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A joint explanation of infant and old age mortality

Peter Richmond Bertrand M. Roehnér

Abstract

Infant deaths and old age deaths are very different. Thedoare mostly due to severe congenital
malformations of one or a small number of specific organs.n@rcontrary, old age deaths are largely
the outcome of a long process of deterioration which startkse 20s and affects almost all organs.
In terms of age-specific death rates, there is also a clenatisn: The infant death rate falls off
with age, whereas the adult and old age death rate increapeseantially with age in conformity
with Gompertz's law.

Nevertheless it would be satisfactory to explain the twongimeena as two variants within the same
explanatory framework. In other words a mechanism prog@rcombined explanation for the two
forms of mortality would be welcome. This is the purpose &f phesent paper.

We show here that the same biological effects can accourhéotwo cases provided there is a dif-
ference in their severity: death triggered by isolateddednomalies in one case and widespread
wear-out anomalies in the second. We show that quite géyéhgs mechanism leads indeed, re-
spectively, to a declining and an upgoing death rate. Magdhis theoretical framework leads to
the conjecture that the severity of the death effects, vdrathinfancy or old age, are higher for
organisms which are comprised of a larger number of organs.
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2: Institute for Theoretical and High Energy Physics (LPTHEierre and Marie Curie Campus,
Sorbonne University, National Center for Scientific ResbdCNRS), Paris, France.
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1 Introduction: infant versus old age mortality

In this paper we consider the shape of the curves of deatstaata function of age.
Deaths in infancy versus old age death can be charactenzewiways (Berrut et al. 2016, Bois et
al. 2019):

1.1 Shape of the age-specific deathb rate

In infancy the death ratéecreases with age whereas in old ageiricreases, see Fig.1.
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Fig.1: The two phases of human mortality. The data are for the United States over the period 1999-2016.
Between birth and the age of 10 (note the log-log scale) tfanimmortality rate falls off as a power law:
up = A/x7 where the exponent is usually of the order of 1. After the infant phase comes tiegphase
(note the lin-log scale) during which the death rate inaeasxponentially:(z) = poexp(ax) in agreement
with Gompertz’s law.Source: Wonder-CDC data base for detailed mortality.

In medical terminology infancy refers to new born under oearyof age. However, as the decrease
continues until the age of 10, it seems appropriate to extesmdheaning of the term to the whole age
interval over which the death rate is decreasing. This istwiag done in the two papers cited above
and we use the same terminology here.

For humans, the increase of the death rate is described hyathé&nown law of Gompertz (1825).
This law can be summarized by saying that the death rate ds@approximately every 10 years of
age.

1.2 Wear-in versus wear-out

In the terminology of reliability studies, infant mortglits described by aear-in process, that is to
say a phase during which the organs of the new-born start tk wiich results in the elimination of

lwe use the standard definitions of death rates, namglys = Ay/(Az x y) whereAy is the number of deaths in a
given age interval of siz&x andy is the size of the population at the beginning of the agewatarnder consideration.
With this definitionu(x) is the probability (per unit of time) that a person who hashea ager, will die in the subsequent
age interval, see appendix A.



the organisms which are beset with an organ which does ndt appropriately.

On the contrary, old age death is described agear-out process in which all organs experience
damages due to continuous use. The lungs catch less oxygehphes become more fragile, the
arteries become less elastic, and so on. Death occurs ellgrdue to the failure of a crucial organ
but actually this failure is favored by the degradation @& whole organism. For instance, when the
arteries become less elastic, when the lungs become lessiedf it becomes more difficult for the
heart to ensure blood circulation. This means that a heitutéadoes not come about in isolation but
rather in relation with the wear of other organs.

The purpose of this article is to show how the feature (1) ltedtom the feature (2). However,
before coming to that we wish to explain how our study fits ithe broad framework of aging and
senescence studies.

Why do we think that infant mortality is an essential compune the understanding of aging? There
are several reasons that are developed below.

2 The key-role of congenital malformations

2.1 The real challenges of aging models

Not surprisingly, the modeling of aging and senescencedwsved great attention. A comprehensive
review can be found in two papers by Leonid Gavrilov and antalNaGavrilova (2001, 2006).
Readers will find in these papers a comprehensive and vedaléa account of the literature of
aging model2 . In the following subsections we explain why infant mottals a simpler and more
fundamental effect than old age mortality.

2.2 Great diversity in the shape of the death rate in old age

Across species the hyperbolic decrease of the death rake imtancy phase appears to be a phe-
nomenon that is more widespread than its exponential (i.@eng&rtz-like) increase in adulthood.
Indeed, there is much more diversity in old age death ra@s ithinfancy death rates; see in Berrut
et al. (2016) the graph based on zoo species.

In addition for some spicies documented in Gavrilov et aDO@ p. 18 and 33) there is a marked
effect of leveling-off in old age. For instance, house fliagdna maximum life span of 40 days but
around the age of 15 days the exponential growth of the dasths replaced by a section where it is
practically flat.

In humans the dominant diseases in old age are not the sanaglagsvas one century ago. Presently,
there is a prevalence of heart, cancer and Alzheimer’'s sikselereas around 1900 infectious diseases
were still common. Thus, with organisms being confrontediti@rent challenges, one should not be
surprised to see changes in the shape of the death rate igeald a

Finally, the individuals who reach old age were “filtered’tleselected by the diseases to which they
were confronted. If one could observe the signature of theume system one would see that the
immune system of persons of old age is not the same in 2020nHE00, and also not the same in
developing countries than in developed countries.

2Whereas these authors share our approach based on rgliabiéince, and whereas infant mortality is a standard
notion in reliability, they devote only one page (in a tothb8 for the two papers) to the question of infant mortalitipist
disproportion reflects the overwhelming predominance oigagnd senescence studies.
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2.3 Common characteristic of embryonic and infancy death rées

It has been shown recently (Chen et al. 2020) that for zeb?afie embryonic death rate is by
far highest at the beginning of the embryogenesis, an oasenvwhich suggests that most of these
deaths are due to mistakes in the manufacturing procesties odcyte (femelle egg) and sperm cell.
If instead the deaths would be due to mutations during thergoglenesis they would be uniformly
distributed or even (through a cumulative effect) concdett in the late phase of embryogenesis.

Similarly, the infant death rate is by far highest immediatgter birth. By the same argument, it
appears that most of these deaths are due to faults in thefacanuag of the embryo. For instance,
in mamals lung malformations are without consequence ggdgrthe fetus receives its blood from
the mother but they will lead to death as soon as this cororediinterrupted. Embryonic and infant
deaths along with the malformations which are not immedtidethal give us global information
about the underlying manufacturing processes.

2.4 The effects of congenital defects and of aging occur jdig

At first sight it may seem that the infant death rate can bdyedsscribed and explained through the
process of elimination of individuals with malformationSlinical data show that in the first weeks

after birth most of the deaths are due to congenital anomgdercentage data are given in Berrut et
al. 2016). When the most serious malformations have beanrglied the rest of the cohort is less
likely to die.

However, the previous explanation is not really satisfgctor the following reason. In fact, deaths
due to congenital anomalies are not limited to young age bntimrue during the whole life. For
instance, a congenital defect of heart valves may be of nsegprence until the age of 60 or 70 when
the defect becomes more serious because the valve’s ldsdt=ime stiffer (see Bois et al. 2020).

In other words, the wear-in and wear-out processes shouldenseen as occurring successively but
rather simultaneously; it is their strength, not their teti€e, which changes in the course of time.
Immediately after birth, wear-in is completely dominantjereas in old age it is wear-out which is
predominant. | short, taken alone the elimination of comgémalformations cannot explain the
decrease of the death rate. In order to make it work we neegfitoedboth wear-in and wear-out more
precisely.

In the next section we will use the feature already mentiaieale, namely that the infant mortality
is usually due to a congenital defect in one important orgag. (heart, lung, brain, liver, and so on)
whereas the wear-out is due to parallel degradation of vanimportant organs.

3 Modeling the wear-in and wear-out processes

The first step is to decompose any organism into its vitalmsg&or instance, Fig.2 shows a decom-
position into 4 organs, that could be heart, lung, brain @antperature regulation.

Secondly, we must find a way to describe mathematically varetgach organ (as well as the whole
organism) is alive. We do this by defining for each part a ramdariable X; which is its age at
failure. In the case of humans we could make this descrigaoty realistic by giving to theX;

3For a study of embryonic death rates, zebrafish have two gdeantages. (i) As for most species of fish, fertilization
of the eggs occurs outside of the body of the female (ii) Thedl sif the eggs is transparent. Taken together, these two
features imply that one can observe the embryos immediaftdy fertilization, something that is impossible either f
humans, birds or rotifers.
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Fig.2 Decomposition of an organism into vital organs and ditrence between wear-in and wear-out
mechanisms.The first line shows a wear-in death. It is the consequenckeofdilure of a single vital organ.
The second line shows a wear-out death as the consequenodarfrudeterioration of all vital organs. The
graphs on the right-hand side show the implications of timesehanisms in terms of age-specific death rates:
decreasing for wear-in as observed in infant death, inorgdsr wear-out as seen in old-age death.

values from interval0, 125) for it should be remembered that 125 years is an upper bouhdroén
life*. However, as we do not wish to restrict ourselves to only th@dn species, we will normalize
the interval of theX; to (0, 1) where 1 represents the maximum life span of the species.

Now comes the most important step which is to describe the-imeand wear-out mechanisms. Let
us begin with the simplest case which is the wear-out meshani

3.1 Wear-out

The fact that the death of an individual occurs when the lastigng organ fails is expressed by
saying that ifX; = 0.5, X, = 0.3, X5 = 0.7, X, = 0.1 (the X; denote the age at death of vital
organs as shown in Fig.2), then the age of death representbd tandom variabl& will be Z = 0.7,
in other words:

7 = Max(Xy, X, X3, Xy)

For the sake of simplicity we assume that tkigare independent and identically distributed random
variables. This assumption has the merit of making the éicalyderivation possible. However, in
specific applications one can take realistic distributioased on clinical data.

e If f(z) and F(z) respectively represent the density function and the cutiwaldistribution
function of theX;, what will be the density functiory;;(x), of Z?
Let us first consider the case of only two organs.

Fy(x) = P{Z <z} = P{Max(X;, Xy) <z} = P{X; <zandX; < z}

4This was shown to be a consequence of Gompertz's law in Riodrabal. (2016).
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Now, the fact thatX; and X, are independent means that:
P{X, € AandX, € B} = P{X, € AYP{X, € B}

whereA and B are two subsets of the set of real numbers. Therefore:

Fy(z) = P{X, < 2}P{X2 < z} = [F(2)]?
which, by differentiation leads to the density functionaf

fz(x) = 2F"(x)F(z) = 2f (2) F(x)

Forp parts instead of only two, one gets similarly:

Fy(z) = [F(@)]" = fz(z) = pf(a) [F(x)]"" (1)

In order to see what is the shape of this function we conslieisimple case of a random variable
with a uniform density over the intervéd, 1); in this case:

forr e (0,1): f(x)=1, F(z) =2

Thus,
forz € (0,1): fz(x) = paP!

This function is shown in Fig.3b fgr = 2,4, 8, 15 We see that it is a fashcreasing function of age.
According to the analytical expressighp(x) is a power law function but whembecomes large it has
the shape of an exponential (as shown in Fig.2kpfer 15), a result which is qualitatively consistent
with Gompertz’s law according to which the probability ofadle increases exponentially with age.

3.2 Wear-in

For the example considered above wear-in death would meathth age of death i3V = 0.1, i.e.:
W = Min(Xy, X,, X3, X,)
For the distribution fonctior, (z) we can write:
Fy(z) = P{W <z} =1-P{W >z} = 1-P{Min(Xy, X5) > 2} = 1-P{X; >z andX, > z}
Again using the independence property, one gets:
Fy(z)=1—P{X, > 2}P{X, >z} =1—[1 — F(z)]’

Then, as above, this result generalizes to:

Fi(z) = 1-[1 = F@)]’ = fuw(z) = pf(z) [1 - F(a)]"" (2)
For the case of uniform random variables, one gets:

forz € (0,1): fw(z) =p(1l —z)P?

which means that the probability of death isl@reasing function of age, consistent with what is
expected for infant mortality. The decrease is ilustrateldig.3a forp = 2,4, 8, 15.
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3.3 Special cases

One can gain an intuitive understanding of the theoreti@@héwork by considering a number of
special cases.

Firstly, we can consider the extreme case of an organismanhiilgh number of components, say one
million or if you prefer a numbep which tends to infinity. Then, intuitively, the wear-in asgotion
gives a probability of death equal to 1 because for such & latgnber of components there will
always be one which will fails almost immediately.

For the same reason the wear-out assumption gives a pribpabiieath equal to zero for almost all
ages because it will take a very long time to eliminate all amglcomponents.

The other extreme case is an organism with only one vital amapt. Then, obviously, the two
assumptions should give the same result. Indeed, the fasi{) and (2) givefy () = fz(z) =

f(z). Here the shape ofy, and f, is completely determined by(z) which can have any shape,
whether increasing or decreasing.

As the numbep of components increases the factor— F')?, which is a decreasing function will
become more and more predominant. Similarly, for old age falctor 77, which is an increasing
function, will become predominant wherincreases.

In summary, this discussion makes clear that equationsnd.Y2) do not describe only one model
but, by playing withp and f (z), they can describe a whole spectrum of cases. It is in thiseséat
the model is really predictive.

3.4 Graphs of infancy and old age death rates

The density functions of the variablég andZ give the infant and old age death rates respectively
(Fig.3a,b).
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Fig.3a,b  Graph of the density functions of the Min and Max of aset of random variables.which rep-
resent the age-specific death rate in young and old age respieely. When the number of organs becomes
large, the death rates become exponential.

The graphs suggest the conjecture that the larger the nuoflo®mponents, the steeper the death
rates with respect to age. When- oo it can be seen directly on the formulas tifgt falls vertically

7



from pf(0) to zero, whereag, jumps vertically from zero tp f(1).

As technical systems have often many well-defined, sepeocat@onents it should be possible to test
our conjecture. For instance microprocessors comprisiagga number of chips should have steeper
death rate curves than those with only a small number.ofschiginfortunately, for such technical
systems there are almost no life-time data publicly av&laprobably for reasons of commercial
confidentiality.

4 Conclusion

We have proposed two paradigms of death:

(1) single-organ death which occurs through the failurg.(elue to congenital malformation) of one
crucial organ,

(i) multi-organ death which comes about through the detation of almost all organs.

At this point a distinction should be made between the ugdeylcause of death (e.g. cancer or
an infectious disease) and the immediate cause of deathtHeiformer which is of interest and is
reported in the death statistics by cause of death. On theeacgnthe immediate cause of death is
almost always the same, namely a heart failure.

For instance, a liver cancer will lead to blood poiseningalihnakes the heart unable to perform its
function properly. It is because other organs (e.g. thedydhare also in poor shape that the partial
defect of the liver eventually proves fatal. It is in this serthat death occurs as as a kind of overall
collapse.

The model predicts that the slope of the death rate is highleether for fall or increase) when the

number of organs is larger. Can this conjecture be testedobogiical systems? The answer is “yes”

and “no”.

“Yes”, because a comparison of various species shows thet tire indeed great differences in the
number of organs. For instance, rotifers (a small swimmimghal about 200 micrometers in length)

have no heart, no blood, no lungs, no kidneys. In short, tla@g Imuch less organs than fish.

“No” because there is a serious obstacle, namely the gréatatice in lifetimes. Whereas rotifers

live about 5 days, zebrafish live about 5 years. Unless one&imow to normalize the respective

times there can be no meaningfull comparison for, needtesay, age normalization affects the mea-
surement of the slope.

A Appendix A. Statistical and probabilistic descriptions o the
death process

In this appendix we discuss some particular aspects of darétical framework. The first subsection
clarifies the connection between age and time.in aging pses The second subsection establishes
the important connection between the density function efes of death and its frequency counter-
part commonly refered to as the death rate.

A.1 Age versus time

Should we use age (noted or time (notedt)? At first sight, the question may seem irrelevant for if
time is counted from the moment of birth the two variablesideatical. It is not so simple however,
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as shown by the fact that in our min-max argument we had toduire as many age of death variables
X1, Xs, ... as there are vital organs. Moreover, for any organ, its rgalis the time elapsed since
it was created. For instance, in zebrafish the heart appedrstarts to beat some 20 hours after
fertilization. Most vital organs are created during emigigoesis which means that their age is not
identical with time (measured after birth which for fish med&atching of the eggs). That is why
was a more appropriate.variable than time.

However, in this appendix our perspective is different ferwish to consider the evolution of a whole
population or more precisely of a cohort of individuals batithe same moment. Taking this moment
as origin of the time axis makes the age of each individualensally identical with the time given
by an external clock.

Actually, to describe the evolution of a cohort, time seerbetéer variable than its age. Why?
Although the population exists at any time, for externalestesrs, it becomes real only when we can
know its size and that occurs only when a census (or a surakgstplace. Censuses are conducted
at specific time intervals (e.g. in the US every decade) andexm simultaneously all cohorts. That
is why in this part calendar time seems to be the natural maigdge will play a role only if we wish

to consider different age groups.

A.2 Death rate versus probability density

As always, the tricky point is the relationship between th&bpbilistic notions and their statistical
counterpart. The goal of this appendix is to recall the maitioms and how they are related.

Lett denote the age of individuals.in a cohort
Let y(¢) denote the size of the cohort at tim&Ve wish to describe the decrease of the population in
the course of time.

The probability that an individual would die in the time intal (¢, ¢,) (which is also an age interval)
is:

(Number of those who di¢fnumber of those alive initially}= [y(t1) — y(t2)]/y (1)

to get the probability of dying per unit of time we must dividg the length of the time interval
At =ty — ;.

p(t) = (1/At) [(y(t) —y(t2)) /y(t)]

Note thatu(t) represents what is usually called the death rate, sometitaesalled the hazard rate
or the force of death. Note also thatt,) — y(t2) = —Ay.

Now, let us consider the case of a constant probability ofiglyiOne is led to11/y)(dy/dt) = —a
which gives:y(t) = yo exp(—at). In other words, the survival function is a decreasing exoial.

Now let us consider a random variablewhich represents the age of death of an individual. Its
density function, defined byf(t)dt = P{t < T < t + dt}, is the derivative of the distribution
function: F'(t) = P{T < t}. f(t)dt is the probability that the death of the individual occurdhia
age intervalt, t + dt) ; f(t) is the probability per unit of time.

Note that:f(¢) ~ wu(t). In words,u(t) is the statistical counterpart of the probability densitgdtion
of T.

If we consider again the case of a constant probability ohglyfor ages in a bounded interval and
zero elsewhere), it meangit) = u(t) = a. Then, the distribution function isf'(¢t) = at, at least
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until at is equal to 1. The decreasing distribution function is:
Git)y=P{T'>t}=1-F(t)=1—at

Note thatG(¢) is different from the survival function.
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