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A joint explanation of infant and old age mortality

Peter Richmond1, Bertrand M. Roehner2

Abstract
Infant deaths and old age deaths are very different. The former are mostly due to severe congenital
malformations of one or a small number of specific organs. On the contrary, old age deaths are largely
the outcome of a long process of deterioration which starts in the 20s and affects almost all organs.
In terms of age-specific death rates, there is also a clear distinction: The infant death rate falls off
with age, whereas the adult and old age death rate increases exponentially with age in conformity
with Gompertz’s law.
Nevertheless it would be satisfactory to explain the two phenomena as two variants within the same
explanatory framework. In other words a mechanism providing a combined explanation for the two
forms of mortality would be welcome. This is the purpose of the present paper.
We show here that the same biological effects can account forthe two cases provided there is a dif-
ference in their severity: death triggered by isolated lethal anomalies in one case and widespread
wear-out anomalies in the second. We show that quite generally this mechanism leads indeed, re-
spectively, to a declining and an upgoing death rate. Moreover, this theoretical framework leads to
the conjecture that the severity of the death effects, whether in infancy or old age, are higher for
organisms which are comprised of a larger number of organs.

1: School of Physics, Trinity College Dublin, Ireland.
Email: peterrichmond@ymail.com

2: Institute for Theoretical and High Energy Physics (LPTHE), Pierre and Marie Curie Campus,
Sorbonne University, National Center for Scientific Research (CNRS), Paris, France.
Email: roehner@lpthe.jussieu.fr



1 Introduction: infant versus old age mortality

In this paper we consider the shape of the curves of death rates1as a function of age.
Deaths in infancy versus old age death can be characterized in two ways (Berrut et al. 2016, Bois et
al. 2019):

1.1 Shape of the age-specific deathb rate

In infancy the death ratedecreases with age whereas in old age itincreases, see Fig.1.
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Fig.1: The two phases of human mortality.The data are for the United States over the period 1999-2016.
Between birth and the age of 10 (note the log-log scale) the infant mortality rate falls off as a power law:
µb = A/xγ where the exponentγ is usually of the order of 1. After the infant phase comes the aging phase
(note the lin-log scale) during which the death rate increases exponentiallyµ(x) = µ0 exp(αx) in agreement
with Gompertz’s law.Source: Wonder-CDC data base for detailed mortality.

In medical terminology infancy refers to new born under one year of age. However, as the decrease
continues until the age of 10, it seems appropriate to extendthe meaning of the term to the whole age
interval over which the death rate is decreasing. This is what was done in the two papers cited above
and we use the same terminology here.
For humans, the increase of the death rate is described by thewell-known law of Gompertz (1825).
This law can be summarized by saying that the death rate doubles approximately every 10 years of
age.

1.2 Wear-in versus wear-out

In the terminology of reliability studies, infant mortality is described by awear-in process, that is to
say a phase during which the organs of the new-born start to work which results in the elimination of

1We use the standard definitions of death rates, namely:µ(x) = ∆y/(∆x× y) where∆y is the number of deaths in a
given age interval of size∆x andy is the size of the population at the beginning of the age interval under consideration.
With this definitionµ(x) is the probability (per unit of time) that a person who has reached agex, will die in the subsequent
age interval, see appendix A.
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the organisms which are beset with an organ which does not work appropriately.
On the contrary, old age death is described as awear-out process in which all organs experience
damages due to continuous use. The lungs catch less oxygen, the bones become more fragile, the
arteries become less elastic, and so on. Death occurs eventually due to the failure of a crucial organ
but actually this failure is favored by the degradation of the whole organism. For instance, when the
arteries become less elastic, when the lungs become less effective, it becomes more difficult for the
heart to ensure blood circulation. This means that a heart failure does not come about in isolation but
rather in relation with the wear of other organs.

The purpose of this article is to show how the feature (1) results from the feature (2). However,
before coming to that we wish to explain how our study fits intothe broad framework of aging and
senescence studies.

Why do we think that infant mortality is an essential component in the understanding of aging? There
are several reasons that are developed below.

2 The key-role of congenital malformations

2.1 The real challenges of aging models

Not surprisingly, the modeling of aging and senescence has received great attention. A comprehensive
review can be found in two papers by Leonid Gavrilov and and Natalia Gavrilova (2001, 2006).
Readers will find in these papers a comprehensive and very readable account of the literature of
aging models2 . In the following subsections we explain why infant mortality is a simpler and more
fundamental effect than old age mortality.

2.2 Great diversity in the shape of the death rate in old age

Across species the hyperbolic decrease of the death rate in the infancy phase appears to be a phe-
nomenon that is more widespread than its exponential (i.e. Gompertz-like) increase in adulthood.
Indeed, there is much more diversity in old age death rates than in infancy death rates; see in Berrut
et al. (2016) the graph based on zoo species.

In addition for some spłcies documented in Gavrilov et al. (2006, p. 18 and 33) there is a marked
effect of leveling-off in old age. For instance, house flies have a maximum life span of 40 days but
around the age of 15 days the exponential growth of the death rate is replaced by a section where it is
practically flat.

In humans the dominant diseases in old age are not the same nowadays as one century ago. Presently,
there is a prevalence of heart, cancer and Alzheimer’s disease whereas around 1900 infectious diseases
were still common. Thus, with organisms being confronted todifferent challenges, one should not be
surprised to see changes in the shape of the death rate in old age.

Finally, the individuals who reach old age were “filtered” and selected by the diseases to which they
were confronted. If one could observe the signature of the immune system one would see that the
immune system of persons of old age is not the same in 2020 thanin 1900, and also not the same in
developing countries than in developed countries.

2Whereas these authors share our approach based on reliability science, and whereas infant mortality is a standard
notion in reliability, they devote only one page (in a total of 58 for the two papers) to the question of infant mortality. This
disproportion reflects the overwhelming predominance of aging and senescence studies.
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2.3 Common characteristic of embryonic and infancy death rates

It has been shown recently (Chen et al. 2020) that for zebrafish3 the embryonic death rate is by
far highest at the beginning of the embryogenesis, an observation which suggests that most of these
deaths are due to mistakes in the manufacturing processes ofthe oocyte (femelle egg) and sperm cell.
If instead the deaths would be due to mutations during the embryogenesis they would be uniformly
distributed or even (through a cumulative effect) concentrated in the late phase of embryogenesis.

Similarly, the infant death rate is by far highest immediately after birth. By the same argument, it
appears that most of these deaths are due to faults in the manufacuring of the embryo. For instance,
in mamals lung malformations are without consequence as long as the fetus receives its blood from
the mother but they will lead to death as soon as this connection is interrupted. Embryonic and infant
deaths along with the malformations which are not immediately lethal give us global information
about the underlying manufacturing processes.

2.4 The effects of congenital defects and of aging occur jointly

At first sight it may seem that the infant death rate can be easily described and explained through the
process of elimination of individuals with malformations.Clinical data show that in the first weeks
after birth most of the deaths are due to congenital anomalies (percentage data are given in Berrut et
al. 2016). When the most serious malformations have been eliminated the rest of the cohort is less
likely to die.

However, the previous explanation is not really satisfactory for the following reason. In fact, deaths
due to congenital anomalies are not limited to young age but continue during the whole life. For
instance, a congenital defect of heart valves may be of no consequence until the age of 60 or 70 when
the defect becomes more serious because the valve’s leafletsbecome stiffer (see Bois et al. 2020).

In other words, the wear-in and wear-out processes should not be seen as occurring successively but
rather simultaneously; it is their strength, not their existence, which changes in the course of time.
Immediately after birth, wear-in is completely dominant, whereas in old age it is wear-out which is
predominant. I short, taken alone the elimination of congenital malformations cannot explain the
decrease of the death rate. In order to make it work we need to define both wear-in and wear-out more
precisely.

In the next section we will use the feature already mentionedabove, namely that the infant mortality
is usually due to a congenital defect in one important organ (e.g. heart, lung, brain, liver, and so on)
whereas the wear-out is due to parallel degradation of various important organs.

3 Modeling the wear-in and wear-out processes

The first step is to decompose any organism into its vital organs. For instance, Fig.2 shows a decom-
position into 4 organs, that could be heart, lung, brain and temperature regulation.

Secondly, we must find a way to describe mathematically whether each organ (as well as the whole
organism) is alive. We do this by defining for each part a random variableXi which is its age at
failure. In the case of humans we could make this descriptionfairly realistic by giving to theXi

3For a study of embryonic death rates, zebrafish have two greatadvantages. (i) As for most species of fish, fertilization
of the eggs occurs outside of the body of the female (ii) The shell of the eggs is transparent. Taken together, these two
features imply that one can observe the embryos immediatelyafter fertilization, something that is impossible either for
humans, birds or rotifers.
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Fig.2 Decomposition of an organism into vital organs and difference between wear-in and wear-out
mechanisms.The first line shows a wear-in death. It is the consequence of the failure of a single vital organ.
The second line shows a wear-out death as the consequence of uniform deterioration of all vital organs. The
graphs on the right-hand side show the implications of thesemechanisms in terms of age-specific death rates:
decreasing for wear-in as observed in infant death, increasing for wear-out as seen in old-age death.

values from interval(0, 125) for it should be remembered that 125 years is an upper bound ofhuman
life4. However, as we do not wish to restrict ourselves to only the human species, we will normalize
the interval of theXi to (0, 1) where 1 represents the maximum life span of the species.

Now comes the most important step which is to describe the wear-in and wear-out mechanisms. Let
us begin with the simplest case which is the wear-out mechanism.

3.1 Wear-out

The fact that the death of an individual occurs when the last surviving organ fails is expressed by
saying that ifX1 = 0.5, X2 = 0.3, X3 = 0.7, X4 = 0.1 (theXi denote the age at death of vital
organs as shown in Fig.2), then the age of death represented by the random variableZ will be Z = 0.7,
in other words:

Z = Max(X1, X2, X3, X4)

For the sake of simplicity we assume that theXi are independent and identically distributed random
variables. This assumption has the merit of making the analytical derivation possible. However, in
specific applications one can take realistic distributionsbased on clinical data.

• If f(x) andF (x) respectively represent the density function and the cumulative distribution
function of theXi, what will be the density function,fZ(x), of Z?
Let us first consider the case of only two organs.

FZ(x) = P{Z ≤ x} = P{Max(X1, X2) ≤ x} = P{X1 ≤ x andX2 ≤ x}

4This was shown to be a consequence of Gompertz’s law in Richmond et al. (2016).
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Now, the fact thatX1 andX2 are independent means that:

P{X1 ∈ A andX2 ∈ B} = P{X1 ∈ A}P{X2 ∈ B}

whereA andB are two subsets of the set of real numbers. Therefore:

FZ(x) = P{X1 ≤ x}P{X2 ≤ x} = [F (x)]2

which, by differentiation leads to the density function ofZ:

fZ(x) = 2F ′(x)F (x) = 2f(x)F (x)

Forp parts instead of only two, one gets similarly:

FZ(x) = [F (x)]p ⇒ fZ(x) = pf(x) [F (x)]p−1 (1)

In order to see what is the shape of this function we consider the simple case of a random variable
with a uniform density over the interval(0, 1); in this case:

for x ∈ (0, 1) : f(x) = 1, F (x) = x

Thus,
for x ∈ (0, 1) : fZ(x) = pxp−1

This function is shown in Fig.3b forp = 2, 4, 8, 15 We see that it is a fastincreasing function of age.
According to the analytical expressionfZ(x) is a power law function but whenp becomes large it has
the shape of an exponential (as shown in Fig.2b forp = 15), a result which is qualitatively consistent
with Gompertz’s law according to which the probability of death increases exponentially with age.

3.2 Wear-in

For the example considered above wear-in death would mean that the age of death is:W = 0.1, i.e.:

W = Min(X1, X2, X3, X4)

For the distribution fonctionFW (x) we can write:

FW (x) = P{W ≤ x} = 1−P{W > x} = 1−P{Min(X1, X2) > x} = 1−P{X1 > x andX2 > x}

Again using the independence property, one gets:

FW (x) = 1 − P{X1 > x}P{X2 > x} = 1 − [1 − F (x)]2

Then, as above, this result generalizes to:

FW (x) = 1 − [1 − F (x)]p ⇒ fW (x) = pf(x) [1 − F (x)]p−1 (2)

For the case of uniform random variables, one gets:

for x ∈ (0, 1) : fW (x) = p(1 − x)p−1

which means that the probability of death is adecreasing function of age, consistent with what is
expected for infant mortality. The decrease is ilustrated in Fig.3a forp = 2, 4, 8, 15.
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3.3 Special cases

One can gain an intuitive understanding of the theoretical framework by considering a number of
special cases.

Firstly, we can consider the extreme case of an organism witha high number of components, say one
million or if you prefer a numberp which tends to infinity. Then, intuitively, the wear-in assumption
gives a probability of death equal to 1 because for such a large number of components there will
always be one which will fails almost immediately.
For the same reason the wear-out assumption gives a probability of death equal to zero for almost all
ages because it will take a very long time to eliminate all andany components.

The other extreme case is an organism with only one vital component. Then, obviously, the two
assumptions should give the same result. Indeed, the formulas (1) and (2) give:fW (x) = fZ(x) =
f(x). Here the shape offW andfZ is completely determined byf(x) which can have any shape,
whether increasing or decreasing.

As the numberp of components increases the factor(1 − F )p, which is a decreasing function will
become more and more predominant. Similarly, for old age, the factorF p, which is an increasing
function, will become predominant whenp increases.

In summary, this discussion makes clear that equations (1) and (2) do not describe only one model
but, by playing withp andf(x), they can describe a whole spectrum of cases. It is in this sense that
the model is really predictive.

3.4 Graphs of infancy and old age death rates

The density functions of the variablesW andZ give the infant and old age death rates respectively
(Fig.3a,b).
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Fig.3a,b Graph of the density functions of the Min and Max of aset of random variables.which rep-
resent the age-specific death rate in young and old age respectively. When the number of organs becomes
large, the death rates become exponential.

The graphs suggest the conjecture that the larger the numberof components, the steeper the death
rates with respect to age. Whenp → ∞ it can be seen directly on the formulas thatfW falls vertically
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from pf(0) to zero, whereasfZ jumps vertically from zero topf(1).

As technical systems have often many well-defined, separatecomponents it should be possible to test
our conjecture. For instance microprocessors comprising alarge number of chips should have steeper
death rate curves than those with only a small number.of chips. Unfortunately, for such technical
systems there are almost no life-time data publicly available, probably for reasons of commercial
confidentiality.

4 Conclusion

We have proposed two paradigms of death:
(i) single-organ death which occurs through the failure (e.g. due to congenital malformation) of one
crucial organ,
(ii) multi-organ death which comes about through the deterioration of almost all organs.

At this point a distinction should be made between the underlying cause of death (e.g. cancer or
an infectious disease) and the immediate cause of death. It is the former which is of interest and is
reported in the death statistics by cause of death. On the contrary, the immediate cause of death is
almost always the same, namely a heart failure.
For instance, a liver cancer will lead to blood poisening which makes the heart unable to perform its
function properly. It is because other organs (e.g. the kidneys) are also in poor shape that the partial
defect of the liver eventually proves fatal. It is in this sense that death occurs as as a kind of overall
collapse.

The model predicts that the slope of the death rate is higher (whether for fall or increase) when the
number of organs is larger. Can this conjecture be tested on biological systems? The answer is “yes”
and “no”.
“Yes”, because a comparison of various species shows that there are indeed great differences in the
number of organs. For instance, rotifers (a small swimming animal about 200 micrometers in length)
have no heart, no blood, no lungs, no kidneys. In short, they have much less organs than fish.
“No” because there is a serious obstacle, namely the great difference in lifetimes. Whereas rotifers
live about 5 days, zebrafish live about 5 years. Unless one knows how to normalize the respective
times there can be no meaningfull comparison for, needless to say, age normalization affects the mea-
surement of the slope.

A Appendix A. Statistical and probabilistic descriptions of the
death process

In this appendix we discuss some particular aspects of the theoretical framework. The first subsection
clarifies the connection between age and time.in aging processes. The second subsection establishes
the important connection between the density function of the ages of death and its frequency counter-
part commonly refered to as the death rate.

A.1 Age versus time

Should we use age (notedx) or time (notedt)? At first sight, the question may seem irrelevant for if
time is counted from the moment of birth the two variables areidentical. It is not so simple however,
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as shown by the fact that in our min-max argument we had to introduce as many age of death variables
X1, X2, . . . as there are vital organs. Moreover, for any organ, its real age is the time elapsed since
it was created. For instance, in zebrafish the heart appears and starts to beat some 20 hours after
fertilization. Most vital organs are created during embryogenesis which means that their age is not
identical with time (measured after birth which for fish means hatching of the eggs). That is whyX
was a more appropriate.variable than time.

However, in this appendix our perspective is different for we wish to consider the evolution of a whole
population or more precisely of a cohort of individuals bornat the same moment. Taking this moment
as origin of the time axis makes the age of each individual numerically identical with the time given
by an external clock.

Actually, to describe the evolution of a cohort, time seems abetter variable than its age. Why?
Although the population exists at any time, for external observers, it becomes real only when we can
know its size and that occurs only when a census (or a survey) takes place. Censuses are conducted
at specific time intervals (e.g. in the US every decade) and concern simultaneously all cohorts. That
is why in this part calendar time seems to be the natural variable. Age will play a role only if we wish
to consider different age groups.

A.2 Death rate versus probability density

As always, the tricky point is the relationship between the probabilistic notions and their statistical
counterpart. The goal of this appendix is to recall the main notions and how they are related.

Let t denote the age of individuals.in a cohort
Let y(t) denote the size of the cohort at timet We wish to describe the decrease of the population in
the course of time.

The probability that an individual would die in the time interval (t1, t2) (which is also an age interval)
is:

(Number of those who die)/(number of those alive initially)= [y(t1) − y(t2)]/y(t1)

to get the probability of dying per unit of time we must divideby the length of the time interval
∆t = t2 − t1.

µ(t) = (1/∆t) [(y(t1) − y(t2)) /y(t)]

Note thatµ(t) represents what is usually called the death rate, sometimesalso called the hazard rate
or the force of death. Note also that:y(t1) − y(t2) = −∆y.

Now, let us consider the case of a constant probability of dying. One is led to:(1/y)(dy/dt) = −a
which gives:y(t) = y0 exp(−at). In other words, the survival function is a decreasing exponential.

Now let us consider a random variableT which represents the age of death of an individual. Its
density function, defined by:f(t)dt = P{t < T < t + dt}, is the derivative of the distribution
function: F (t) = P{T ≤ t}. f(t)dt is the probability that the death of the individual occurs inthe
age interval(t, t + dt) ; f(t) is the probability per unit of time.

Note that:f(t) ∼ µ(t). In words,µ(t) is the statistical counterpart of the probability density function
of T .

If we consider again the case of a constant probability of dying (for ages in a bounded interval and
zero elsewhere), it means:f(t) = µ(t) = a. Then, the distribution function is:F (t) = at, at least
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until at is equal to 1. The decreasing distribution function is:

G(t) = P{T > t} = 1 − F (t) = 1 − at

Note thatG(t) is different from the survival function.
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