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Gene network and biological 
pathways associated 
with susceptibility to differentiated 
thyroid carcinoma
Om Kulkarni1, Pierre‑Emmanuel Sugier2, Julie Guibon1,2, Anne Boland‑Augé3, 
Christine Lonjou1, Delphine Bacq‑Daian3, Robert Olaso3, Carole Rubino2, Vincent Souchard2, 
Frédérique Rachedi4, Juan Jesus Lence‑Anta5, Rosa Maria Ortiz5, Constance Xhaard2,6, 
Pierre Laurent‑Puig7, Claire Mulot7, Anne‑Valérie Guizard8,9, Claire Schvartz10, 
Marie‑Christine Boutron‑Ruault2, Evgenia Ostroumova11, Ausrele Kesminiene11, 
Jean‑François Deleuze3, Pascal Guénel2, Florent De Vathaire2, Thérèse Truong2,12 & 
Fabienne Lesueur1,12*

Variants identified in earlier genome‑wide association studies (GWAS) on differentiated thyroid 
carcinoma (DTC) explain about 10% of the overall estimated genetic contribution and could not 
provide complete insights into biological mechanisms involved in DTC susceptibility. Integrating 
systems biology information from model organisms, genome‑wide expression data from tumor and 
matched normal tissue and GWAS data could help identifying DTC‑associated genes, and pathways 
or functional networks in which they are involved. We performed data mining of GWAS data of the 
EPITHYR consortium (1551 cases and 1957 controls) using various pathways and protein–protein 
interaction (PPI) annotation databases and gene expression data from The Cancer Genome Atlas. We 
identified eight DTC‑associated genes at known loci 2q35 (DIRC3), 8p12 (NRG1), 9q22 (FOXE1, TRMO, 
HEMGN, ANP32B, NANS) and 14q13 (MBIP). Using the EW_dmGWAS approach we found that gene 
networks related to glycogenolysis, glycogen metabolism, insulin metabolism and signal transduction 
pathways associated with muscle contraction were overrepresented with association signals (false 
discovery rate adjusted p‑value < 0.05). Additionally, suggestive association of 21 KEGG and 75 
REACTOME pathways with DTC indicate a link between DTC susceptibility and functions related to 
metabolism of cholesterol, amino sugar and nucleotide sugar metabolism, steroid biosynthesis, 
and downregulation of ERBB2 signaling pathways. Together, our results provide novel insights into 
biological mechanisms contributing to DTC risk.

Differentiated thyroid carcinoma (DTC) is the most common type of endocrine cancer and accounts for 98% 
of all cases of thyroid cancer. It originates from epithelial follicular cells of the thyroid and includes three histo-
logical types, namely papillary thyroid carcinoma (PTC), follicular thyroid carcinoma (FTC), and Hürthle cell 
 carcinoma1, with PTC representing about 85% of all thyroid  malignancies2. DTC incidence varies consider-
ably around the world with age-standardized incidence rates of 10.2 per 100,000 person-years in women and 
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3.1 per 100,000 person-years in men in  20183. In most countries, DTC incidence has increased at a faster rate 
than most other malignancies during the last few decades. It is now the 5th most frequent cancer in women, 
whereas it was ranked 14th 20 years  ago3,4. The causes underlying geographic, ethnic and temporal variations 
are still unknown. It could be explained by environmental and genetic factors, as well as changes in screening 
practices. In particular, some have attributed the increase in DTC incidence to improved diagnosis that leads to 
the detection of small tumors of minimal clinical relevance (microcarcinomas)4, whereas others argue that more 
sensitive diagnostic procedures cannot completely explain this increase of DTC  rates5. The only well-established 
environmental risk factor for DTC is exposure to ionizing radiation during childhood and  adolescence6 but it 
does not appear to have contributed importantly to these  trends7. Anthropometric factors such as excess weight, 
tall height and large body size have also been consistently associated with risk of  DTC8–14. In particular, a large 
meta-analysis showed that increase of weight, body mass index (BMI), waist or hip circumference and waist-
to-hip ratio are associated with a greater risk of PTC, FTC and anaplastic thyroid  cancer15. Because DTC occurs 
more frequently in women than in men, it was also suspected to be associated with hormonal and reproductive 
factors among  women7. Thyroid cancer is also characterized by having one of the highest familial risk of any 
cancer supporting heritable  predisposition16. In spite of such a high familial risk, few chromosomal loci have been 
implicated in DTC so far. Genome-wide association studies (GWAS)17–23 including  ours24 identified mainly four 
DTC susceptibility loci at 9q22, 14q13, 2q35 and 8p12, which were replicated in different populations. However, 
the identified single nucleotide polymorphism (SNPs) were shown to account for only about 10% of the DTC 
familial risk, emphasizing that much remains to be discovered. Furthermore, all published studies examined 
genetic associations with DTC at the individual SNP or gene level. Data mining of GWAS data at a higher level 
of complexity using systems biology is still an under-explored topic. Of the seven GWAS performed for DTC, 
only one of the published datasets was additionally analyzed using pathway identification  methods21. None 
of the studies employed protein–protein interaction (PPI) network-based methods to explore links between 
associated genes, and only two of them used expression quantitative trait loci (eQTL) data to identify potential 
causal regulatory sequence variants at DTC associated  loci21,23. However, such approaches have been success-
ful in identifying new susceptibility alleles for other complex traits. For instance, analysis of GWAS data using 
pathway-based enrichment methods successfully identified IL12/IL23 pathways associated with Crohn disease, 
involving genes that were subsequently identified as susceptibility genes only through meta-analysis of several 
 GWAS25. Integrative analyses of GWAS data, eQTL and PPI networks also provided valuable biological insights 
in some complex diseases, such as Alzheimer  disease26 and  asthma27.

Here we re-analyzed the genome-wide genotyping data from seven case–control studies on DTC from the 
EPITHYR consortium using protein–protein interaction databases, various resources for pathway maps, as 
well as available eQTL data on DTC from The Cancer Genome Atlas (TCGA) to annotate SNPs and to identify 
biological mechanisms contributing to DTC susceptibility.

Results
Data set and results of the standard SNP‑level analysis. We used GWAS data from the EPITHYR 
 consortium24 that included subjects from case-control studies conducted in Metropolitan France  (CATHY11, 
YOUNG-thyr13 and  E3N12 studies), South Pacific Islands  (Polynesia9 and New  Caledonia8),  Cuba14 and the 
Gomel region of Belarus, affected by the Chernobyl  accident28. Characteristics of the study participants of Euro-
pean ancestry included in the analyses are described in Table 1.

In the SNP-level analysis, 258 SNPs reached the standard genome-wide significance P-value threshold of 
5 ×  10–8. All SNPs were located in the known DTC susceptibility loci at 2q35, 8p12, 9q22.33 and 14q13.3 (Sup-
plementary Figure 1A). No additional signal was evidenced when the analysis was restricted to PTC cases only 
(Supplementary Figure 1B).

Gene‑level analysis. According to GENCODE release 28, the analyzed SNPs were mapped to 19,120 pro-
tein-coding genes that were next used in the gene-based association test from  VEGAS229. This analysis identi-
fied eight genes associated with DTC with a false discovery rate adjusted p-value (PFDR) < 0.05, namely, DIRC3, 
NRG1, FOXE1, TRMO, HEMGN, ANP32B, NANS and MBIP, all of them being located at known DTC suscepti-
bility loci (Table 2). The analysis restricted to PTC cases identified TRIM14 at 9q22.33 in addition to these eight 
genes (Supplementary Table S1).

To get more insight in the genetic mechanisms of DTC, we interrogated whether SNPs in or nearby the 
associated genes were acting as cis-eQTLs (defined as a SNP within 1 Mb from the gene transcriptional start 
site) using transcriptome data from 497 DTC cases from TCGA available through the PancanQTL  project30. We 
identified a number of cis-eQTL for DIRC3, IGFBP5, NRG1, TRMO and NANS (Table 2), indicating that SNPs 
at the associated loci could alter the regulation of the expression of these five genes.

Pathway‑level analysis. To clarify which biological pathways are involved in the etiology of DTC, we 
next used Vegas2Pathway which uses gene-based p-values from VEGAS2 and pathway definitions from Kyoto 
Encyclopedia of Genes and Genomes (KEGG)31–33,  Reactome34 and Gene Ontology (GO)35 (Table 3). Out of 
380 KEGG pathways, 361 were tagged by SNPs from our dataset. Of those, 21 pathways were associated with 
DTC risk with PEMP < 0.05, with the top pathway being linked to cholesterol metabolism; however, none of the 
highlighted pathways were significant after correction for multiple testing (Supplementary Table S2). Only four 
of the 21 highlighted pathways involved one of the eight genes identified in the gene-level analysis, namely ‘Mes-
senger RNA biogenesis’ (ANP32B), ‘Amino sugar and nucleotide sugar metabolism’ (NANS), ‘EGFR tyrosine 
kinase inhibitor resistance (NRG1) and ‘Transfer RNA biogenesis’ (TRMO) and the three latter pathways were 
not associated anymore with DTC after excluding SNPs tagging these candidate genes.
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Out of 2020 Reactome pathways, 1698 included SNPs from our dataset. Of those, 75 definitions were associ-
ated with DTC risk with PEMP < 0.05. After excluding SNPs tagging the eight candidate genes, the 16 pathways 
involving NRG1 were not associated anymore with DTC (Supplementary Table S3). Gene Ontology (GO) defini-
tions related to biological processes, molecular functions and cellular components were also investigated. Associ-
ated definitions with PEMP < 0.05 are listed in (Supplementary Table S4).

To assess similarities between pathways associated with DTC at PEMP < 0.05 identified with KEGG, Reactome 
and GO, we performed pairwise comparisons between definitions of the three databases. Pairs of pathways with 
Jaccard Index > 0.1 are shown in Supplementary Table S5. We found that 16 of the top KEGG pathways showed 
some similarity with some Reactome pathways, and 40, 4 and 6 KEGG pathways showed some similarity with 
GO biological processes, cell components and molecular functions, respectively, confirming the inter-feature 
dependencies of the pathways highlighted with the three pathway databases.

Table 1.  Characteristics of participants of the seven EPITHYR case–control studies used in the gene-, 
pathway- and network-level analyses.

Study

Cases Controls

N = 1551 % N = 1957 %

CATHY 450 29.0 533 27.2

Cuba 102 6.6 103 5.3

Chernobyl 66 4.3 304 15.5

E3N 276 17.8 287 14.7

New Caledonia 21 1.4 68 3.5

French Polynesia 0 0 4 0.2

YOUNG-Thyr 636 41.0 658 33.6

Age (years)

[0–10] 5 0.3 43 2.2

[10–20] 115 7.4 301 15.4

[20–30] 378 24.4 425 21.7

[30–40] 335 21.6 382 19.5

[40–50] 199 12.8 239 12.2

 ≥ 50 519 33.5 567 29.0

Mean age [range] 40.6 [7–83] – 37.0 [5–80] –

Sex

Female 1276 82.3 1508 77.1

Male 275 17.7 449 22.9

Histology

Papillary 1414 91.2 – –

Follicular 137 8.8 – –

Table 2.  Genes associated with DTC risk, SNPs and eQTL within or in the vicinity of these genes, and effect 
of eQTL on the expression of genes in cis. a Empirical p-value of the association test at the gene level. b p-value 
of the association test with DTC risk at the gene level, after FDR correction. c Number of analyzed SNP within 
the gene or at ± 50 kb from the gene boundaries. d Per allele Odds Ratio (OR) for the top SNP at the gene locus. 
e number of eQTL at the gene locus. f Gene whose expression is affected by the cis-eQTL.

Locus Gene
Gene
PEMP

a
Gene
PFDR

b #SNPs (N)c Top SNP ORper allele
d 95%CI Pper allele Cis-eQTL (N)e eGenef

2q35 DIRC3 1.00 ×  10–7 0.0038 451 rs16857611 1.42 1.28–1.58 1.25 ×  10–10 223 DIRC3, 
IGFBP5

8p12 NRG1 2.00 ×  10–6 0.0063 523 rs28406305 1.34 1.21–1.48 3.19 ×  10–8 197 NRG1

9q22.33 FOXE1 1.00 ×  10–7 0.0038 138 rs10739513 1.60 1.44–1.79 1.88 ×  10–17 87 TRMO

9q22.33 TRMO 1.00 ×  10–7 0.0038 92 rs7046645 1.58 1.42–1.77 9.85 ×  10–17 64 TRMO

9q22.33 HEMGN 1.00 ×  10–7 0.0038 61 rs7037324 1.49 1.35–1.65 8.03 ×  10–15 31 TRMO, NANS

9q22.33 ANP32B 1.00 ×  10–7 0.0038 39 rs56145417 1.30 1.18–1.43 1.91 ×  10–7 4 TRMO, NANS

9q22.33 NANS 4.00 ×  10–6 0.0095 20 rs7870926 1.30 1.18–1.43 2.08 ×  10–7 2 TRMO, NANS

14q13.3 MBIP 3.00 ×  10–6 0.0082 47 rs116909374 2.14 1.66–2.76 4.88 ×  10–9 0 None
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Co‑analysis of thyroid carcinoma gene expression and GWAS data. To gain a deeper understand-
ing of the genetic architecture of DTC, we then combined TCGA genomic expression data from 59 PTC/nor-
mal tissue sample pairs with PPI networks and EPITHYR GWAS data using the EW_dmGWAS  approach36. 
The 19,129 genes containing OncoArray SNPs were involved in 4524 subnetworks describing binary interac-
tions (that is direct PPI) and in 6590 subnetworks describing co-complex interactions. Among the 19,129 genes, 
16,386 were differentially expressed between normal and tumor tissue. This information was used by the algo-
rithm to assign edge weights to the nodes of the subnetworks to rank them for downstream gene enrichment 
analysis. Hence, the top 1% subnetworks contributing to DTC susceptibility involved 72 genes with binary inter-
actions and 143 genes with in co-complex interactions. Using Reactome pathway definitions, we found that five 
pathways were significantly enriched, including ‘Glycogen breakdown (glycogenolysis)’ (PFDR = 7.9 ×  10–3), ‘Gly-
cogen metabolism’ (PFDR = 2.5 ×  10–2) and two pathways related to muscle contraction when binary interactions 
annotations were considered (Table 4). Furthermore, we found 47 Reactome pathways significantly enriched 
when co-complex interactions annotations were considered (Table 4). Using GO definitions, we found 14 bio-
logical processes, 12 cellular components and 4 molecular functions associated with DTC (Fig. 1) while with 
KEGG definitions, only the ‘Ribosome’ (PFDR = 2.7 ×  10–43) and ‘starch and sucrose metabolism’ (PFDR = 4.6 ×  10–2) 
pathways were significantly enriched.

Discussion
Incorporating gene network and pathway classification tools in GWAS data analysis can point toward significantly 
overrepresented molecular pathways, which had not been picked up in traditional single-SNP analysis due to the 
stringent genome-wide significance level and to the limited power of some case–control studies to identify low-
risk alleles. To our knowledge, this is the first study on DTC susceptibility where integrative analyses of GWAS 
data, gene expression data in tumor, and biological pathways or physical PPI network data were performed to 
gain biological insights in the disease. Data mining of the EPITHYR GWAS data using several systems biology 
annotation tools and various analysis strategies has allowed to identify high confidence candidate pathways for 
subsequent analyses to be further explored to understand the underlying mechanisms of DTC carcinogenesis. 
Indeed, although the EPITHYR GWAS is one of the GWAS with the largest number of DTC cases reported so 
far (1551 cases and 1957 controls of European ancestry), new findings from the classical per-SNP analysis were 
limited and the eight candidate genes (DIRC3, NRG1, FOXE1, TRMO, HEMGN, ANP32B, NANS and MBIP) 
identified in the gene-level analysis were all located in the well characterized DTC susceptibility loci 2q35, 
8p12, 9q22.33, and 14q13.322. Moreover, a functional link between these candidate genes could not clearly be 
established at this point.

SNPs in the nuclear long noncoding RNA DIRC3 (disrupted in renal cancer 3) have been associated with both 
thyroid stimulating hormone level and DTC  risk19, and it was shown that DIRC3, playing a role in tumor inva-
sion and multifocality, represents a potential prognostic factor for  PTC37. Interestingly, the top SNP for DIRC3, 
rs16857611, is an eQTL which downregulates the expression of DIRC3 and the expression of its neighboring 
tumor suppressor gene IGFBP5 whose product belongs to a family of proteins which interacts with insulin-like 
growth factors (IGFs) involved in regulation of vital processes such as cell proliferation, differentiation and 
apoptosis. In melanoma, it was shown that DIRC3 activates expression of IGFBP5 through modulating chromatin 
structure and suppressing SOX10 binding to putative regulatory  elements38, suggesting that the two genes at the 
2q35 could represent potential therapeutic targets for both melanoma and DTC.

NRG1 encodes the membrane glycoprotein Neuregulin 1, which acts on the erb-b2 receptor tyrosine kinase 
(ERBB) family of tyrosine kinase receptors. It is the major HER3 ligand, which promotes its engagement with 
HER2 kinase and the subsequent transphosphorylation of HER3. It is involved in regulation of MAPK and 
AKT signaling pathways which are involved in thyroid carcinoma cells proliferation and  survival39. FOXE1, is a 
thyroid-specific transcription factor essential for thyroid gland development and maintenance of the differenti-
ated state. In vitro studies in thyroid cancer cell lines revealed that FOXE1 modulates cell migration, suggesting 
a role in epithelial-to-mesenchymal  transition40. HEMGN, also known as EDAG-1 (Embryonic develop-associated 
gene 1) is upregulated in thyroid carcinoma tissues and cells, and it has been proposed to regulates the prolifera-
tion and apoptosis of cells via PI3K/Akt signaling  pathway41.

ANP32B (Acidic Nuclear Phosphoprotein 32 Family Member B) is a multifunctional protein working as a cell 
cycle progression factor as well as an anti-apoptotic protein is involved in hepatocellular  carcinoma42. The gene 

Table 3.  Pathway definitions used in the pathway-level analysis. a Empirical p-value of the association test with 
DTC risk at the pathway level.

Database Definitions (N)
Definition tagged with oncoarray 
SNPs (N) Definitions with PEMP

a < 0.05 (N) Source Version

KEGG (HSA and BRITE defini-
tions) 380 361 21 https:// www. genome. jp/ kegg- bin/ 

get_ htext? hsa00 001. keg v88 (Oct, 2018)

REACTOME 2020 1698 75 https:// react ome. org/ downl oad/ 
curre nt/ React omePa thways. txt v66 (Sep 2018)

GO biological process 5214 5203 253 GO database: http:// purl. oboli 
brary. org/ obo/ go/ go- basic. obo
GO annotations: https:// ftp. ncbi. 
nlm. nih. gov/ gene/ DATA/ gene2 
go. gz

(Oct 2018)GO cellular component 655 652 38

GO molecular function 1060 1059 31

https://www.genome.jp/kegg-bin/get_htext?hsa00001.keg
https://www.genome.jp/kegg-bin/get_htext?hsa00001.keg
https://reactome.org/download/current/ReactomePathways.txt
https://reactome.org/download/current/ReactomePathways.txt
http://purl.obolibrary.org/obo/go/go-basic.obo
http://purl.obolibrary.org/obo/go/go-basic.obo
https://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2go.gz
https://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2go.gz
https://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2go.gz
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Table 4.  Reactome pathways enriched with genes involved in the top 1% subnetworks obtained when 
considering binary and co-complex interactions. a Empirical p-value of the association test with DTC risk at the 
pathway level. b p-value of the association test with DTC risk at the pathway level, after FDR correction.

Interactions type Enriched reactome pathway Genes (N) PEMP
a PFDR

b

Binary

Striated muscle contraction 7 2.2 ×  10–10 7.3 ×  10–08

Muscle contraction 9 3.6 ×  10–07 5.9 ×  10–05

Glycogen breakdown (glycogenolysis) 3 7.3 ×  10–05 7.9 ×  10–03

Glycogen metabolism 3 3.2 ×  10–04 2.5 ×  10–02

The role of GTSE1 in G2/M progression after G2 checkpoint 4 3.9 ×  10–04 2.5 ×  10–02

Co-complex

Peptide chain elongation 37 4.4 ×  10–53 1.2 ×  10–50

Viral mRNA translation 37 4.4 ×  10–53 1.2 ×  10–50

Formation of a pool of free 40S subunits 38 1.6 ×  10–52 3.0 ×  10–50

Eukaryotic translation elongation 37 3.4 ×  10–52 3.1 ×  10–50

Selenocysteine synthesis 37 3.4 ×  10–52 3.1 ×  10–50

Eukaryotic translation termination 37 3.4 ×  10–52 3.1 ×  10–50

Nonsense mediated decay (NMD) independent of the exon junction complex (EJC) 37 9.1 ×  10–52 7.2 ×  10–50

L13a-mediated translational silencing of ceruloplasmin expression 38 1.3 ×  10–50 8.7 ×  10–49

GTP hydrolysis and joining of the 60S ribosomal subunit 38 1.9 ×  10–50 1.2 ×  10–48

Nonsense-mediated decay (NMD) 38 6.3 ×  10–50 3.1 ×  10–48

Nonsense mediated decay (NMD) enhanced by the exon junction complex (EJC) 38 6.3 ×  10–50 3.1 ×  10–48

Eukaryotic translation initiation 38 2.9 ×  10–49 1.2 ×  10–47

Cap-dependent translation initiation 38 2.9 ×  10–49 1.2 ×  10–47

SRP-dependent cotranslational protein targeting to membrane 37 1.5 ×  10–48 5.9 ×  10–47

Selenoamino acid metabolism 37 1.5 ×  10–47 5.3 ×  10–46

Influenza viral RNA transcription and replication 38 4.0 ×  10–47 1.4 ×  10–45

Major pathway of rRNA processing in the nucleolus and cytosol 41 5.8 ×  10–47 1.9 ×  10–44

Regulation of expression of SLITs and ROBOs 40 8.3 ×  10–46 2.5 ×  10–44

Influenza life cycle 38 9.3 ×  10–46 2.7 ×  10–44

rRNA processing in the nucleus and cytosol 41 6.2 ×  10–45 1.7 ×  10–43

Influenza Infection 38 2.2 ×  10–44 5.8 ×  10–43

rRNA processing 41 5.8 ×  10–44 1.5 ×  10–42

Signaling by ROBO receptors 40 3.2 ×  10–41 7.8 ×  10–40

Translation 40 5.9 ×  10–36 1.6 ×  10–34

Infectious disease 41 1.9 ×  10–32 4.2 ×  10–31

Metabolism of amino acids and derivatives 39 1.9 ×  10–30 4.1 ×  10–29

Formation of the ternary complex, and subsequently, the 43S complex 19 5.1 ×  10–26 1.0 ×  10–24

Translation initiation complex formation 19 9.4 ×  10–25 1.8 ×  10–23

Ribosomal scanning and start codon recognition 19 9.4 ×  10–25 1.8 ×  10–23

Activation of the mRNA upon binding of the cap-binding complex and eIFs, and 
subsequent binding to 43S 19 1.4 ×  10–24 2.5 ×  10–23

TCR signaling 6 1.1 ×  10–3 2.0 ×  10–2

Regulation of mRNA stability by proteins that bind AU-rich elements 5 1.7 ×  10–3 3.0 ×  10–2

FBXL7 down-regulates AURKA during mitotic entry and in early mitosis 4 1.9 ×  10–3 3.2 ×  10–2

Insulin receptor recycling 3 2.1 ×  10–3 3.3 ×  10–2

Regulation of RUNX3 expression and activity 4 2.1 ×  10–3 3.3 ×  10–2

Insulin processing 3 2.3 ×  10–3 3.5 ×  10–2

Stabilization of p53 4 2.4 ×  10–3 3.5 ×  10–2

Iron uptake and transport 4 2.5 ×  10–3 3.7 ×  10–2

Downstream TCR signaling 5 2.8 ×  10–3 3.9 ×  10–2

G2/M transition 7 3.0 ×  10–3 4.2 ×  10–2

Mitotic G2-G2/M phases 7 3.2 ×  10–3 4.2 ×  10–2

rRNA modification in the nucleus and cytosol 4 3.2 ×  10–3 4.2 ×  10–2

Transferrin endocytosis and recycling 3 3.4 ×  10–3 4.4 ×  10–2

Cilium assembly 7 3.5 ×  10–3 4.4 ×  10–2

ROS, RNS production in phagocytes 3 3.8 ×  10–3 4.6 ×  10–2

p53-dependent G1 DNA damage response 4 4.0 ×  10–3 4.7 ×  10–2

p53-dependent G1/S DNA damage checkpoint 4 4.0 ×  10–3 4.7 ×  10–2
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Figure 1.  GO enrichment analysis using high throughput co-complex interaction annotations for (A) biological 
processes, (B) cellular components, (C) molecular functions. For each plot, Y-axis represents a significant GO 
definition, and X-axis represents the counts of enriched genes (Gene ratio). The gradient of color represents the 
different p-values, and size of the dot represents the count number of genes in each GO term.
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product of MBIP regulates the JNK pathway which is involved in intracellular signaling of thyroid and other 
human  cancers43. A role for TRMO encoding a tRNA methyltransferase involved in tRNA processing, and for 
NANS involved in sialic acid synthesis process in tumorigenesis has not been evidenced so far although variation 
in the expression of the two genes has been observed in thyroid carcinoma according to TCGA transcriptomic 
data, suggesting that further studies on these candidates should be pursued.

Network and pathway tools were developed for computational gene prioritization to make use of functional 
information from gene and protein databases to gain more insights in disease-related biological mechanisms. 
They are, therefore, biased toward the well-studied genes; interactions and pathways and SNPs in non-coding 
genes (lncRNA, miRNA, and snRNA) and in intergenic regions are omitted. Here, we assigned SNPs that lie 
within 50 kb on either side of a gene’s coding sequence boundaries to compute its association p value which is 
used by pathways and networks centric approaches. With this gene definition, only 1951 (0.4%) OncoArray SNPs 
that passed QC were not linked to a gene.

Our study also illustrates that the alternative representation of the same biological pathway (e.g. in KEGG, 
Reactome and GO) may influence the results of the statistical enrichment analysis and that pathway-centric 
approaches employed to interpret -omics data rely on the choice of the pathway databases used. This is because 
pathways are often described at varying level of detail, with diverse data types and with vaguely defined bounda-
ries. In particular, KEGG includes pathway maps such as for metabolism, genetic, and environmental information 
processing, while Reactome is based on biological reactions (binding, activation, translocation, degradation) 
and GO is a hierarchy of terms representing biological processes, molecular functions and cellular components. 
We chose to use these three databases that differ in the average number of pathways they contain, the average 
number of proteins per pathway, the types of biochemical interactions they incorporate, and the subcategories 
that they provide (e.g. signal transduction, genetic interaction, and metabolic) to gain a comprehensive overview 
of pathway landscapes altered in DTC. Reassuringly, we found that, although limited in number, similar pathways 
named differently across databases were associated with DTC with comparable p-values.

We also found that the EW_dmGWAS approach combining association, differential gene co-expression 
profile and functional interaction analyses was more informative than the standard pathway-based approaches 
to prioritize gene sets. The integrative analysis showed that genes involved in ‘muscle contraction’, ‘glycogen’ and 
‘insulin’ related pathways play a role in the etiology of DTC. Using this approach, KEGG definitions, GO biologi-
cal processes and GO molecular functions were also significantly enriched for ribosome-related pathways, and 
GO cellular components were enriched for several nervous system related terms.

Although top ranked pathways highlighted in the standard pathway analyses with VEGAS2 did not achieve 
statistical significance, some are in line with those evidenced with EW_dmGWAS or play a role in the develop-
ment of other carcinomas, and therefore could help prioritizing the best candidates for therapeutic intervention. 
For instance, VEGAS2 analyses suggested involvement of cholesterol homeostasis pathways in DTC and indicate 
that MAPK pathway, involved in melanoma and other cancer  types44,45, and steroid biosynthesis related pathways, 
involved in prostate  cancer45 could also been altered in DTC. Other top ranked pathways related to NCAM1, a 
neural cell adhesion molecule shown to be involved in development of the nervous system as well as in cancer 
 metastasis46 or to ERBB2 and other growth factors acting in thyroid tumorigenesis were also evidenced.

Gene-networks and pathways highlighted in this study were identified using the European subset of EPI-
THYR only, due to the limited sample size and heterogeneity in the population structure in other ethnic groups. 
Since allele frequencies of SNPs and DTC risk associated to them may vary from one population to another, 
pathway- or network-guided GWAS analysis in larger non-European samples will be useful to confirm the asso-
ciation with biological functions identified in Europeans and also to identify new ones. The major advantage of 
approaches such as EW_dmGWAS or similar approaches like the weighted gene co-expression network analysis 
(WGCNA)47,48 is their capability to perform biologically relevant dimension reduction as a result of the analy-
sis. However, they use results of transcriptomic data analysis which reflect the inherent complexity of multiple 
biological processes. Moreover, data generated from different platforms also lead to noise and error generated 
by variations in experiment also affect the accuracy to distinct different samples. Further improvement of the 
algorithms is therefore needed to facilitate identification of causal hub genes involved in molecular mechanisms 
that could be used as therapeutic targets of the disease. Building methods using multitype data such as gene 
expression data, transcriptomic data and protein data will help to identify more accurate and reliable pathways 
as biological markers of disease. Alternatively, deep learning models may be used to jointly learn features from 
different type of omics data and then predict the key genes forming the modules, as such multi-task methods 
have been proposed for image classification in other complex  diseases49.

To summarize, the strongest associations were found for gene sets acting in insulin resistance, amino sugar 
and nucleotide sugar metabolism-related pathways, which trigger weight gain, overweight or obesity reported 
to be positively associated with in thyroid cancer  risk50. In EPITHYR, data on weight and height are available for 
all participants, and association between anthropometric factors and DTC risk was investigated separately in all 
 studies8–10,12–14. In all studies, weight, height and BMI were positively associated with DTC risk. High body surface 
area was also investigated in three of the  studies10,13,14, and it was also found to increase DTC risk. These results 
support the relevance of the above-mentioned pathways in DTC susceptibility. Genes sets acting in signaling 
pathways involved in muscle contraction, were also evidence in the EW-dmGWAS analysis. Interestingly, a recent 
GO term and KEGG pathway enrichment analysis performed on mRNA microarray datasets for human thyroid 
carcinomas and adenomas indicated that some biological functions of genes that were differentially expressed 
in the tumors included protein binding, cardiac muscle cell potential involved in  contraction51, indicating that 
these functions play a role in both thyroid cancer development and progression. Hence, translating EPITHYR 
GWAS data into biologically relevant pathways and gene sets expands our knowledge on the potential mecha-
nisms underlying DTC carcinogenesis, and provides evidence for the future development of clinically relevant of 
multigenic predictors for identifying individuals at high risk. Further population, clinical and laboratory research 
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is needed to confirm our findings. Strategies to accelerate functional biological follow-up may include replication 
of the findings in other populations, fine-mapping, experimental studies such as metabolomic analyses to fully 
understand the biology and functional nature of the loci involved in signal transduction pathways associated 
with muscle contraction, glycogenolysis, and insulin metabolism in DTC susceptibility.

Materials and methods
Study participants. Study participants consisted of DTC cases and cancer-free controls of European 
descent originated from metropolitan France, New Caledonia, French Polynesia, Cuba and Gomel region of 
Belarus contaminated after the Chernobyl fallout, and who had been enrolled in one of the seven case–control 
studies from the EPITHYR consortium, with available blood or saliva DNA sample. After quality controls of the 
genotyping data (see next paragraph), 1551 cases and 1957 controls were used for all further analyses (Table 1). 
The study designs have been described in detail  previously8,11–13,52–54. All studies provided information on histol-
ogy of the tumor, ethnicity, personal and familial history of thyroid disease, menstrual and reproductive factors, 
exogenous hormone use, weight, height, dietary habits and residential and occupational histories. DTC cases 
with missing histology and individuals related at the first, second and third degree according to their genotypic 
data (i.e. 19 individuals, data not shown) were excluded.

Participants from all studies provided written informed consent. The present study was performed in compli-
ance with the Helsinki Declaration and to the reference methodology from the National Committees for personal 
data protection in medical research.

CATHY, YOUNG-Thyr, E3N and New Caledonian studies were approved by the French ethics committee 
“Comité de Protection des Personnes” and the French data protection authority “Commission Nationale de 
L’informatique et des Libertés” (CNIL). The French Polynesian study was approved by the Ethical committee 
of French Polynesia and the CNIL. The Cuban study was approved by the Clinical Research Ethics Committee 
of the National Institute of Oncology, Havana, Cuba. The Chernobyl study was approved by the International 
Agency for Research on Cancer ethics committee and the Belarus Coordinating Council for Studies of the Medi-
cal Consequences of the Chernobyl Accident.

Genotyping data. All individuals were genotyped at the Centre National de Recherche en Génomique 
Humaine (CNRGH/CEA) with the Infinium OncoArray beadchip (Illumina) designed to target over 530,000 
SNPs across the  genome55. For the purpose of EPITHYR studies, the beadchip was augmented with 13,759 
SNPs known or suspected to be involved in DTC susceptibility or in thyroid hormone  metabolism24. Standard 
genotyping array QC steps were applied to filter out SNPs which were either duplicate SNPs (814 SNPs) pseudo 
autosomal SNPs (37 SNPs), monomorphic SNPs (5210 SNPs) or SNPs deviating from Hardy Weinberg Equi-
librium (HWE), i.e. applying HWE p-value thresholds of  10–7 for controls and  10–12 for cases, as performed by 
the OncoArray consortium in other  studies55 (563 SNPs). In addition, SNPs with call rate per study < 95% (8327 
SNPs) or showing cluster plot discordancy (4083 SNPs) were also discarded. This left 460,437 SNPs, of which 
458,486 were located within or at ± 50 kb of a protein coding gene. In total, 3508 individuals with European 
descent (1551 cases and 1957 controls) as identified using ancestry markers and standard procedures described 
by the OncoArray  consortium55 were used for all further analyses.

SNP‑level analysis. SNPs were tested individually with the assumption of an additive genetic model, using 
an unconditional logistic regression model adjusted for age (age at diagnosis for cases and age at inclusion for 
controls), sex, study and the first ten principal components to correct for population stratification. Analyses were 
performed with PLINK software v1.956.

Gene‑level analysis. Gene-level analyses were performed using  VEGAS2v0229. As we described in another 
work, VEGAS2 “performs gene-based tests based on association test from single variant analyses and accounts 
for linkage disequilibrium (LD) between SNPs and number of SNPs tested to avoid an increase in false posi-
tive results due to genes with multiple, highly correlated markers”57, Following the same strategy as what we 
reported previously, “we considered a SNP to belong to a gene if located within 50  kb on either side of the 
gene’s transcribed region, which we found to be a good balance between incorporating short-range regulatory 
variants while maintaining the specificity of the result for a specific gene, as variants associated with neigh-
boring genes can influence the test statistic for a gene of interest”57. All SNPs were provided to the tool which 
assigns SNPs to genes and calculates gene-based empirical association p-values. The results shown were obtained 
using EPITHYR European controls as reference dataset for LD calculation. For SNP annotation, the latest GEN-
CODE28 definitions mapped to hg19 were downloaded (ftp:// ftp. ebi. ac. uk/ pub/ datab ases/ genco de/ Genco de_ 
human/ relea se_ 28/ GRCh37_ mappi ng/ genco de. v28li ft37. annot ation. gff3. gz). Only protein coding definitions 
(N = 20,298) were used for the gene-based association tests.

Multiple testing was taken into account by using the Benjamini and Hochberg’s procedure to compute the 
FDR, with a statistical significance threshold of 0.05. The same gene level analysis was repeated for after exclud-
ing 137 FTC cases, using all the same parameters.

Annotation of eQTLs. We used the PancanQTL  database30 (bioinfo.life.hust.edu.cn/PancanQTL/) to 
search for eQTL within or nearby genes associated with DTC risk in EPITHYR. This database provides access to 
eQTL-based analysis of genotype and expression data of 9196 tumor samples in 33 cancer types obtained from 
TCGA. For the present study, we downloaded the cis-eQTL identified in the 497 DTC samples analyzed in the 
PancanQTL project (https:// portal. gdc. cancer. gov/).

ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_28/GRCh37_mapping/gencode.v28lift37.annotation.gff3.gz
ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_28/GRCh37_mapping/gencode.v28lift37.annotation.gff3.gz
https://portal.gdc.cancer.gov/
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Pathway‑level analysis. Pathway-level analysis were performed using  Vegas2Pathway58, which accounts 
for LD between the tested markers, and corrects for gene and pathway sizes. This test uses the VEGAS2 output 
and external pathway definitions. Here we used the reference biological pathway annotation databases KEGG, 
considering the HSA and BRITE  hierarchies31–33,  GO35 and  Reactome34. The latest definitions for each data-
base were downloaded. Number of definitions and number of OncoArray SNPs tagging genes involved in these 
definitions are provided in Table 3. The GO terms were subjected to filtering on basis of pathway size by only 
considering definitions with number of genes between 10 and 400. In addition, to further reduce the number 
of overlapping GO term definitions, a similarity measure (Jaccard  index59) was calculated for each pair of GO 
terms. Two terms were considered "highly similar" if their Jaccard index was > 0.85, in that case only the largest 
set was kept. Internally, VEGAS2Pathway only considers pathway definitions having a minimum of five genes. 
The statistical test used by VEGAS2Pathway is similar to the test used by VEGAS2 but considering a gene set as 
a pathway definition. For each pathway-based test, an FDR correction with a statistical significance threshold of 
0.05 was applied to correct for multiple testing.

Gene network analysis. We used the EW_dmGWAS algorithm to investigate joined association signals 
beyond single  markers36. EW_dmGWAS first annotates sets of genes using PPI networks as described in the 
HINT database (HINTDB), which collates interactions from BioGRID, MINT, iRefWeb, DIP, IntActa, HPRD, 
MIPS and the  PDB60. Interactions are defined as either: binary, that is a direct biophysical interaction between 
two proteins, or co-complex associations, which means co-membership in a group, without implying direct pair-
wise interaction. These definitions of interactions, also called “co-complex categories” are divided into either 
literature-curated or deduced from high throughput experiments. Literature curated definitions include interac-
tion data from thousands of small-scale studies focused at validating a single or a few specific hypotheses, while 
high throughput experiments produce large-scale interaction maps. Here we considered the high throughput 
definitions, for both binary (N = 47,427) and co-complex (N = 102,807) sets of interactions. EW_dmGWAS also 
uses data on condition-specific differential gene co-expression profiles to assign edge weights to the nodes of 
the PPI networks to prioritize gene sets (also called modules or subnetworks) for downstream gene enrichment 
analysis. Here we were interested in prioritizing genes that are differentially expressed in thyroid tumor tissue 
versus adjacent normal tissue samples. We used expression data from TCGA and selected tumor/normal tissue 
sample pairs for PTC cases available through the TCGA firebrowse portal (http:// fireb rowse. org/)61. Entire data-
set in the file “illuminahiseq_rnaseqv2-RSEM_genes_normalized” was downloaded, and the TCGA barcodes 
were used to find matching tumor and healthy tissue by parsing the ‘sample’ field (https:// docs. gdc. cancer. gov/ 
Encyc loped ia/ pages/ TCGA_ Barco de/) The sample field has values with range 01–09 for tumor types, and range 
10–19 for normal types, using this criteria we found 59 matching tumor and normal sample pairs. In brief, 
EW_dmGWAS integrates GWAS signals and gene expression profiles to extract subnetworks from a background 
PPI network. Node weights are derived from GWAS signals and edge weights are derived from gene expression 
profiles. Modules are ranked according to their score which is a combination of node weight and edge weight.

EW_dmGWAS was executed for each set of binary and co-complex interactions listed in HINTDB using 
gene-level association test p-values. For each category of interactions, only the top 1% modules were considered 
for use in gene enrichment analysis. Reactome gene enrichment analysis was performed with the R package 
 ReactomePA62 and KEGG and GO gene enrichment analyses were performed with R package  clusterProfiler63. 
Specifically, the functions enrichPathway, enrichKEGG and enrichGO were used. For GO annotations, a pre-
processing step was necessary using the simplify function from clusterProfiler in order to remove redundant 
GO terms in the enrichment analysis.

Disclaimer. Where authors are identified as personnel of the International Agency for Research on Cancer/
World Health Organization, the authors alone are responsible for the views expressed in this article and they 
do not necessarily represent the decisions, policy or views of the International Agency for Research on Cancer/
World Health Organization.
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