Lorentzian spectral components, assigned to 156 

Na colloids and various color centers, gives a good fit (Zelek et al., 2014 and 2015). However, 157 

fitting the spectra is non equivocal. Here, we use a minimum number of spectral components, as 158 

for villiaumite. The main band, at 640 nm, is fitted with a single Lorentzian component (Fig. 1b), 159 

because it arises from a surface plasmon resonance of Na nanoparticles (e.g., Seinen et al., 1994). 160 

The FWHM, 105 nm, is similar to the values found in the Klodawa mine (Wesełucha- irc   s a 161 

et al., 2012) and larger than in villiaumite (86 nm) . Minor additional Gaussian-shape 162 

contributions at 430, 531 and 744 nm may be assigned to F-, R- (3 neighboring F-centers) and M 163 

(2 neighboring F-centers) color centers, respectively. The actual position of these bands is shifted 164 



relative to that expected from relation (1), at 473, 550 and 705 nm for the F-, R- and M-centers-, 165 

respectively. The same centers are found in the halite from Klodawa mine and a similar 166 

discrepancy with the Mollwo-Ivey relation is observed (Wesełucha- irc   s a et al., 2012). 167 

Finally, a fourth minor Gaussian contribution occurs at 385 nm as in other natural halites ( o le, 168 

      Wesełucha- irc   s a et al., 2012), but its origin is unclear. 169 

 170 

Scaling the spectra of red villiaumite and blue halite 171 

The halite spectrum presents similarities with that of villiaumite, but occurs at larger 172 

wavelengths. As a consequence, the transmission window does not occur in the same spectral 173 

region, being located on the long or short wavelength side of the main band in red villiaumite and 174 

blue halite, respectively (Figures 1a and 1b). This explains the difference in the color of these 175 

minerals, despite both show a broad Lorentzian shape plasmon resonance with spectral properties 176 

independent of temperature, which is assigned to the presence of Na nanoparticles. For spherical 177 

particles that are smaller than the wavelength of light, the value of the resonance wavelength 178 

depends on the refractive index of the surroundings (Kreibig and Vollmer, 1995). The 179 

wavelength of maximum absorption max may be predicted within the Mie theory, following the 180 

Doyle relation (Doyle, 1958; Davenas et al., 1973; Seifert et al., 1994): 181 

max=c(1+2n0
2
)
1/2

          (3) 182 

where n0 is the refractive index of the host medium and c is the critical wavelength for the onset 183 

of ultra-violet transparency of sodium. The ratio between the max values in villiaumite and halite, 184 

allows elimination of the c term. The ratio calculated from the refractive index of these minerals 185 

is 1.13 to compare to an experimental value of 1.29. This explains qualitatively the redshift of the 186 

plasmon band with the increasing refractive index of the mineral. The underestimation of this 187 



shift when using relation (3) may come from non-spherical shape effects or size distribution of 188 

the Na colloids in geological samples with a complex histor  relative to laborator  samples… 189 

 190 

IMPLICATIONS 191 

The comparison of the optical absorption spectra of halite and villiaumite provides a nice 192 

illustration of Mie theory, through the dramatic influence of the refractive index of halides on the 193 

energy of the plasmon resonance of the embedded metal nanoparticles. Temperatures up to 300-194 

500°C (Zelek et al., 2015; Weerkamp et al., 1994), crystal dislocations and substituted impurities 195 

favor the aggregation of color centers leading to the formation of Na colloids. This explains the 196 

predominance of these colloids in natural halides (Seifert et al., 1994), as demonstrated by their 197 

bright colors. The formation of Na colloids goes with that of free dihalogen molecules, as in the 198 

villiaumite from Kola Peninsula, Russia (Celinski et al., 2016) and can only occur once the 199 

crystal cooled down to avoid the annealing of these colloids. It is of interest that natural purple 200 

fluorites also owe their color to the presence of Ca nanoparticles. Their optical absorption spectra 201 

show an intense, broad absorption band near 560 nm that has been suggested to come from Ca 202 

metal colloids (Bill and Calas, 1983; Rossman, 2010; Gaft et al., 2020; Ryskin et al., 2020). The 203 

same band is found in additively colored synthetic CaF2  (Angervaks et al., 2018). This 204 

absorption band has a Lorentzian shape, which indicates a plasmon resonance origin (Ryskin et 205 

al., 2020). Its position, near 560 nm, is intermediate between that in red villiaumite, 494 nm, and 206 

blue halite, 640 nm. This absorption band allows light transmission in both the red and blue 207 

regions of the spectrum, resulting in the characteristic purple color of irradiated fluorites. It may 208 

be pointed out that the position of the colloid band ranges in the order villiaumite (494 nm)-209 

fluorite (560 nm)-halite (640 nm), i.e. the same ranking as for the refractive indices, 1.3253, 210 

1.4338 and 1.5442, hence qualitatively following the prediction of Relation (3). 211 



Natural halite exhibits a broad range of colors, navy-blue, blue, purple or colorless arising 212 

from various proportions of color centers and Na colloids (Wesełucha-Birczynska et al., 2012). 213 

Zelek et al. (2014) have shown that this may result from the complex sedimentary geology that 214 

governs in the mine the spatial distribution of halite and sylvinite, as 
40

K is suspected to be the 215 

main radiation source. In villiaumite, radiation damage is caused by a specific geological context. 216 

Agpaitic rocks are always enriched in Th and U (Sorensen, 1992). Though XRD only indicates 217 

the presence of NaF, preliminary SEM-EDS investigations of our samples (Figure 2) show the 218 

presence of nanospheres, about 500 nm large, which show a preferential alignment that 219 

apparently guides the {100} cleavage steps. These nanoinclusions contain about 8.8wt% ThO2 220 

(Supplemental Figure S6) and may be at the origin of a permanent irradiation of the mineral, able 221 

to create defects once the mineral cooled down to a few hundreds °C. This explains the presence 222 

of isolated color centers, which otherwise have a limited thermal stability (Schwartz et al., 1994) 223 

and the stability of the Na nanoparticles that are at the origin of the red color. The presence of 224 

thorium in the villiaumite from the Khibiny and Lovozero alkaline massifs in the Kola Peninsula, 225 

Russia (Chukanov et al., 2006) has been explained by its complexation by organic matter, which 226 

was revealed by infrared spectroscopy. Preliminary infrared spectra on the villiaumite from the 227 

Los Archipelago also reveal the presence of aliphatic hydrocarbon groups and carboxylates in our 228 

samples (A. Geisler, unpublished report). The red color of villiaumite, prized in mineral 229 

collections, appears to be also a useful "color indicator" of the conditions of emplacement of the 230 

evolved stages of peralkaline systems. 231 
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 352 

 353 

Figure 1. Room temperature optical absorption spectra of red villiaumite (a) and blue halite (b). 354 

These spectra have been background corrected for light scattering by crystal inhomogeneities. 355 

The main band, assigned to surface plasmon resonance for metallic Na, shifts by about 140 nm in 356 

halite relative to villiaumite. As a consequence, light is transmitted in the long wavelength or 357 

short wavelength side of the main absorption band in villiaumite and halite, respectively, hence 358 

the spectacular color difference. The fit uses a Lorentzian function for the surface plasmon 359 

resonance (main band) and Gaussian components for the minority transient color centers. The 360 

functions used for the fit are displayed in green. The resulting fit gives the red dots. 361 



 362 

 363 

Figure 2. Scanning Electron Microscopy micrograph in backscattered electron mode of a 364 

villiaumite cleavage, showing the presence op thorium-rich nano-inclusions. The scale is given 365 

by the green bars, separated by 500 nm. EDS analysis of these nano-inclusions (Supplemental 366 

information, Fig. S6) shows that thorium is not accompanied by uranium. The apparent alignment 367 

of these inclusions inherits from the growth of the mineral, in which they guide the {100} 368 

cleavage steps. These solid inclusions are thought to cause a permanent internal irradiation of the 369 

mineral. Once the villiaumite-bearing rock cools down to low temperatures, typically below 370 

400°C, this irradiation will progressively cause the formation of radiation-induced color centers 371 

and metallic sodium nanoparticles at the origin of the intense red coloration, characteristic of 372 

villiaumite. 373 
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