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We report on an investigation of bubble-induced turbulence. Bubbles of a size larger than
the dissipative scale cannot be treated as pointwise inclusions, and generate important
hydrodynamic fields in the carrier fluid when in motion. Furthermore, bubble motions
may induce a collective agitation due to hydrodynamic interactions which display some
turbulent-like features. We tackle this complex phenomenon numerically, performing
direct numerical simulations with a volume-of-fluid method. In the first part of the work,
we perform both two-dimensional and three-dimensional tests in order to determine
appropriate numerical and physical parameters. We then carry out a highly resolved
simulation of a three-dimensional bubble column, with a set-up and physical parameters
similar to those used in laboratory experiments. This is the largest simulation attempted
for such a configuration and is only possible thanks to adaptive grid refinement. Results
are compared both with experiments and previous coarse-mesh numerical simulations. In
particular, the one-point probability density function of the velocity fluctuations is in good
agreement with experiments. The spectra of the kinetic energy show a clear k> scaling.
The mechanisms underlying the energy transfer and notably the possible presence of a
cascade are unveiled by a local scale-by-scale analysis in physical space. The comparison
with previous simulations indicates to what extent simulations not fully resolved may yet
give correct results, from a statistical point of view.

Key words: bubble dynamics, gas/liquid flow

1. Introduction

Multiphase flows are common and a central topic in fluid mechanics (Prosperetti &
Tryggvason 2009), as they are present in a number of phenomena including pollutant
dispersion, sedimentation, bubble spray in ocean dynamics as well as bubble columns.
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Among the various kinds of multiphase flows, bubbly flows are a particularly
challenging and key field of investigation, both for their fundamental dynamics and their
numerous applications in engineering and environmental science (Magnaudet & Eames
2000; Prosperetti 2004; Clift, Grace & Weber 2005; Ern et al. 2012; Lohse 2018; Mathai,
Lohse & Sun 2020). While much attention has been paid in the last decades to the
dynamics of small inertial or neutrally buoyant particles (Crowe, Troutt & Chung 1996;
Balachandar & Eaton 2010; Maxey 2017; Elghobashi 2019), much less is known for
bubbles, because they are experimentally, numerically and theoretically more complex
(Prosperetti 2017; Mathai et al. 2020).

In general, turbulent bubbly flows involve several complex and coupled physical
mechanisms (Risso 2018; Mathai et al. 2020). In the absence of other external driving
forces, buoyancy is the main source of motion: bubbles are much lighter than the
surrounding fluid, and they rise attaining a significant velocity. This movement disturbs
the carrying fluid inducing a collective agitation, referred to as pseudo-turbulence,
bubble-induced turbulence or bubble-induced agitation. In turn, this induced agitation may
affect the dynamics of the bubbles. Bubble-induced agitation is, therefore, one of the basic
elements of bubbly flows and needs to be fully understood before being able to grasp more
complex situations as well as proposing adequate models (Besagni, Inzoli & Ziegenhein
2018; Du Cluzeau, Bois & Toutant 2019; Magolan, Lubchenko & Baglietto 2019; Chahed
& Masbernat 2020).

We focus in this work on this phenomenon, leaving out for the moment the presence of
other effects such as the surrounding background turbulence, and also the detailed bubble
dynamics. Moreover, we consider as the main test case a bubble column without walls,
which is a common configuration in chemical engineering (Kantarci, Borak & Ulgen
2005), and appears particularly suitable for the study of the physics of pseudo-turbulence.

Several experimental studies have been carried out to investigate this particular
regime in different configurations (Lance & Bataille 1991; Zenit, Koch & Sangani
2001; Martinez-Mercado, Palacios-Morales & Zenit 2007; Riboux, Risso & Legendre
2010; Mendez-Diaz et al. 2013; Colombet et al. 2015), and significant progress has
been made in figuring out the characteristic features of bubble-induced agitation (Risso
2018). In particular, there is experimental evidence (Risso & Ellingsen 2002) that at
moderate-to-large Reynolds numbers (Re 2 100) the wakes of interacting bubbles are
screened, which tends to show that at large Reynolds numbers the dominant mechanism
underlying liquid agitation is the nonlinear wake interactions. Focusing on the liquid
fluctuations induced by the bubbles, the key observations are that (i) the probability density
function (p.d.f.) of the vertical fluctuations is strongly skewed while the horizontal one is
symmetric, and both are non-Gaussian; (ii) the energy spectrum of the liquid agitation
E(k) displays a robust scaling, E ~ k3.

Some issues remain unclear, however. The range where this scaling applies is under
discussion, with some experiments pointing to larger scales than the diameter (Riboux
et al. 2010), while others at smaller scales (Mercado er al. 2010; Prakash et al. 2016).
Moreover, in some experiments a Kolmogorov spectrum E ~ k—/3 might be present at
small (Martinez-Mercado et al. 2007; Riboux et al. 2010) or at large scales (Prakash et al.
2016). From a physical point of view, two main mechanisms appear to underlie these
scalings: the superposition of Gaussian fluctuations generated near the bubbles (Risso
2011) because of the disordered bubble distribution; and the turbulent fragmentation
(Lance & Bataille 1991) notably at high Reynolds number. It is difficult to disentangle
these two mechanisms, as the steep spectrum E ~ k~3 corresponds to a smooth flow
(Monin & Yaglom 1975), which may be related to a number of different situations
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(Boffetta & Ecke 2012). The relation between pseudo-turbulence and turbulence is also
linked to the last issue. In particular, fluid turbulence is mainly characterised by a cascade
phenomenon, expressed by a constant flux of kinetic energy towards a certain range of
scales (Frisch 1995; Boffetta & Ecke 2012; Alexakis & Biferale 2018). The existence of
such a cascade in the pseudo-turbulence regime would help to understand the underlying
mechanisms. Because the injection of energy is made via buoyancy, it is not clear a
priori which scales are forced and towards which scales the energy is transferred. It
remains, therefore, to be addressed if: (@) there is an energy cascade and in what direction;
(b) whether the shape of the spectrum and then the underlying mechanisms may be traced
back to the energy cascade; (c) whether the Reynolds number has any influence on the
results.

The aim of this work is to address these issues with high-resolution numerical
simulations, combining several two-dimensional (2-D) and three-dimensional (3-D)
numerical experiments.

Indeed, experiments have the great advantage of easily dealing with large Re number
flows. Nevertheless, the experimental investigation of turbulent bubbly flows is difficult,
and isolating and analysing the bubble-induced agitation is tricky (Risso 2018). For
instance, the p.d.f. of the amplitude of the velocity was measured by Martinez-Mercado
et al. (2007), yet the p.d.f. of the vertical and horizontal components of the velocity have
been so far measured only by Riboux et al. (2010) and by Bouche et al. (2014) in a thin
gap. Furthermore, boundary and impurity effects may be present, and getting information
about small scales and energy-flux statistics is practically impossible.

For these reasons, numerical simulations have appeared early as a necessary
complementary tool both for homogeneous and bounded flows (Bunner & Tryggvason
1999; Tryggvason et al. 2001; Fuster et al. 2009; Dabiri, Lu & Tryggvason 2013; Dabiri
& Tryggvason 2015; Elghobashi 2019). However, the numerical approach has its own
limitations. Numerical experiments supposed to reproduce actual experiments must be
designed so as to resolve all the characteristic time scales and spatial scales of the flow.
The simulations fulfilling these criteria are called direct numerical simulations (DNS) of a
flow, and are actually experiments in silico. The numerical investigation of bubble-induced
agitation was pioneered by Bunner & Tryggvason (2002), who presented the first DNS of
homogeneous free-array of bubbles, yet at low Re number (Re &~ 30) and density ratio
(approximately 50).

It is important to consider the interplay between numerics and physics to give the full
context of the present work. Turbulent bubbly flows display a strong multiscale character
with a very broad spectrum of scales, including the excited fluid modes (Pope 2000) and
the scales related to bubble boundary layers (Tryggvason, Scardovelli & Zaleski 2011). In
addition the density ratio between the two phases is generally very high (approximately
1000 in experimental flows) making the problem stiff. These numerical constraints come
directly from the challenging physics of high Reynolds bubbly flows. A few attempts have
been recently made to investigate pseudo-turbulence at high Re number, notably with a
similar purpose as here (Roghair et al. 2011; Pandey, Ramadugu & Perlekar 2020). In these
studies the resolution has been kept at approximately 20 points per diameter (Ax = dj/20),
independently from the Reynolds number of the bubbles which is larger than 200 in most
of the cases. This choice is related to studies carried out at low Re number (Bunner &
Tryggvason 2002). A very recent study characterising the topological properties of the
agitation induced by two bubbles (Hasslberger et al. 2020) is also worth mentioning.
This work uses a higher resolution (Ax = dj,/40), but for a flow at very high Reynolds
number, larger than 900. However, Cano-Lozano et al. (2016a) have shown that such a
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resolution does not allow us to properly resolve the boundary layers around bubbles at
high Reynolds number and this may lead to quantitative and even qualitative errors on
the dynamics. The resolution should rather increase proportionally to the bubble Reynolds
number. From a more quantitative point of view, let us recall that around bubbles a thin
boundary layer develops, whose thickness scales like § ~ Re™!/? (Moore 1963; Landau
& Lifshitz 1987). That means that a resolution of dj,/ Ax &~ 20 leads to less than one grid
point in the boundary layer for Re > 100.

Furthermore, in the first work (Roghair et al. 2011) realistic physical properties are
chosen but just a few bubbles are released, of the order of 10, while in the study by Pandey
et al. (2020) many bubbles are followed but with a very low density ratio between the
fluid and the gas, between 1.1 and 20. The nonlinear interactions among bubbles are,
however, key to the dynamics and their statistical study requires the presence of a large
number of bubbles (Lance & Bataille 1991; Risso 2018). Moreover, while in some cases
and with respect to specific observables the correct physics may be reproduced with a low
density ratio (Diotallevi et al. 2009), that cannot be claimed in general and requires further
scrutiny.

As a matter of fact, these numerical simulations are implicitly coarse grained and,
therefore, they should be considered as large eddy simulations (LES) rather than DNS.
Without in any way diminishing their relevance, as for LES of single-phase flows, results
may well be in accordance with experiments but comparison with resolved DNS appears
necessary (Pope 2000).

The purposes of the present study is, therefore, threefold. (i) To complement the few
experimental results about pseudo-turbulence with a high-resolution DNS. (ii) To provide
a reference fully resolved numerical experiment to analyse the effect of resolution in the
different regimes. In particular, by direct comparison we want to assess to what extent
coarser simulations are reliable. (iii) To exploit the detailed information available to
a DNS, to help with understanding the physical mechanisms underlying the agitation,
with particular attention paid to the possible cascade process. This uses in particular a
scale-by-scale analysis to be described shortly.

The detailed contents of this paper are the following. In §2 we review the basic
mathematical framework of the problem, with particular attention paid to the different
non-dimensional parameters relevant for the physics of bubbly flows. In § 3, we briefly
introduce the numerical procedure. From a numerical point of view, different techniques
can be used to study interfacial flows (Tryggvason et al. 2011; Popinet 2018; Aniszewski
et al. 2020). In the present work, we use the volume-of-fluid (VOF) open-source library
Basilisk (http://basilisk.fr), which provides efficient adaptive mesh refinement, a key
requirement to perform the high-resolution 3-D bubble column simulations presented
here. The code is briefly described and the numerical schemes used for the integration of
the equations are given together with the main references. In § 4, we present the results
obtained in a series of 3-D tests at low or moderate Reynolds numbers. These tests
consist in a regular array of rising bubbles, and we compare our results against analytical
predictions in the case of Stokes flows, or to previous numerical studies. These tests are
important not only to assess the different numerical codes but also to analyse the interplay
between the physical parameters and the numerical requirements to get accurate results.
In § 5 we show the results obtained with very high-resolution simulations of a 2-D bubble
column at different Reynolds numbers. Since with the present computational capability, it
is not possible to carry out a parametric analysis of a realistic flow in three dimensions,
these simulations have been used to accurately set the numerical and physical parameters
to be used in a single 3-D simulation. We show both unsteady and steady simulations
to verify that a reasonable convergence in the relevant statistics is obtained also in the
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unsteady cases. Different statistical observables are studied, namely spectra of kinetic
energy at different Re, and the one-point p.d.f. of the velocity both in the horizontal and
vertical direction.

The 3-D bubble-column case results are reported in § 6. Although in experiments a
homogeneous swarm is usually studied, it has not been possible from a computational
point of view to simulate more than a few layers of bubbles mimicking the swarm. As
will be clear later, this configuration is yet a reasonable numerical set-up with regard to
actual experiments. The configuration corresponds to an Archimedes number of Ar = 185
and is globally comparable with typical laboratory experiments. The p.d.f. of the velocity
is analysed first and compared with previous experimental results (Riboux et al. 2010).
The spectrum of the kinetic energy is then computed and compared with experiments and
results obtained very recently at a lower resolution by Pandey et al. (2020). To gain physical
insights and address the issues related to the cascade, we present a scale-by-scale analysis
of the energy transfers in physical space, rather than in spectral space as commonly done
in isotropic turbulence. This multiscale approach has been developed in relation to the
filtering used in LES (Germano 1992), and permits the detailed study of the cascade
process in different situations (Borue & Orszag 1998; Meneveau & Katz 2000; Chen, Chen
& Eyink 2003; Chen et al. 2006a,b; Eyink 2006; Eyink & Sreenivasan 2006a; Alexakis
& Biferale 2018). Furthermore, in contrast with the spectral approach, this method is by
definition local in space and is thus not limited to homogeneous flows (Aluie & Eyink
2009; Eyink & Aluie 2009). A conclusion, § 7, summarises and discusses our findings.

Three appendices provide some complements for the results shown in the main text;
some more comparison with the literature is given for the case of the array of bubbles
(Appendix A); some numerical issues, such as the effect of grid refinement are presented
in Appendix B; and some complementary results for the 2-D simulations are given in
Appendix C.

2. Mathematical formulation
2.1. Problem statement

We investigate the dynamics of a monodisperse suspension of bubbles rising under the
action of buoyancy in a fluid initially at rest. Several physical parameters characterise the
problem: the gas volume fraction ¢; the number of bubbles N;; the diameter of the bubbles
dj calculated as the diameter of the sphere of equivalent volume; the gravity acceleration
g; the viscosity of the two fluids up, wy; their densities pp, o5 and the surface tension
o. We use the subscripts b for bubbles and / for liquid. The density, the viscosity and the
surface tension of each fluid are considered constant during each numerical experiment.
Four dimensionless groups can be formed in addition to the number of bubbles and the
volume fraction. Two are the density and viscosity ratio, pp/p0; and /iy, respectively.
We briefly analyse the impact of the density ratio but in almost all simulations we have
fixed pp/p1 = 1073 and wp/p; = 1072, which are typical values for air bubbles in water.
The other two dimensionless groups can be characterised by the Galileo number

_ pildplgdy

Ga
i

) 2.1

where Ap = p, — pj, or equivalently the Archimedes number Ar = +/Ga and the E6tvos
(or Bond) number

_ |Aplgd)
=—=t

Eo (2.2)
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These numbers indicate the relative importance of buoyancy and surface tension.

When bubbles move, the flow is also characterised by a velocity scale, which is typically
given by the average bubble velocity (Up), which we have computed averaging in space. It
is then possible to define the bubble Reynolds number based on this velocity

(Up)dp

Re = , 2.3)
v

where v; is the kinematic viscosity of the liquid. It is also possible to use another group
which compares inertial effects with surface tension, the Weber number

oi{Up)%dp ~ EoRe?
We = = .
o Ga
It is important to note that the average bubble velocity may or may not reach a stationary

state in our numerical experiments, so that in general the dynamic dimensionless numbers
are dependent on time Re = Re(?).

2.4)

2.2. Governing equations

Both fluids are governed by the Navier—Stokes equations, which we take here in the
incompressible limit

V.u=0, 2.5)

WV wew= %(—Vp+V - QuD) +f +f,85). (2.6)

here the viscosity u and the density p varies across the two phases; D = [Vu + (Vu)T]/2
is the symmetric deformation tensor; f represents the volumetric forces, which in the
present case are the gravity f; = pg; f, is the force exerted by the surface tension;
8s = 85(x — x;) is a Dirac delta function that identifies the presence of the surface. The
volumetric surface tension force is expressed as (Tryggvason et al. 2011)

fo =0kn+ V0. 2.7)

The first term depends on the surface tension coefficient (a material property), the local
curvature ¥k = V - n and the surface normal, while the last term is different from zero
only if a non-constant surface tension is present. In the present work, we shall deal with
constant surface tension and, therefore, the second term is zero. In practice the surface
tension balances the jump in pressure across the interface and jump relations can be
derived analogously to shock waves. It is worth remarking that since the surface force
acts in the plane of the surface, if we integrate it over the whole closed surface it should
give a null contribution. More details about the numerical representation of the surface
tension are given in a recent review (Popinet 2018).

This set of equations is solved with the Basilisk library with the numerical methods
described in the following section.

3. Numerical method

Basilisk is a library of solvers written using an extension of the C programming language,
called Basilisk C, adapted for discretisation schemes on Cartesian grids (see http://basilisk.
fr). Space is discretised using a Cartesian (multilevel or tree-based) grid where the
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variables are located at the centre of each control volume (a square in 2-D, a cube in 3-D)
and at the centre of each control surface. The possibility to adapt the grid dynamically
is key to efficiently simulate multiphase flows (Popinet 2009). Two primary criteria are
used to decide where to refine the mesh. They are based on a wavelet decomposition of
the velocity and volume fraction fields, respectively (van Hooft er al. 2018). The velocity
criterion is mostly sensitive to the second-derivative of the velocity field and guarantees
refinement in developing boundary layers and wakes. The volume fraction criterion is
sensitive to the curvature of the interface and guarantees the accurate description of the
shape of bubbles. Both criteria are usually combined with a maximum allowed level of
refinement. As demonstrated in previous work, using the earlier code Gerris (Cano-Lozano
et al. 2016a), this strategy leads to very large savings in computational cost compared with
fixed Cartesian grid approaches.

The numerical scheme implemented in Basilisk is very close to that used in Gerris as
described in Popinet (2009). The Navier—Stokes equations are integrated by a projection
method (Chorin 1969). Standard second-order numerical schemes for the spatial gradients
are used (Popinet 2003, 2009; Lagrée, Staron & Popinet 2011). In particular, the
velocity advection term 8j(ujul~)”+1/ % is estimated by means of the Bell-Colella—Glaz
second/third-order unsplit upwind scheme (Popinet 2003). In this way, the problem is
reduced to the solution of a 3-D Helmholtz—Poisson problem for each primitive variable
and a Poisson problem for the pressure correction terms. Both the Helmholtz—Poisson and
Poisson problems are solved using an efficient multilevel solver (Popinet 2003, 2015).

Time is advanced using a second-order fractional-step method with a staggered
discretisation in time of the velocity and scalar fields (Popinet 2009): one supposes the
velocity field to be known at time n and the scalar fields (pressure, temperature, density)
to be known at time n — 1/2, and one computes velocity at time n + 1 and scalars at time
n+1/2.

The interface between the fluids is tracked with a geometric VOF method (Hirt &
Nichols 1981; Scardovelli & Zaleski 1999; Tryggvason et al. 2011). The surface tension
term is computed using an accurate well-balanced, height-function method (Popinet 2018).
In this formulation, the surface tension in (2.6) is expressed as a gradient, and may thus be
included in the pressure term.

Periodic, no-slip and free-slip boundary conditions will be imposed in the different
computations considered.

In the present work, we always consider flows with a bubble concentration of a few per
cent, ¢ < 5 %. Itis known that in this case, coalescence and breakup effects are negligible
(Jha & Govardhan 2015). We have checked that the resolution and the physical set-up are
always consistent to avoid spurious effects, as briefly described in Appendix B.

4. Preliminary tests

To assess the accuracy of the numerical code for the simulation of two-phase bubbly flows,
we have reproduced several literature test cases (Sangani 1987; Esmaeeli & Tryggvason
1998, 1999; Loisy, Naso & Spelt 2017). In particular, we have focused on the configuration
of regular arrays of bubbles rising due to buoyancy. Previous numerical studies were
carried out using different approaches, namely front tracking (Esmaeeli & Tryggvason
1998) and level-set with diffuse interface (Loisy et al. 2017). The present comparison thus
allows a mutual validation of the different methods. After an initial transient where bubbles
accelerate, they eventually reach a quasi-steady-state regime. Depending on bubble size,
surface tension and density, they may follow non-rectilinear paths, with periodic or chaotic
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'3 UJUyDNS  U/Uj analytical ~ Relative difference  dj,/A

0.2 0.768 0.755 1.7 % 63.5
0.3 0.651 0.632 25% 47.64
0.4 0.525 0.51 3% 63.5
0.5 0.408 0.39 43 % 79.4

Table 1. Direct numerical simulations and analytical results for the test analysed by Sangani (1987). The
volume of the cell is kept always the same, and in the last column we display the resolution used.

lateral oscillations (Cano-Lozano et al. 2016a). A regular array of bubbles is reproduced
numerically using a single bubble in a periodic cell. Changing the cell size with respect
to the bubble size, we can adjust the volume fraction of the array. Note that since the
computational domain is unbounded in all directions, an additional body force —(p)g
must be added to avoid the system accelerating in the vertical downward direction. In this
section, we present briefly only the most significant results, while more details are given
in Appendix A.

We have first compared our simulations with the theory of Sangani (1987) for the Stokes
flow regime. The configuration consists of a cubic array of spherical bubbles at different
volume fractions. The non-dimensional numbers of the simulation are the same as in
previous DNS studies, namely

Ar=0.15, Eo=0238, pp/p1=0005 s/ =0.01. (4.1a~d)

Although at very low Reynolds number, this is a severe test case since it is 3-D and
the number of points required may increase rapidly when varying the concentration.
We have carried out simulations at different resolution, asking for a relative adaptation
error less than 5%. In table 1 we show the steady-state velocity of the bubble array
normalised with the velocity of a single isolated bubble, and the quantitative numerical
difference from the analytical solution. A satisfactory agreement is obtained between the
numerical and the analytical solution U/Uy = 1 — 1.1734u*¢'/3 4+ O(¢), where p* =
(g +3/2mp)/ (1 + 1p), U is the drift velocity and Uy is the terminal velocity of a single
bubble. More specifically, U is the vertical component of U = (u);, — (u), where () means
an average over the entire cell, while (), denotes the average over the volume occupied by
the bubble only.

We have then considered test cases at finite Reynolds numbers. In figure 1(a), we show
the results for the 3-D test case proposed by Esmaeeli & Tryggvason (1999). In this case
the flow parameters are

Ar=299, FEo=2, pp/pi=0.1, pwup/pu;=0.1. (4.2a—d)

Our simulations are compared against both the original DNS of Esmaeeli & Tryggvason
(1999), and the more recent results of Loisy et al. (2017). We have analysed the grid
convergence. Results are in good agreement, while convergence is achieved with a slightly
larger number of points (dp/Ax =~ 40) than in previous works (Esmaeeli & Tryggvason
1999; Loisy et al. 2017), where the authors indicate that 30 points per diameter are
sufficient.

The last set of moderate Re test cases is the oblique rise of periodic arrays of bubbles
performed by Loisy et al. (2017). For this test the numerical set-up is the same as for
previous tests, i.e. a single periodic lattice to mimic a regular array. Loisy et al. (2017)
pointed out that for certain values of the non-dimensional parameters, bubbles can have
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Figure 1. (a) Time evolution of the bubble Reynolds number at different grid resolutions for the 3-D
configuration proposed by Esmaeeli & Tryggvason (1999). (b) Time evolution of the components of the bubble
Reynolds number for the case of steady oblique rise, compared against the results by Loisy et al. (2017). The
Reynolds number is defined here as Re = Ud) /v, recalling that U is the vertical component of the drift velocity
U = (u), — (u), where () means an average over the entire cell, while (), denotes the average over the volume
occupied by the bubble only.

an oblique trajectory (not aligned with gravity) at certain volume fractions, although
a single bubble in the same parameter regime would follow a straight vertical path.
Analytical considerations support the possibility of a non-trivial path indicating a possible
transition for Ar ~ 20. In particular three different oblique regimes have been found: (a)
a steady oblique rise; (b) an oscillatory oblique rise, with a bubble oscillating around a
straight oblique path; and (c) a chaotic oblique rise. Such a behaviour had been previously
noticed numerically (Sankaranarayanan et al. 2002), but using a diffuse interface method
and a small density ratio. In the present work, we have simulated the configurations
corresponding to the three regimes in Loisy et al. (2017). The density ratio and the
viscosity ratio between the two phases are the same for all the cases, pp/p; = 0.005,
/i = 0.01. The number of points is varied together with the domain size in order
to always get the same bubble resolution dj,/A = 40. Global agreement between present
simulations and those by Loisy er al. (2017) is excellent. In particular, final values are
the same within numerical errors. In figure 1(b) we show as an example the comparison
for regime a. The details of these simulations together with other results are given in
Appendix A.

Before analysing complex flows at high Reynolds numbers, we have also carried
out a specific quantitative analysis on the effect of two crucial numerical issues: (i)
resolution; (ii) density ratio. It is worth emphasising that there is a strong link between
physical properties and numerical parameters and that this cannot be overlooked. While
the simulation of a single bubble remains feasible even with a very fine grid thanks
to the adaptive mesh, it would not be possible to tackle a problem with many bubbles
with the same grid. Moreover, without the adaptive mesh even the single bubble case
appears desperate at large Reynolds numbers. In contrast, using a coarse grid may
make the computation easy but the results might be largely unreliable. We summarise
here our findings, details are given in Appendix B. In order to simulate bubble flows
quantitatively and in detail, it turns out to be key: (1) to have a number of points per
diameter increasing with the Ar number (we have found that convergence is obtained
with approximately Npoins & Ar/2); (2) using an adaptive mesh, it is sufficient to have
such a fine resolution inside the bubble and in the wake; (3) a large density ratio,
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namely p;/pp > 100, is mandatory to avoid spurious effects which are similar to those
found with a too-coarse grid, leading to a too-high rate of coalescence. Our results confirm
the previous results by Cano-Lozano et al. (2016b).

5. Pseudo-turbulence in two dimensions

In this section, we discuss the results of a 2-D bubble column configuration (Biswas &
Tryggvason 2007). We consider a square domain with the vertical direction z aligned with
gravity, acting downward. The tank, of size 50d;, x 50dp, is filled with a liquid and 32
initially spherical bubbles are placed at the bottom, in a region confined between z = 0
and z = 8dp, and are homogeneously distributed in the lateral direction x, while avoiding
any initial bubble overlap, and with a minimum distance between them of one diameter.
This results in a local volume fraction in the region 0 < z < 8 of ¢ >~ 5 %. The domain
is closed at the bottom by a wall (no-slip boundary condition), and an outflow boundary
condition is used at the top, while on the lateral sides the domain is periodic. At = 0 both
the liquid and the bubbles are at rest.

The viscosity and density ratios are constant in all the simulations and their values
are w;/up = 100 and p;/pp = 1000. Three different simulations have been carried out,
and the corresponding parameters are reported in table 2. In particular, the Ar number is
within the range Ar ~ 100-300, which corresponds to typical 3-D experiments (Riboux
et al. 2010). For 2-D cases, in all the three cases we have used regularly spaced grids with
different resolutions depending on the increasing bubble Reynolds number. In any case,
the resolution requirements to get physically sound results have always been fulfilled, as
highlighted in table 2.

We have focused in this work on the liquid agitation induced by bubbles within
the swarm. Yet, since the problem is non-homogeneous in the vertical direction and
non-stationary, particular care must be taken in the procedure used to compute the
observables and we have, therefore, performed a careful analysis in two dimensions to
prepare the 3-D case. As in the experiment of Riboux et al. (2010), the spectra S;;(k) =

(|at;(k)|%), where &1;(k) is the Fourier transform of the velocity fluctuation in the i direction,
are evaluated separately for the vertical and the horizontal components. The transform
is performed in the x direction, which can be considered as statistically homogeneous,
for both components of the velocity. We have in particular verified that (U), = 0. We
have computed the statistics at each z inside the region z € [15 — 25], and at different
times when bubbles are inside this interrogation window. It is worth remarking that in
the statistical analysis of the velocity fluctuations we have used all the grid data available
in the window, therefore belonging to both phases, as done by Dodd & Ferrante (2016)
for droplets. The results have been found to be statistically homogeneous to a good
degree of approximation (less than 5 %) over windows of length 5d;,. For this reason,
in the following we show results averaged over 5dp, to improve statistics. In particular, we
show statistics only computed between z = 15 and z = 20, because results obtained in the
second window are practically indistinguishable.

As detailed in Appendix C, we have found that the spectra are independent of time,
over almost the whole time-window considered. In particular the spectral slope appears
rather constant, when the bubbles have entered and not yet left the interrogation window.
Furthermore, no appreciable difference is found between the horizontal and the vertical
spectrum, showing that both components dynamically distribute the energy in a similar
manner. We can then write that the one-dimensional spectrum is E(k) = S;; without
compromise. We compare the spectra at different Ar numbers, at the same time ¢t = 15,
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Case Ar Eo N dp/A

a 100 0.12 4096 82
b 140 0.20 8192 164
c 313 0.56 16384 328

Table 2. Non-dimensional parameters for the 2-D bubble column. Here N represents the number of points
and dj,/ A the grid resolution in terms of points per bubble diameter. The Reynolds number usually defined as
Rep, = (Up)dp /v is not defined a priori. Since the present test case is not steady, it is not possible to identify it
clearly. We have computed it by averaging over the time range where it is approximately steady (¢ € [13 — 20])
to obtain Rep, =~ 200, 280, 470 for case a, case b, case c, respectively.
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Figure 2. (a) Spectra of the vertical component of the velocity of liquid fluctuations for different Ar evaluated
at time ¢ = 15. The vertical line corresponds to the bubble diameter. The dot—dashed line indicates the k—5/3

slope and the dashed line the k3 slope. (b) Energy spectrum of vertical fluctuations against k for the case
Ar = 313 for both the unsteady and the steady configurations. For the steady case, the spectrum is obtained by
averaging over time between ¢ = 13 and ¢t = 23. Lines are the same as in panel (a).

as shown in figure 2. Time is always made non-dimensional with the bubble buoyancy
time /dy/g. In all cases spectra are compatible with a scaling E(k) ~ k> in a range
around the diameter scale. At small scales, a steeper scaling E(k) ~ k~* is found also in
all cases, which can be related to a range where viscous effects are important (Monin &
Yaglom 1975). However, for case a (as shown in table 2) this dissipative range appears
to dominate over almost the whole range of scales smaller than the diameter. In case b,
the spectrum displays a —3 slope over roughly a decade, while for the highest Ar number
the range appears even larger. Moreover, we observe for cases b and ¢ that around the
bubble diameter there is a crossover and the spectrum is flatter at larger scales with a
slope close to —5/3. To check the statistical robustness of our analysis, we have repeated
the simulation of the case at Ar = 313 with periodic conditions in both directions. In
this case, the flow is statistically homogeneous in all directions, and after a transient a
steady-state is attained. Therefore, both spatial and time averages are taken. The periodic
simulation confirms the results obtained in the unsteady case. In particular, a k—>/3 scaling
is obtained at scales larger than the bubble diameter. The k> scaling appears to be
present at scales smaller than the bubble diameter and then a steeper slope typical of a
viscous range is found. The k—/3 suggests the presence of an inverse cascade, typical of
2-D turbulence (Boffetta & Ecke 2012), as confirmed by the negative kinetic-energy flux
displayed in Appendix C. In figure 3 we show the vorticity field in the space window that
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Figure 3. Vorticity field displayed in the domain between 15 and 25 bubble diameters in the vertical direction,
at time ¢t = 15 for the different Ar cases: (a) Ar = 100 and Eo = 0.12; (b) Ar = 140 and Eo = 0.2; (¢) Ar = 313
and Eo = 0.56. The colour bar is the same for the three cases and is displayed laterally.

has been used for the evaluation of the spectra at a fixed time = 15. The visualisation
allows us to link the statistical spectral properties to the actual dynamics of the flow.
The bubbles are a source of vorticity, which then creates the trailing wakes. We observe
that at Ar = 100, the interaction between the wakes exists but is small, notably in the
upper part of the window. The plot for Ar = 140 clearly suggests a stronger interaction
between bubble wakes, and the vorticity field is diffused through nonlinear interactions.
The case at Ar = 313 is similar to the Ar = 140, but the strong interaction between
wakes and the presence of dynamics at smaller scales are even more visible, with thin
unstable vorticity filaments released behind the bubbles. The nonlinear wake interactions
are clearly dominant here and bubbles follow quite intricate paths. Although a k=3 scaling
has been found in all cases, the present results show that in case a the spectrum is
basically related to the coherent structures of the wakes. In contrast to the other two cases,
because of the higher Reynolds number, the agitation induced by bubbles starts to play
an important role. Notably bubble dynamics lead to an injection of energy and vorticity
at the scale of the bubble diameter, and energy is transferred towards different scales.
In both cases at Ar = 140 and Ar = 313 these interactions are significant enough that an
inverse cascade of energy towards large scales could be triggered, as suggested by the
—5/3 scaling of the spectrum. In figure 4, the p.d.f.s of the velocity fluctuations for the
different cases are shown together with those obtained in the steady case. The velocity
fluctuation field is computed at each z subtracting the average velocity computed over
the corresponding plane ' = U — (U),. We have verified that keeping only the liquid
phase does not change appreciably the results. From a physical point of view, p.d.f.s are
clearly not Gaussian with exponential tails, and while the horizontal one is symmetric,
the vertical one is skewed, showing anisotropy of fluctuations and the particular status
of the vertical direction. The p.d.f.s obtained are similar for all the Ar studied, although
it has been observed that the dynamics is different. In particular, it has been observed
that stronger interactions at higher Ar lead to more intricate paths. While the vertical
p.d.f. appears a little less skewed at higher Ar, the difference is within statistical error.
It is worth noting nonetheless that this p.d.f. is a global one-point statistical observable,
and the link between it and instantaneous geometrical differences is not straightforward.

918 A23-12


https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.288

Downloaded from https://www.cambridge.org/core. IP address: 159.213.57.68, on 11 May 2021 at 14:40:12, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2021.288

Bubble-induced turbulence

(@) ‘ ‘ ‘ T ® ‘ ‘ ‘ ‘
100 3 3 100 3 E
R (V> 4 10k E
s
°
[=9
10725 == dr=100 3 107¢ 1
E oo 4r=140 1 ¢
oo 4r=313 1 p
r — Ar =313 steady
1073 . 1 : I : 1 . 103 . 1 . 1 . 1 .
—4 -2 0 2 4 —4 -2 0 2 4
ux/(u;z) uz/(uéz)

Figure 4. Probability density functions of the velocity fluctuations in the lateral x (a) and vertical z
(b) directions for different Ar. The steady simulation at Ar = 313 is plotted for comparison. The unsteady
p.d.f.s are shown at ¢ = 14 for the cases at Ar = 100, 140, and at t = 20 for Ar = 313. The time are chosen
such that observables are computed well within the swarm. Yet, the results obtained at different times are very
similar. As in figure 2, in the steady case, time averages have been taken in the window ¢ = 13-23.

From a statistical point of view, the p.d.f.s show unambiguously that results obtained
in the unsteady regime are statistically robust, provided the analysis is performed well
within the swarm. In our case, this happens starting at approximately ¢ = 13 for all Ar
numbers, for the region z = [15-20]. After that time, results are basically frozen for some
characteristic times, that is up to the early decay regime, that is when all bubbles have left
the region of observation. Furthermore, we have verified that results are statistically the
same if the window z = [20-25] is used, as for spectra. Of course, smoother profiles are
obtained in the steady case because of the time averaging.

These results have been used to build the 3-D simulation described in the following
section.

6. Three-dimensional bubble column

The 3-D bubble column is a direct extension of the previous 2-D numerical experiments:
the cubic tank, of size 50d, x 50d; x 50dp, is filled with a liquid and 256 initially
spherical bubbles are placed at the bottom within a region whose height is approximately
5dp. The bubbles are homogeneously distributed in the lateral directions x,y, while
avoiding any initial bubble overlap, and with a minimum separating distance of one
diameter. This results in a local volume fraction in the region 0 <z <7 of ¢ ~ 1 %.
The domain is closed at the bottom by a wall (no-slip boundary condition), and an
outflow boundary condition is used at the top, while on the lateral sides the domain
is periodic. At t =0 both the liquid and the bubbles are at rest. The dimensionless
characteristic numbers of our numerical experiment are the following: Ar = 185; Eo =
0.28; p1/pp = 800; ;/p = 100. The configuration is in many respects very close to
that investigated experimentally by Riboux et al. (2010). Following the 2-D analysis, the
Ar has been chosen large enough to trigger important nonlinear interactions. The Reynolds
number is not well defined because of the unsteadiness, still a typical order of magnitude
is Rep ~ 500. This is in line with the results obtained with a single-bubble and imposing
the same parameters (Appendix B).

From the numerical point of view, an adaptive mesh has been used with a maximum
possible refinement of N = 4096 cells in each direction, meaning a maximum resolution
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Figure 5. (a) Snapshot of the 3-D simulation at r = 6 after the release (@). Time is made non-dimensional with
the bubble buoyancy time +/d/g. The VOF field is shown with blue isosurfaces and the A vorticity field is
shown with grey contours. The right-hand wall displays the level of mesh adaptation, while the left-hand wall
displays the vertical component of the velocity field. (b) Bubble positions at different times, t = 6 and r = 9.
Positions on the y direction are collapsed on the plane. The lines correspond to the interrogation window.

in terms of the bubble diameter of d/A = 82. The grid is refined or coarsened relying
on the errors on the volume fraction and on the velocity components, using as absolute
thresholds for the refinement the values ef = 0.01 and e, = 0.003, based on the analysis
detailed in Appendix B. With such criteria of refinement it is possible to have the desired
grid resolution in the regions where bubbles are present and where wakes develop, while
in the remaining part of the domain where there is no agitation the grid is left coarser.
The total number of computational cells grows in time because of the elongation of the
wakes, starting from N,y =~ 107, and attaining Ny ~ 9 X 10% at + = 12. Note that using a

non-adaptive mesh would require 4096 ~ 69 x 10° grid points, which is beyond present
computational capabilities. With respect to experiments we analyse the dynamics of a thin
layer of bubbles rather than of a full swarm. As anticipated in the introduction, it turns out
to be computationally too heavy to follow more bubbles than that. The present numerical
experiment is, therefore, basically the best that can be done in simulating bubble column
configurations today.

At a qualitative level, figure 5(a) shows the instantaneous motion of the bubbles at an
early stage of the rising. The vorticity generated by the bubbles is included in elongated
wakes. At this time, the transient has approximately finished and the thin layer of bubbles
has stabilised to a width of approximately 7dp. A video is also given as supplementary
material available at https://doi.org/10.1017/jfm.2021.288 to help the reader to have a
clearer idea of the set-up.

In the same figure 5(b) we can see a lateral 2-D projection of the domain showing
bubble positions at = 6 and at ¢ = 9, that is the last time used for the statistical analysis.
The same procedure as in 2-D has been followed to acquire data and compute observables,
with an interrogation window composed by the horizontal planes between z = 22 and
7 =25, see figure 5(b).

We have acquired the data from each cell in this domain, i.e. considering both phases,
and used them to compute the statistics in the time range ¢ € [8.6, 9.2]. That approximately
corresponds to the range over which bubbles are present in the whole window.
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Figure 6. Probability density functions of the velocity fluctuations in the lateral x direction (a), and in the
vertical z (b), at time t =9, averaged over the space window z = 22-25. Results are compared with the
experimental data by Riboux et al. (2010), for a concentration of ¢ = 1.7 %, close to that of the numerical
configuration. The points have been extracted directly from Risso (2018), and show the results obtained from
measurement of the liquid agitation within the swarm. The error bars indicate the fluctuations recorded in the
time range f € [8.6-9.2].

More specifically, at + = 9.4 only few bubbles are still present, and the statistics computed
at t = 9.6 turn out to be already strongly damped, as in earlier studies fluctuations are
rapidly (exponentially) attenuated behind the swarm (Risso 2018). In this time range,
statistics are found to be roughly homogeneous in the interrogation window. We have,
therefore, averaged over this space window to get better statistics, as done in the 2-D
case. Statistics have been found to be also approximately steady in the time range
considered, but with significant fluctuations and we have preferred to avoid time averaging.
Such a choice for the statistical analysis region excludes the initial transient regime
that concerns only the first few times. We display in figure 6 the p.d.f. of the vertical
z and horizontal x velocity fluctuations (the y component does not present appreciable
statistical differences with respect to the x component). As in the 2-D case, the velocity
fluctuation field is computed at each z subtracting the average velocity computed over
the corresponding plane ' = U — (U),. We find the same characteristics reported in
experiments (Riboux et al. 2010), against which results are compared. The vertical velocity
is strongly skewed, indicating a more important probability of having positive fluctuations,
while the horizontal components are symmetric. Furthermore, both components are
non-Gaussian, which is related to the complex features of the bubble-induced agitation.
The agreement between numerical simulations and experiments is globally good. Yet in
the numerical experiment the extreme events tend to be more frequent than in experiments,
and exponential tails are found for o 2 3. This may be related to the fact that the flow
is here unsteady, and experiments may be under-sampling extreme events because they
plausibly filter the smallest scales, and to the different measurement protocol. Since the
p.d.f. of both components have been measured only in the experiments by Riboux et al.
(2010), it is difficult to conclude. Finally, with respect to the 2-D case, figure 4, the p.d.f.
is more skewed in the 3-D case. That is consistent with what is observed in experiments
in a swarm confined in a thin gap (Bouche et al. 2014), although the wall friction effect is
important there and thus the comparison is not conclusive. In figure 7(a), we present the
spectrum of the kinetic energy computed in the same window. To compute the spectra, we
have interpolated the data on a regular grid. To avoid spurious errors, we have eliminated
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Figure 7. (a) Normalised spectrum of the kinetic energy. Present results (Ar = 185 and Eo = 0.28) are
displayed at t+ = 8.8 averaged over the space window z = 22-25. The dashed line represents the —3 slope.
Data obtained by Pandey ez al. (2020) are shown for comparison at two different Ar numbers. (b) Vorticity field
for bubbles at f = 9.0 and z = 25d,.

the highest wave modes, so that spectra are calculated for 512 modes, although the
maximum refinement is up to 4096 points. As for 2-D simulations, we have computed
the spectrum at different times (not shown here), and we have found very little difference
if spectra are computed at those times when bubbles are present in the plane used for the
computation. When the bubbles have left the spatial region under investigation for a few
characteristic times, agitation then decays rapidly, and an exponential fall-off is recorded.
Figure 7(a) shows that bubbles are able to generate significant fluctuations in the length
range A € [10dp, 0.1dp], before being dissipated. After the energy range A € [10dp, 1dp],
the spectrum follows a power law with a scaling E(k) ~ k> in an inertial range over the
decade A € [dp, 0.1dp]. No hint of an inertial range with slope k33 is observed, neither
at large or small scales.

For comparison, the very recent numerical results presented by Pandey et al. (2020) are
also shown for two Ar numbers. It is worth recalling that these results have been obtained
with a lower resolution (24 points per diameter instead of 82 for the present simulation),
and using a much lower density ratio of approximately 20, instead of 800 for the present
simulation as for water/air. Despite these important differences, the results obtained in the
present DNS are in quite good agreement with those obtained in Pandey et al. (2020) at
Ar = 358. A departure from DNS only appears at small scales around 1/10d}, plausibly
because of the lower resolution (256 points used in LES against 4096 used in the DNS
here). The other simulation at Ar = 113 seems instead to decay faster at all scales. We
compare the results also against experiments. It can be observed that numerical and actual
experiments do not investigate the same scales. Experiments are able to access a much
larger domain, and they suggest that the kK~ scaling might be valid over a larger range than
that displayed in our results. On the other hand, numerical simulations appear to be more
adequate to analyse accurately the small scales, where a possible change of slope from
the Kolmogorov one is not recorded. Moreover, it is important to note that in experiments
spectra are computed just behind the swarm, and not within it as in simulations. This may
have an effect at small scales.
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In order to qualitatively complement this analysis, we show in figure 7(b) the vorticity
field on the same plane used to compute the spectra. This field highlights the position of
the bubbles and the generation of vorticity at the scale of the diameter and slightly more.
Several bubbles are still present at this time. In some cases it is apparent that different
vortices have interacted, producing more complex structures.

While energy spectra contain key information about the flow, they cannot be used to
disentangle the different mechanisms leading to the observed scalings, and a scale-by-scale
analysis can be particularly useful (Alexakis & Biferale 2018). For that purpose, we
apply a coarse-graining approach (Duchon & Robert 2000; Eyink & Sreenivasan 2006b)
linked to the filtering approach used in LES (Germano 1992), and recently applied to
different turbulent configurations (Chen et al. 2006b; Xiao et al. 2009; Faranda et al. 2018;
Dubrulle 2019; Valori et al. 2020). More specifically, we have applied this methodology to
the velocity field, obtaining information about the energy flux and the dissipation. The
advantage with respect to a spectral approach is that one can gain details also on the
locality of the cascade, differentiating regions with positive or negative fluxes. Moreover,
this spatial filtering approach is positive definite and local in space and can, therefore, be
applied also in non-homogeneous flows.

In this filtering approach, the dynamic velocity field u is spatially (low-pass) filtered
over a scale ¢ to obtain a filtered value uy(x) as follows:

y(x) = / &ErGo(rulx +r), 6.1)

where G, is a smooth filtering function, spatially localised and such that Gy(r) =
€73G(r/€) where the function G satisfies [drG(r) = 1, and [ dr|r|>G(r) = O(1). By
applying the filtering to the Navier—Stokes equations for the liquid phase we obtain the
coarse-grained dynamics

1
ditg + (g - V)ig = ——Vpy — V- 14 + V2. (6.2)
)

Since we focus on the liquid agitation, we neglect the gravity contribution, which acts
as power injection through bubbles. In the same vein, at interfaces surface tension and
density effects play a role. However, few bubbles are present in the analysed region, so
that the impact should be small and we may retain the single-phase formulation given by
(6.2). Furthermore, we are mainly interested at understanding whether a cascade process
is active. To address this issue, the key term is given by T,, subscale stress tensor (or
momentum flux), which describes the force exerted on scales larger than ¢ by fluctuations
at scales smaller than £. It is given by

(T0)ij = (uittg), — (ae)i(@e);. (6.3)
The corresponding pointwise kinetic energy budget reads
o (%|a|2> + 0 = — I, — v|Val, 6.4)
where we have dropped the £ subscript whenever unambiguous for the sake of clarity, and
-~ I_» 1_\._ _ 1 _, _
G = [(5|u| + ;p))uj + ity — VY <5|u| )] D M) =~y (6.5a.b)

where g, is the transport term and [Ty is the sub-grid scale (SGS) energy flux. This term is
key since it represents the space-local transfer of energy among large and small scales
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across the scale £. The term [1, identifies the presence of a local direct (positive) or
inverse (negative) energy cascade according to its sign. The last term in (6.4) represents
the coarse-grained dissipation €, = v|Vu|?. If a spatial average is done for different values
of the filter width, one can find the average transfer of energy at each scale. Since our
configuration is non-homogeneous in the vertical direction, the transport term g; in (6.4)
is not zero. Yet, this term is related to spatial redistribution of energy and not directly linked
to the cascade process, contrarily to I1, and €,. For this reason, we have not analysed those
terms.
In this work, we have applied a Gaussian filter defined as

G(r) = \/g exp(—6r), (6.6)

as typically used in LES (Pope 2000). Since the flow is homogeneous in the horizontal
direction, the filtering can be efficiently performed in spectral Fourier space, multiplying
the quantity to be filtered by the Fourier transform of the filter

Ge(k) = exp(—k>€%/24), (6.7)

and then transforming back into physical space. In figure 8(a), we show the fluxes
computed from the coarse-grained quantities defined in (6.5a,b). It is worth emphasising
that fluxes are averaged in space but not in time. The physical features which unfold are
the following.

(1) The scale-by-scale fluxes show variability in time, pointing out the statistical
unsteadiness of the transfer processes.

(i) Both inverse (negative flux) and direct (positive flux) cascades are found at different
times. Both cascades involve more than a decade of scales. The direct cascade is
more significant at scales smaller than the diameter, and the inverse cascade at scales
larger than it.

(iii) Energy is transferred from scales around £ ~ dj,/2 in both directions.

(iv) At around the same length scale the dissipation becomes significant.

(v) At smaller scales dissipation and direct flux become comparable.

Our scale-by-scale analysis points to the following physical picture of the
pseudo-turbulent agitation induced by bubbles. Energy is injected by buoyancy (the only
force at play here) and transferred by the bubbles into the liquid via the interface at
scales comparable to the bubble diameter. The energy input W;, must be proportional
to the work made by buoyancy: W, ~ ¢gU,. Dissipation becomes significant at £ ~ dp,
showing that fluctuations are mostly dissipated inside the small structures generated by
bubble wake-interactions. At smaller scales than the diameter, there is a range where
Wiss ~ Wp, which means v(8ug)>¢> ~ ¢gUp, where we have considered the two-point
quantities Suy = u(x + £) — u(x). This gives the scaling behaviour SM% ~ ¢2, which means
in spectral space E(k) ~ k3. We obtain here the scaling with an argument similar to that
used by Lance & Bataille (1991) and Prakash et al. (2016), yet in the physical space rather
than in the spectral one. The fact that I1, changes sign shows that both a direct and an
inverse transfer of energy through nonlinear terms are active, and dominate at different
times. On average the transfer is more towards small scales, but the inverse process is not
negligible. The copresence of direct and inverse cascades intermittently is a feature also
of fluid turbulence (Chorin 2013). While the direct transfer is linked to dissipation, the
inverse one is related to the formation of the wakes, which are found to develop up to
some characteristic lengths.
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Figure 8. (a) Mean energy flux at different filter lengths, the energy flux (solid lines) and the dissipative
flux (dashed lines) are displayed at different times. Fluxes are computed at z = 25d;, the same as for the
computations of spectra. The length scale displayed on the x axis is normalised with the diameter dj, so that
¢ =1 corresponds to the initial bubble diameter. (b) Local energy flux at t =9 and z = 25dp,. In the upper
half-panel the filter length is / = 0.5d}, in the lower half-panel / = 0.1d;,. The colour scale is the same in both
half-panels. Each slice is made by 450 points taken in the horizontal direction, and 180 in the vertical direction.

To further understand the mechanisms indicated, we show in figure 8(b) a slice of the
energy flux at two different scales: half the diameter and a smaller scale. The pictures
show that the energy flux and dissipation are concentrated in the wakes generated by the
bubbles. Furthermore, these structures, initially at the scale of the diameter, may become
a little larger, indicating the generation of larger eddies, and are eventually dissipated at
small scales, where the imprint of the bubbles is still detectable.

7. Conclusions

We have numerically investigated buoyancy-driven bubbly flows, focusing on the agitation
induced by the bubbles on the fluid. The purpose of the study was to characterise the
physics of the collective motion induced when many bubbles rise under the sole effect
of gravity. We have carried out several 2-D and 3-D preliminary tests and the first
high-resolution DNS of a 3-D realistic bubble column.

We have first extensively investigated the interplay between the numerics and the physics
of bubbly flows at moderate and high Reynolds numbers in order to properly set numerical
parameters compatible with a reliable description of the flow. To do so, we studied different
configurations and compared the results with recent studies made using different interface
advection methods. These numerical experiments have shown on the one hand that the
physical parameters, and most notably the density ratio of the two fluids, may affect the
results both qualitatively and quantitatively. On the other hand, to be sure to have solution
at convergence, the spatial resolution should be increased when increasing the Re number.
In particular, to carry out a DNS it seems necessary to fulfil the following criteria: (i)
the density ratio has to be realistically high p;/pp > 100; (ii) the viscosity ratio should
also be realistic 7/ up & 100; (iii) the number of points used to resolve the bubbles must
increase linearly with the Archimedes number (or the Reynolds number based on the
raising velocity). As a rule of thumb, this number should be of the order d,/A =~ Ar/2.

Given the numerical constraints which do not allow a parametric DNS study of a high
Reynolds flow in three dimensions, we have rather performed a comprehensive analysis
of the agitation in a 2-D bubble column at moderate and high Reynolds numbers with
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a volume fraction of approximately 5 % in the bubble layer, in order to prepare a 3-D
study. Both unsteady and steady numerical experiments have been carried out. In this
configuration, we have analysed the velocity fluctuations and find different behaviour for
different Reynolds numbers, even if the —3 slope of the spectra seems to be a robust
feature of this type of flow, also in two dimensions. That highlights that the same spectrum
is consistent with different mechanisms. At higher Archimedes number, the nonlinear
interactions start to play an important role, and in particular the presence of an inverse
cascade at scales larger than the diameter has been found for flows at Ar number higher
than 100. Indeed, at larger scales than the diameter, where the dissipation is negligible, the
energy budgets is [Ty ~ W), =~ ¢gU, which gives the Kolmogorov scaling Su% ~ 023 or
E(k) ~ k=/3, typical of an inverse cascade. As expected, p.d.f.s show a strong anisotropy
of the fluctuations in the vertical direction, while horizontal fluctuations are symmetric.
The 2-D simulations have indicated that the statistics obtained in unsteady simulations are
accurate, provided the space window used to analyse the data is well chosen. We have
provided all the criteria to be fulfilled to get a reliable numerical experiment. Besides the
main numerical relevance, the configuration may have some similarity to that investigated
experimentally in a confined 2-D configuration (Bouche et al. 2012, 2014).

Then, on the basis of the results obtained in the first part of our work, we have performed
a single numerical experiment of a 3-D bubble column at Ar = 185, which corresponds to
a Reynolds number consistent with experiments (Re ~ 500). First we have observed that
the one-point p.d.f. of the velocity fluctuations in numerical simulations are in agreement
with those obtained experimentally (Riboux et al. 2010; Risso 2018). However, the tails
related to rare events (>3o0 from the mean) are more pronounced, with an exponential
decay, than in the experiments where they are more Gaussian. It is difficult to say if this
discrepancy is due to the strong unsteadiness of the flow, or to a smoothing of extreme
events in real experiments because of the different measurement procedure.

The energy spectra have also been analysed and compared with recent numerical
simulations performed at low resolution and low density ratio. We have found a k= scaling
over a decade of scales smaller than the diameter, and possibly at scales just a little larger.
We have not found any hint of a Kolmogorov k~>/3 scaling, neither at large nor small
scales. Comparison with experimental spectra do not add much insight, and indicates that
experiments are more useful to analyse large scales, whereas simulations are better fitted
for the small ones.

We have shown through a scale-by-scale analysis in physical space that the spectra
are related to a nonlinear cascade mechanism, and do not reflect only the presence of
wakes. Indeed we have found that a flux of turbulent kinetic energy is present in the
range of scales going from 2d, up to dp, /20, where dissipation becomes dominant. In this
range the balance between the flux of energy and the dissipation explain the k= scaling.
Interestingly our unsteady numerical experiment highlights the presence of instantaneous
fluxes in both directions indicating the tendency to create locally larger structures around
the bubbles, even though on average the energy is injected around the bubble diameter
scale and mostly transferred to smaller scales where it is eventually dissipated. Considering
both 2-D and 3-D results, it can be inferred that in all cases an agitation is produced
by the geometrical structure, as modelled by Risso (2011), while a nonlinear cascade
process is superimposed at high Ar. An important result of our work comes also from
the comparison with the recent simulations by Pandey et al. (2020). According to our
analysis these simulations should be considered as implicit LES when Ar > 50, given the
low resolution with respect to the bubble size, yet they are representative of the numerical
resolution used in most of the works presently carried out in turbulent bubbly flows
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(Elghobashi 2019; Cifani, Kuerten & Geurts 2020). The present DNS results show that
one-point and two-point statistics are in good agreement with the results of Pandey et al.
(2020) obtained at high Ar number, except at small scales. The present conclusion is hence
that using only 20-30 points to resolve the bubble diameter, seems to be sufficient to get
consistent results with respect to large-scale statistics, although finite Reynolds number
effects are found to be exaggerated. At variance with what was found for single-bubble
observables (Cano-Lozano et al. 2016a), our fully resolved DNS validate the use of
under-resolved simulations to analyse large-scale collective properties in bubble-induced
agitation.

Concerning future developments. In this work we have focused on liquid agitation
properties, but bubble properties deserve to be studied as well, as done in experiments
(Bouche et al. 2012; Risso 2018). We have been performing the Lagrangian tracking of the
bubbles, and notably it would be relevant to get insights on the bubble distribution within
the flow. We hope to have further results in the future. With respect to simplified physical
modelling (Risso 2016, 2018), we plan to carry out steady simulations at different Re
numbers to analyse some assumptions that could not be assessed in the present framework.
It would be also interesting to analyse the budgets of the momentum and energy equation in
relation to the development of two-fluid models, that is Reynolds-averaged Navier—Stokes
(RANS) (Drew 1983; Biesheuvel & Wijngaarden 1984; Drew & Passman 2006). Indeed,
this is an important ongoing research for applications, and issues concerning both the
stability and the quality of the models remain to be addressed (Prosperetti & Jones 1987;
Davidson 1990; Tiselj & Petelin 1997; Song & Ishii 2001; Panicker, Passalacqua & Fox
2018; Du Cluzeau et al. 2019; Moore & Balachandar 2019; du Cluzeau, Bois & Toutant
2020; Du Cluzeau et al. 2020). Finally, it would be interesting to make a comparison with
the somewhat similar yet different problem of the dynamics of solid finite-size particles. So
far, the research has focused on suspensions of small particles (Guazzelli & Morris 2011)
or large particles in media of similar density (Kidanemariam & Uhlmann 2014; Picano,
Breugem & Brandt 2015). Different boundary conditions on the interface should make a
difference. Bubble deformability constitutes another key element (Clift et al. 2005) but,
for instance in the regime investigated in the present work, the impact should be small.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2021.288.
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Appendix A. Arrays of bubbles

For the test case proposed by Esmaeeli & Tryggvason (1999), displayed in figure 1(a), the
details of the different grids are reported in table 3, together with the steady values of the
Reynolds number.

The parameters of the simulations of the case of the oblique array of bubbles are
reported in table 4. The results not shown in the main text are given in figure 9, and
summarised in table 5. Similar regimes are captured in each case, while the transition
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Figure 9. Time evolution of two components of the bubble Reynolds number for regime b (panel (a)) and
regime ¢ (panel (b)).

N 163 323 643 1283
dp/A 10 20 40 80
Rey (present) 23.05 2201 21.275 21

Rey (Esmaeeli & Tryggvason 1998) — — 20.49 —
Rey (Loisy et al. 2017) 19.05 20.22 20.58 —

Table 3. Grid resolutions and final Reynolds number for the 3-D array of bubbles.

Regimes  Ar Bo ¢

a 299 2 0.008
b 40.7 0.38 0.13
c 40.7 0.38 0.038

Table 4. Non-dimensional parameters for the 3-D-oblique array of bubbles test case.

Regimes a b c
Re; (present) 1.41 7.15 =85
Rey (Loisy et al. 2017) 1.4 —415 -8.1
Re3 (present) 34.1 41.2 52

Re3 (Loisy et al. 2017)  34.4 42.2 50.1

Table 5. Final Re for the 3-D-oblique test case. For the last oscillating regime we have reported the average
over the last steps, so the comparison is to be considered qualitative.

may occur at different times compared with Loisy et al. (2017), since it is triggered by
numerical asymmetry. For the same reason, while we expect a quantitative agreement in
the direction of gravity, the other two components can share the energy in a different
way, provided that this is compatible with the symmetry of the problem. As shown in
table 5, the steady value of the different components of the bubble Reynolds number is
in excellent agreement for regimes a and b, while in regime ¢ where a steady state is not
reached the agreement is more qualitative. The oscillation periods appear also to be in
qualitative agreement.
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Figure 10. (a) Average Reynolds number of a single bubble rise plotted for the three resolutions. The final
values are Re = 559 for e, = 0.01, Re = 549 for ¢, = 0.003 and Re = 547 for e,, = 0.001. (b) The number of
mesh points is plotted against time. It should be noted that the number of points is approximately steady for the
two coarser resolutions, while it is growing rapidly for the most refined resolution.

Appendix B. Technical issues

B.1. Grid refinement effects

We have replicated some of the results obtained by Cano-Lozano et al. (2016a) to study
the behaviour of a single bubble rising ‘in a large tank’, i.e. far from any boundaries.
The physical parameters chosen are the same used in the 3-D bubble column. Namely,
we fix Ar = 185 and Eo = 0.28. The acceleration of gravity is set to unity, which gives
a characteristic rise velocity also of order unity, and a maximum time for the simulation
comparable to the domain size. In this regime, it turns out that bubble trajectories are
between the rectilinear and chaotic regimes, as found in the original paper (Cano-Lozano
et al. 2016a). We have simulated the bubble rise with three different grids, namely
varying the threshold of the error tolerance, fixed at err, = 0.001; 0.003; 0.01, in absolute
value. This threshold controls the local refinement of the grid (van Hooft er al. 2018).
In figure 10(a), we show the evolution of the rise velocity of the bubble, which is given
by the Reynolds number in dimensionless form. The two low-tolerance grids show very
little difference (less than 1 %), whereas for the highest-tolerance grid the difference is
of the order of 5 %. This indicates that the three grids are sufficient to get a qualitative
reproduction of the physics of the problem but that only the two more refined are at
convergence. In figure 10(b), we display the evolution of the number of grid points with
time for the three different grids. This gives a measure of the computational cost of
each set-up. From figure 10(a), we can see that a transient is present with a duration
of approximately 8 = 10 unit times. Results show that an over-refinement of the bubble
is present for the lowest error threshold. We have, therefore, found that convergence is

reached with Nz, = 2'2, such that the maximum refinement is of 82 points per diameter,
with an error threshold of 0.003 (absolute value) in the velocity. This resolution has hence
been chosen for the final 3-D bubble column simulation.

B.2. Coalescence

We have studied from a qualitative point of view the coalescence of two bubbles in
relation to density ratio and grid refinement. This is a vast area of research (Liao &
Lucas 2010) and a detailed analysis of this issue is beyond the scope of the present work.
Yet, in the concentration regime studied in the present work (¢ < 5 %) coalescence and
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Figure 11. Contour plot of the vorticity at two instants. The grid is drawn to show the degree of refinement
obtained with Ny = 23, other resolutions are not shown for the sake of simplicity. (a,c) simulation with
p1/pp = 100; (b,d) simulation with p;/pp = 1000.

breakup have a negligible effect (Jha & Govardhan 2015) and it is, therefore, important
to have some control on this process to avoid spurious effects. In particular, it is known
that VOF methods tend to make coalescence too easy (Scardovelli & Zaleski 1999), if
numerical parameters are not well chosen. Here we consider for this purpose two bubbles
in a 2-D box of side 20 times the diameter of the bubbles with periodic boundary
conditions. The physical parameters are fixed in such a way that dimensionless numbers are
Ar =30, Eo = 0.1 and up/u; = 100. We consider two bubbles, one on top of the other,
initially at rest in a quiescent fluid. The top bubble is at 0.75 diameter from the bottom
bubble. The situation is somewhat similar to that encountered by bubbles at the initial
stage of our bubble-column simulations. They start moving because of buoyancy which
induces vorticity fluctuations and creates wakes. We shall consider our numerical approach
acceptable if coalescence is avoided. We have first fixed the density ratio p;/pp = 1000,
and varied the resolution with different grids. We have found that convergence is attained
with Nysar = 2'2, since the results are the same as those obtained with Ny, = 213. Using
Nuax = 2V instead the coalescence occurs (results not shown here). Two instants for the
maximal resolution are displayed in the bottom of the figure 11. Then, we have assessed
the influence of the density ratio. We have chosen the finest resolution Ny, = 213 to be
sure to avoid any discretisation effect. In figure 11, we show two instants of this dynamics,
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Figure 12. Spectra of the vertical (a,c) and horizontal component (b,d) of the velocity for bubbles with Ar =
100 and Eo = 0.1 evaluated at different times. Panels (a,b) correspond to the spatial window between 15 and 20
diameters, panels (c,d) to the one between 20 and 25 diameters. The energy spectrum is made non-dimensional
with the corresponding standard deviation.
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Figure 13. Mean energy flux, (6.5a,b), with different filter lengths. The time average is taken in the range
t = 13-23 as in panel (a).
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displaying also the vorticity field, for two different density ratios. Notably, in panels (a,c)
we display the results obtained for a density ratio of p;/pp = 100, for which coalescence
happens. In panels (b,d) we show the same case but with a density ratio of p;/pp = 1000.
As said previously, in this case coalescence does not occur. We have investigated different
density ratios in the range p;/pp € [10, 1000] (not shown here for the sake of clarity),
and it turns out that in our particular set-up the threshold for avoiding the coalescence is
approximately p;/pp = 200.

Appendix C. Two-dimensional pseudo-turbulence: complements

In figure 12, we show the spectra of both the vertical and horizontal velocity fluctuations
made non-dimensional with 4/d/g. They are displayed at different times, and in the space
windows z € [15-20], [20-25]. Only the case at Ar = 100 is shown for the sake of clarity,
since the results for the other Ar numbers are similar. Horizontal and vertical spectra are
similar. Moreover, the same information content is present in both spatial windows, for
all the spectra computed within the swarm are equivalent, that is at ¢ € [10-16] for z €
[15-20], and in the whole time-window for z € [20-25]. Instead, a few characteristic times
after all bubbles have gone out from the interrogation window, the spectrum starts to decay
exponentially, as indicated by the spectra computed at t = 20 in the space window z €

[15-20]. We have observed in figure 2 a possible K>/ range at large scales in the spectra
of the 2-D case at high Ar. The scaling range is, however, tiny and, therefore, to corroborate
the claim of an inverse cascade we show in figure 13, the scale-by-scale energy flux, as
defined in the discussion of the 3-D results, see (6.5a,b). The flux turns out to be negative
at scales larger than approximately half of the diameter. That is in line with the spectra,
confirming the presence of an inverse cascade, as already found in recent simulations of a
2-D mixture at very low density ratio (Ramadugu, Pandey & Perlekar 2020).
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