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ON PREDATION - COMMENSALISM PROCESSES AS
MODELS OF BI - STABILITY AND CONSTRUCTIVE
ROLE OF SYSTEMIC EXTINCTIONS

E. SANCHEZ-PALENCIA, J-P FRANCOISE

ABSTRACT. We propose a mathematical model for a class of preda-
tor - prey systems more complex than the usual one, involving a
commensalism effect consisting in an influence of the predator on
the sustainability of the prey. This effect induces interesting new
features, including bi-stability (two attractors with disjoint attrac-
tion basins). The question of the possibility of reaching a certain
attractor starting from initial conditions with a small population
of predators, which presents an interest from the vewpoint of the
onset of the predator in evolution, is addressed. We propose two
possibilities: the classical one involving adapted conditions in the
far past and a new (up to our knowledge) one using biodiversity,
specifically the presence of another predator which operates as a
starter, being displaced in the sequel.

1. INTRODUCTION

This paper is devoted to a class of predator - prey systems with a
functional structure more complex than the usual one, involving a sup-
plementary commensalism effect in an influence of the predators on the
subsistences of the preys. As an example of this ecological behaviour,
we may think about a population of predators (insects) which are para-
sites of the preys (herbivores) but which in addition improve polliniza-
tion, so enhancing the equilibrium population of the preys. This new
effect induces interesting new features, including bi-stability (simulta-
neous presence of two attractors with disjoint attraction basins). This
rouses interesting questions, which present an interest from the view-
point of evolution, concerning the possibility of reaching a certain at-
tractor from initial data with a small population of predators.

1991 Mathematics Subject Classification. Primary 92D25 Population Dynamics,
92D40 Ecology, 37G15 Bifurcations of limit cycles and periodic orbits.
Key words and phrases. Predator-Prey Systems, Bi-stability, Excitability, “di-
versity - stability debate”.
The authors are grateful to Philippe Lherminier for several enlightening
discussions.
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As a matter of fact, the behavior of the predators is classical (their
only resource are the preys) whereas the preys have their own subsis-
tence. The preys are obviously consumed by the predators, but there
is an extra positive effect of the predators on the subsistences of the
preys. Consequently the action of the predator on the prey is two-fold,
involving opposite effects of qualitatively different nature which cannot
balance, so inducing new qualitative phenomena.

In our opinion, the very interest of the model is in exhibiting a vari-
ety of demographic phenomena and peculiarities of the stability effects
induced by the complex action of the predators on the preys, rather
than the specific knowledge of a certain type of such an action. But it
is neverthelesss worthwhile thinking that such kind of behavior could
be used for modelling situations where the predators are insects having
a double action on the preys (herbivores), living at their expenses but
also improving pollinization which turns out in enhancing the capacity
of the susbtrate of the preys.

In situations where the efficiency of the predation is small, not al-
lowing an invasive character of the preys, a sufficiently large effect of
the predator on the substract of the preys induces the onset of an at-
tractor with a (restricted) attraction basin disjoint of the axis of the
preys (so unreachable by usual invasion of the predators). The prob-
lem of the invasion of such kind of attractors is not new in ecological
dynamics, and it is usually solved by invoking different conditions in
the far past. We adress this question in two ways. First, by construct-
ing a (non-autonomous) system with variable parameters (so driven
by external agents), and we give an example of such situation. But
we also present a very different possibility, only involving autonomous
systems (and then not needing external agents) which consists in the
presence of another species of predators which operate as a starter al-
lowing invasion of the predators, but displaced in the sequel by the first
predator, which eventualy colonizes the attractor. This may be con-
sidered as a contribution to the so-called “diversity - stability debate”
which include many related topics (see [9] and the references herein
and [11]).

It is remarkable that the Predation-Commensalism system displays
all the generic codimension-one bifurcations (saddle-node, Andronov-
Poincaré-Hopf and homoclinic bifurcations). This system has also the
striking peculiarity to display excitability phenomenon, without being
(in an obvious way) fast-slow. A key reference for bifurcation theory
is [5]. See also [4] for bifurcation theory applied to biological oscilla-
tions. Excitability is usually well-known in dynamical systems applied
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to neurosciences (see for instance ([4], 4.8 p.92) and ([1], p.53) with
FitzHugh-Nagumo and Morris-Lecar systems).

In this article, mathematics are practically reduced to description
and comments on the basis of the numerical examples (done with Math-
ematica). We did not search to generalize the examples and we mainly
focus on the description of certain mechanisms. Moreover, we do not
search to give an explicit description of the admissible set of initial
values, which is certainly not trivial; we only point out that all the re-
ported facts are concerned with structurally stable properties, so that
small perturbations of the parameters and of the initial values are al-
lowed without changing the qualitative properties of the results.

The paper is organized as follows:

The Predation-Commensalism model is described in Section 2. Lat-
ter in the text, it will be refered to as the “PC-model”.

In Section 3, we recall a few classical results of the model without
Commensalism term in order to prepare the sequel.

In Section 4 we describe the main features of the Predation - Com-
mensalism model.

Section 5 contains a further description of the homoclinic bifurcation.

Section 6 discusses the excitability phenomenon.

In Section 7 we give an explicit example of non-autonomous system
allowing invasion of the predator and asymptotic approach to the non-
trivial attractor.

Section 8 is devoted to a 3-dimensional system of two predators in
competition for a prey, allowing also invasion of the non-trivial attrac-
tor.

The conclusions, dealing mainly with general items of evolution, are
in Section 9.

2. THE PREDATION - COMMENSALISM MODEL
The basic system is
{ t=ax(l —z/K)— yh(z)
y = —cy +yh(z).

(1)

where the functional response h(zx) is of the so-called “Holling I1”
type ([6], [7]) i.e. proportional to x for small x with an asymptotic
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satiety bound. There are two significant parameters, the proportional-
ity ratio e (the efficiency of the predation with scarce preys) and b (the
satiety bound). Specifically, we shall take either

(2) h(z) = (bex)/ (b + ex)
(3) h(z) = btanh(ex/b).

K is the total carrying capacity of the substrate of the preys z.
Instead of the usual constant, we shall consider that K depends either
on the population of predators (4)

(4) K =Ko+ \y

or on the predation activity yh(z) itself (5)

(5) K = Ko+ A\yh(x).

The qualitative results are the same for (2) or (3) and for (4) or
(5), and the choice for numerical computations will be specified in each
example.

Obviously, the dynamics on the axis x is not concerned with A and
consists in a classical “logistic dynamics” with an unstable equilibrium
at the origin and a stable one (attractor) at = K,. The invasive or
non-invasive character of the predator y relies on the behavior of 3/ in
the immediate vicinity of this point. According to the second equation
(1) invasion amounts to

(6) c < h(K{))

and is independent of A. Using (for instance) the expression (3) we
have

(7) (¢/b) < tanh(eK,/b).

In particular, it appears that, when fixing all the parameters unless
e, invasion occurs for e larger than a threshold given by the equation
obtained from (7) replacing < by =.
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3. BASIC FEATURES OF THE PURE PREDATION SYSTEM A\ =0

In this section we recall the main properties of system (1) with the
functional response either (2) or (3) whith K = Ky = const , i. e.
A=01in (4) or (5).

The equilibrium (g, 30) is given by the solutions of the system (note
that the second equation was divided by y as we search for the internal
equilibrium)

0 = axo(l — xo/Ko) — yoh(zo)
(8) { 0 —c+hag)

Denoting by h~! the inverse function of h, which is well-defined on
the interval (0,0), we have

(©) { Zfoz(lh—_lfz(;gf(o)) = cyo

so that z( is given by the second equation and then yq by the first
one. Fixing all the parameters unless the efficienty e and using for
instance (3), we have

(10) Ty = gtanh(c/b),

so that zy runs from Ky to 0 for e running from its lower value for
invasion to +oo. The equilibrium (z,yo) describes a parabola passing
by (Kj,0) and the origin.

Several kinds of attractors then appear depending of the values of
e (see Fig 1; a more explicit description may be find in [13]). For e
less than the invasion threshold, the attractor is merely the equilibrium
of the preys alone, E (see Fig 1 with e = 0.15). For larger values of
e, there is an equilibrium (zg,yo) on the parabola; it is stable (then
an attractor, specifically a degenerate node), as in Fig 1 for e = 0.35.
When increasing e, the equilibrium becomes a stable focus (as in Fig
1 e = 0.6). With increasing values of e, (in particular on the left of
the parabola) there is a Poincaré - Andronov - Hopf bifurcation and
the equilibrium becomes unstable; it appears a periodic cycle around
it which is the attractor (see Fig 1 with e = 0.85). For even larger
values of e, the cycle keeps dilating as e — +o00 and tends to become
a curvilinear triangle passing nearby the origin and the equilibrium of
the preys alone (see Fig 1 with e = 2).

It appears that the above described pattern is concerned with values
of e sufficiently large to have invasion of the predators; for lower values
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 e=2.0

T e=0.85
7 e=06
e;E]_.35
e=0.15
...——“"_

X

0 1 2 3 E

FIGURE 1. Plot of several orbits of system (1) with (3)
fora=0=1, c=0.76, Ky = 4 and several values of e
with the parabola cy = z(1 — ).

of e the attractor is merely the point (0, Ky) (equilibrium of the preys
alone (with their subsistences)).

4. FEATURES OF THE PREDATION - COMMENSALISM SYSTEM
(A>0)

The results for the classical model A = 0 were explicitly described
in the previous section. It was concerned with e sufficiently large to
have invasion of the predators from the vicinity of the equilibrium of
the preys alone, (Ky,0). In this case, passing to A > 0 modifies the
pattern so that the cycles are larger and often contain a part of them
in the region x > Kj, but the main features are analogous. We only
consider in the sequel the case of e small, so that there is no invasion
of the predators from the vicinity of (Kj,0).

In order to understand the role of parameter A, let us fix in (1), (3)
the parameters a = 0.5, 0 =1, e = 0.6, Ko =1, ¢ = 0.8, and let A run
from 0 to 4o0.

For A\ = 0 we obviously have the classical system with non-invasive
y, so that the attractor is merely the equilibrium of the preys alone,
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FIGURE 2. Phase portrait of (1), (3) with small e = 0.6
and moderate A = 3 (see other parameters in the text).
The attractor is the equilibrium of the preys alone, E.

(Ko,0). This pattern remains qualitatively the same for small A (see
Fig 2 for A = 3):

With increasing A, there is a saddle - node bifurcation with sudden
inception of two equilibria (with the same xy). With slightly larger A
the node becomes an attractive focus. The phase portrait is seen in Fig
3 for A = 5. There is a bi-stability: the saddle S has a stable manifold
which is the common boundary of two attraction basins which send
the positive half-orbits towards the focus A and the equilibrium of the
preys alone E respectively. We note that the predator y is always non-
invasive from the vicinity of E, which is an attractor; the new attractor
A is only accessible from its attraction basin (the domain around A
enclosed by the stable manifold of S), which implies moderately large
initial values of .

Moreover, when increasing A, there is a Poincaré - Andronov - Hopf
bifurcation of the upper equilibrium, which loses its stability, and it
appears a stable cycle around it. The phase portrait is seen in Fig 4
for A = 6. The upper equilibrium is an unstable focus (denoted ), and
its attraction basin is analogous to the previous one (with the exception
of the point [ itself, which is an unstable equilibrium).

For larger values of A the stable cycle C' dilates untill it touches the
saddle S; there is a homoclinic bifurcation (which is more explicitly
described in the next section). Increasing A there is again only one
attractor, the equilibrium of the preys alone, but the phase portrait is
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FIGURE 3. The phase portrait for A = 5 (other parame-
ters are the same). There is a new attractor A in addition
to E. The stable manifold of the saddle S separates the
attraction basins of A and F.
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FIGURE 4. The phase portrait for A = 6 (other pa-
rameters are the same). The upper attractor is now the
periodic cycle C' around the upper (unstable) equilib-
rium /. The stable manifold of the saddle S separates
the attraction basins of C' and E.

very different from that of Fig 2. It is shown for A = 10 in Fig 5. The
two branches (upper and down) of the unstable manifold of the saddle
S join S to F, the down directly, and the upper after a large loop.
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FiGURE 5. The phase portrait for A = 10, other pa-
rameters are the same. The upper half of the unstable
manifold of S sends to F, which is a global unique at-
tractor (the bi-stability phenomenon disappeared). This
global attractor displays a property of excitability.

The former attraction basin of the limit cycle is no longer trapped, it
turns and eventually dumps in F, so that the bi-stability disappeared.
This global attractor displays a property of excitability (which is more
explicitly described in another section).

5. COMPLEMENTS ON THE HOMOCLINIC BIFURCATION

We give a few complements on the (somewhat unusual in two-dimensional
predator-prey system) homoclinic bifurcation which intervenes between
the patterns of Fig 4 and Fig 5 of the previous section. In order to have
a clearer figure, we change a little the values of the parameters, which
are now a = 04, b=1,e =0.5, Ko =1, c = 0.716. When increasing
A, the periodic cycle C dilates, and, at A = 11.18 (Fig 6) it touches the
saddle S. This homoclinic bifurcation has a non-local character, and
it amounts to the fact that the upper half of the unstable manifold of
S becomes itself the cycle, it turns and comes back to S again as the
left branch of the stable manifold (it is a homoclinic orbit). It shoud
be noted that the orbit itself starts and finishes in a classical equilib-
rium, so that the total time is infinite, in which it differs of a classical
periodic cycle. Otherwise, it is clear that the points inside the cycle
move towards it, whereas the outer points go to F.
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0.0

FIGURE 6. The homoclinic orbit corresponding to the
(homocline) bifurcation for system (1), (3) with a = 0.4,
b=1,e=05 Ky=1,¢=0.716 A = 11.18.

6. THE PROPERTY OF EXCITABILITY

At this point, it is worthwhile mentioning an interesting phenomenon
of excitability which appears for A sligthly larger than the homocline
bifurcation value. In that case, the phase portrait is almost the same
as for the bifurcation (Fig 6), but the exact topology is that of Fig 5,
so that the interior of the cycle eventually goes out and dumps into
the equilibrium of the preys alone, E. As a matter of fact, starting
inside the cycle, the orbit turns dilating and approaches the cycle, but
ultimately it goes out towards E. Fig 7 is a plot of such solutions as
function of time for A = 11.19 (the very bifurcation is at A = 11.18...).
There is a similar global behaviour of the orbits with solutions of fast-
slow systems well-known as models of neurosciences like the FitzHugh-
Nagumo and the Morris-Lecar systems. More precisely if we plot the
solution y(t) with initial data (xq,yo) there is a threshold M (zy) such
that if the initial data yy < M then the solution decreases rapidly to
its asymptotics; in contrast the solution y(¢) with initial data yo > M
displays a large excursion in the phase portrait before decreasing to
its asymptotics. Using the language of neurosciences, we say that the
neuron presents an action potential before relaxing to its equilibrium.
By analogy, we show in the next figure two orbits with one (respec-
tively two) action potentials. This is rather surprising to see such a
phenomenon in the class of prey-predator systems which furthermore
looks a priori not fast-slow in an obvious way.
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FiGure 7. Plot of a solution of the same system of Fig 6
with a slightly largerA = 11.19 exhibiting excitability. If
starting inside the cycle, it grows towards the cycle and
eventually it goes out, to the equilibrium of the preys
alone F.

7. ATTENDING THE NON-TRIVIAL ATTRACTOR IN CASE OF SLOWLY
VARYING PARAMETERS

We now focus on the attractors in the bi-stability case for interme-
diate values of A (either points as in Fig 3 or cycles as in Fig 4). It is
clear that they cannot be reached in the previous framework starting
with a small number of predators nearby the equilibrium of the preys
alone, F' = (Kj,0). The classical explanation of the possibility of such
a fact is that the invasion of the predators y occurred in a far past
of evolution, when values of the parameters were others, allowing in-
vasion; later, slowly, the values of the parameters changed, stabilizing
at the present values, which only operate on “somewhat large” values
of y, which lead to the attractor. We give now an example of such a
system.

We consider the system

T =ax(l —z/K)— ybtanh(ex/b
(11) { gy = —c§;+yt/an}>1(exy/b), e/t

with the parameters ¢, e and A are functions of time, so that the
system is non-autonomous. Moreover, as p is small, the parameters
are slowly variable:
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a=0.5, b=1 p=0.01,
K =1+ \y,

(12) A=5—e M,
c=0.8—0.3e"
e=0.6+1.2¢".

We first note that these parameters converge asymptotically to con-
stant values corresponding to a bi-stability with a point attractor, as
in Fig 3. Moreover, the values of the parameters for ¢ = 0 (in particu-
lar with a larger value of e, when taken constant, give an autonomous
system with invading properties for y, leading to a cyclic attractor (as
in Fig 1 for e = 0.85 for instance).

Fig 8 is a superposition of three orbits. The first one corresponds
to the autonomous system with the (constant) asymptotic values (12)
for large ¢ and starts from any point of the attraction basin of the up-
per equilibrium. The second one is concerned with the constant values
of parameters (12) for ¢ = 0, and starts from the very vicinity of the
equilibrium of the preys alone, E; it obviously converges to the cyclic
attractor on the left of Fig 8. The third one is the very orbit correspond-
ing to the non-autonomous system with the variable parameters (12),
starting, as the second, from the vicinity of E. Initially it is somewhat
analogous to the second orbit, but afterwards it evolves approaching
gradually of the asymptotic limit, which is the point attractor of the
first orbit.

8. TWO PREDATORS IN COMPETITION FOR A PREY AND
“STARTER” PHENOMENON

There is a huge development of mathematical studies of 3-dimensional
systems associated with two predators in competition for a prey ([10,
3, 2, 14, 15]), in particular with the discussions of “competitive exclu-
sion”, persistence of diversity and invasion [12]. See also [8] for the
existence of relaxation oscillations in this context.

We present another possibility for attending the attractor in the case
of bi-stability from the vicinity of the equilibrium of the preys alone F,
only involving autonomous systems, i. e. constant parameters. The
idea consists in introducing another predator y, with parameters differ-
ent from those of the previous y, now denoted by y;. The parameters
are chosen in such a way that yo alone with x is invasive (in particular
the efficiency es is larger than e;), so allowing invasion of y, (with a
small quantity of y;) but such that, when the populations are large, 1,
displaces ys (in particular the ratios of death are ¢ > ¢1), so that the
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Ficure 8. Plot of an orbit of the non-autonomous
system (11), (12 ), starting from the vicinity of E. Ini-
tially it is somewhat analogous to the solution for the
autonomous system with the initial values of the param-
eters, but afterwards it evolves approaching gradually of
the asymptotic limit, corresponding to the final values
of the parameters. Two orbits for the autonomous sys-
tems corresponding to the initial and final values of the
parameters are also plotted.

attractor is on the plane y» = 0. The auxiliary predator y, plays the
role of a “starter”.
Specifically, let us consider the system (13)

& = azx(l —x/K) — y1by tanh(eyz/b1)) — yobo tanh(eax /bs)
(13) yl = —C1y1 + y1b1 tanh(elx/bl))
Yo = —Colo + Yobo tanh(esx /by))

with the (constant) parameters (14)

a = 05, b1 = 17, b2 = 1,

K=1+ /\1y1b1 tanh(elx/bl)) + )\gygbg tanh(egx/bg))
(14) e =0.72, ey =1.33

)\1 — ]_07 /\2 — 6,

C1 = 072, Cy = 0.86.

There are orbits starting from x(0) ~ 1, small y5(0) and very small
y1(0) (specifically, starting from (1,0.001,0.02)) which tend asymptot-
ically to the attractor on y, = 0. Indeed, Fig 9 is a plot of this orbit
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FicUurRE 9. Plot of a three-dimensional orbit of the
autonomous system (13), (14) starting nearby the equi-
librium E of the preys alone and tending to the cyclic
attractor on the plane y, = 0.
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FIGURE 10. Plot of y;(t) and ys(t) of the previous
figure 9. The predator ys is initially essential and dies
out, whereas y; is initially very small but attends the
attractor on the plane zo =0

(it starts nearby the axis x, it spirals in the three-dimensional space
and it tends to a point attractor A on the plane y, = 0). The popula-
tions of the two predators as functions of ¢ are shown in Fig 10, where
it is apparent the booster role of 35, which is initially essential, but
disappears asymptotically for large t.

9. CONCLUSION

There are two essential points in this work. The first one is the wide
range of phenomena opened by the twofold (demographic) action of
the predators on the preys. In addition to the obvious consumption of
preys, the predators have a positive influence on the subsistences of the
preys, which constitutes a demographic advantage. These two actions
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have clearly positive and negative influences on the preys, but they
are qualitatively different, so non-comparable, inducing new qualitative
phenomena, including bi-stability and excitability.

The second is a (new up to our knowledge) setting in ecological dy-
namics allowing “jumps” from an attraction basin to another in prob-
lems with bi-stability with constant parameters (autonomous systems),
different of the usually evoked slow variation of the parameters in the
far past (non-autonomous systems) inducing a re-arrangement of the
topology of the attraction basins. This new setting consists in the
presence of another species operating as a starter which disappears
asymptotically in the sequel, but allowing a drastic modification of the
topology as the dimension of the phase space is improved. It then ap-
pears that the keypoint of this setting is the biological diversity (two
predators with different parameters) instead of the externaly driven
change of the parameters usually evoked.

These two items should then be considered as workable tools of the
evolution with an intrinsic (epistemological) interest independent of the
specific problems handled here.
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