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Abstract: We present a theoretical and experimental study of a resonator of the Helmholtz type for
the control of the swell. An experimental demonstration of the shielding effect by a belt made of
evenly distributed resonators is given. We then provide in-depth analysis of the Fano resonance
resulting from the interference between the dock scattering (the background) and the resonant cavity
scattering. This is done thanks to space—time resolved experiments which provides the complex-
valued scattering coefficients and amplitude within the resonator. We provide a one-dimensional
model derived in the shallow water regime owing to asymptotic analysis. The model contains the
two ingredients of the Fano resonance and allows us to exhibit the damping due to leakage. When
adding heuristically the damping due to losses, it reproduces the main features of the resonance
observed experimentally.

Keywords: Helmholtz resonator; water waves; protection belt

1. Introduction

Breakwaters are structures designed to create a sheltered area, protected from the wave
attacks. Among the different strategies, floating breakwaters (FBW) are attractive when
bottom-connected structures are not suitable, e.g., in sea area with deep waters or soft soil
beds. Besides, they have less impact on the underwater fauna and flora [1,2]. The building
block of such breakwaters is a rigid or flexible floating body, being either plain or partially
empty. More generally, the modern design of devices able to control the energy flow of
ocean waves has begun to benefit from the development of metamaterials. For instance, the
propagation can be made anisotropic using varying bathymetry see e.g., [3-5], or it can be
guided due to valley-locked transport [6]. In addition, a plethora of interesting phenomena
has been proposed, such as the cancellation of the scattering by rigid obstacles and their
cloaking [7-12], the perfect absorption of the wave energy in the nonlinear regime [13] and
the trapping for energy harvesting using graded arrays of resonators [14,15].

In the present study, we envision a building block based on a resonance of the
Helmbholtz type. It is composed of a cavity open on its upper part to the air and con-
nected to the surrounding sea water thanks to a thin neck (Figure 1b). Amusingly, this
resonant cavity is the upside down version of the oscillatory water column devices (OWC)
used to collect the sea wave energy [16], see Figure la. To begin with, we report in
Figures 2 and 3 elements of the proof-of-concept of the shielding efficiency of a belt made
of evenly distributed resonators. In a laboratory experiment, we have realised two rectan-
gular belts surrounding a central target area that is to be protected. In the configuration (a)
the belt is composed by cavities open to the sea by a neck (our Helmholtz resonators); in
the configuration (b) it is composed by close cavities (a dock). In each case, two ping-pong
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balls on both sides of the belt are used to track the movements outside and inside the target
area. For an incoming plane wave (blue arrow in Figure 2), video recordings evidence
the efficiency of the configuration (a) to produce an unperturbed area within the belt (the
videos are available in the Supplementary material; in these movies, top view corresponds
to Figure 2a and bottom view to Figure 2b).

I air flow

(a) (b)

oscillating water column

water flow

Figure 1. (a) Oscillatory water column (OWC); the power of the rising and falling water column is
transferred to the air through to a hole on the upper part of the cavity; the strong air flow is exploited
by a power take off system [16]. (b) Helmholtz resonator with large oscillations of the water column
due to strong water flow through a hole on the lower part of the cavity.

Figure 2. Proof-of-concept experiments: a belt aims to protect a rectangular target area from incoming
waves (blue arrow). The belt is composed of Helmholtz cavities (a) or of close cavities (b).

Figure 3. Pictures at two times during the oscillatory motion of the ball outside the target area
(at left) at its maximum (red plain lines) and minimum (blue plain lines) vertical positions. In the
configuration (a) for the resonant belt, the ball inside the target area (dashed lines) has not moved; in
contrast in (b) for the rigid dock belt, the two balls move with almost the same vertical amplitude.

In Figure 3, we report illustrations of our observations. The ball on the left with middle
line shown as plain lines is outside the target area. The ball on the right with middle line
shown as dashed lines is inside the target area. In (a) and (b) we have selected two times
during the oscillatory motion of the ball at left at its maximum and minimum vertical
positions. In (a), the ball on the right in the target area remains at the same heigh as the
area is efficiently sheltered by the resonant belt. In contrast for the rigid dock belt (b), the
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ball on the right has an oscillation motion with nearly the same amplitude as outside the
target area.

In this study, we characterize the resonance responsible for the shielding effect re-
ported above. Firstly, we present in Section 2 experimental quantitative results obtained
using the Fourier Transform Profilometry (FTP) which allows for space-time resolved
measurements of the free surface elevation [17-19]. The set-up involves an incident-guided
wave on a single resonator in a rectangular duct which is analog to an incident plane
wave at normal incidence on a periodic array of resonators. The significant losses within
the cavity weaken the sharp variations of the resonance around the perfect reflection of
the Fano curve [20]. The combined effects of the resonance and of the losses produce a
low transmission when compared to that produced by a dock. In Section 3, we use a
one-dimensional model governing the surface elevation outside the resonant cavity. The
model obtained in a recent study [21] reduces the effect of the resonator to jump conditions
applying to the surface elevation and its horizontal derivative; next it encapsulates the
resonant dynamics in an equation of a harmonic oscillator forced by the incident wave with
damping due to the leakage by radiation. When accounting for the inherent viscous and
nonlinear losses the experimental results are qualitatively well reproduced by the model.
Perspectives are drawn in concluding remarks Section 4.

Throughout the paper, in the numerics and the modelling, we consider an invis-
cid, incompressible fluid, and an irrotational motion in the harmonic regime with time
dependence e~*“f. Under these assumptions, the velocity potential ¢(x, z) satisfies

Ap =0,

W2 1)
9:¢(x,0) = rs ¢ (x,0), V¢-np=0,

with x the horizontal coordinate, z the vertical one (z = 0 is the undisturbed free surface,
z = —H the sea bottom) and I" denotes the boundaries of the rigid parts of the resonator
and of the sea bottom. The free surface elevation 7(x) and the velocity u = (u,v) are then
given by

a0 = Vo), n(x) = i;qv(x,o» @)

2. Experimental Result-Effect of the Losses

To characterize the resonator, we use a single resonator in a duct. The ductis 1.5m
long and p = 6 cm wide (along y); the water depth is set to H = 6 cm. The cavity has
the same width p as the duct and it is fixed at the free surface with an immersion depth
h = 2.8 cm; its dimensions are indicated in the Figure 4. This set-up is the equivalent of
an array of resonators evenly distributed along y with spacing p for an incoming wave
(along x) at normal incidence. In both cases, the solution far from the cavity region reads

nx<0,w)= A(eikx + R(w)e_ik"), n(x > Lw) = AT(w)e*=1), ©)]

with the complex valued amplitude of the incident wave A and scattering coefficients
(R, T). At the frequency w is associated the wavenumber k.
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H =6.0 cm

i

/=0.5 cm

Figure 4. Experimental realization. Front view (in (x,z) coordinate) of the single resonator placed in
a waveguide of width p along y, being the equivalent of an array periodic along y with spacing p at
normal incidence.

2.1. Experimental Characterization of Complex-Free Surface Elevation

Working in a duct has two advantages. Far from scattering regions, it gives rise to
the propagation of a perfectly plane wave below the cut-off frequency w, = 2m./gH/
p ~ 80 rad-s~! (only the mode 0 can propagate). Besides, it necessitates a relatively small
volume of water hence allows for its coloration with anatase pigment rendering the free
surface light diffusive (the coloration of water is visible in Figure 4). The FTP can, therefore,
be implemented. It uses the field of a fringe pattern projected onto the moving free surface.
The phase map between the instantaneous deformed pattern and the reference undeformed
one is used to reconstruct the field of free surface elevation [17-19]. The fringe patterns
have been recorded using a camera Photron (1024 x 1024). With a recorded window
x € (—40,40) cm and y € (—1.5,1.5) cm, the spatial resolution dx = dy = 0.84 mm is given
by the pixel of the camera and the time resolution §t = 1/25 s by its acquisition frequency.

Our experiments have been performed in the harmonic regime with incident waves
generated by a wavemaker at the left end of the duct imposing a sinusoidal motion
at frequency w (visible in the Figure 4); 11 values within the range (9,16) rad-s~! have
been considered. To prevent the strong reflection at the right end of the duct we use
a beach with an 8° angle. The experiments have been done using a resonant cavity
and for comparison using a simple dock with the same dimensions. The instantaneous
fields #(x, y, t) are stored which allows for pixel-by-pixel Fourier transforms resulting in
the complex amplitude #(x, y, w). To reduce the noise-to-signal ratio, we use the mean
profile 7(x,w) = 1 [ E155 1(x,y, w)dy which provides the amplitude 7.(w) in the cavity for
x € (0,L) and the scattering coefficients (R, T) by fitting the forms in (3) for x < 0 and
x > L. For the resonant open cavity, the Figure 5 shows an instantaneous free surface
measurement 7(x, y, t) at an arbitrary time for the two frequencies realizing the minimum
and maximum transmissions (top panels) and the mean complex profiles 7 (x, w) (bottom
panel, real part with blue lines and imaginary part with red lines); the result of the fits
using (3) are shown with dashed black lines.
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Figure 5. FTP measurements for a resonant open cavity (a) at the minimum transmission for
w = 12.5rad-s~! and (b) at the maximum transmission for w = 9.3 rad-s~!. In (a,b), top panels
show the instantaneous free surface measurement #(x, y, t) at an arbitrary time. Bottom panels show
the real (blue) and imaginary (red) parts of 77(x, w) obtained by pixel-by-pixel Fourier transforms
of the recorded instantaneous patterns and after y-averaging. The dashed black lines are the fits
using (3) providing the complex valued coefficients (A, R, T); for x € (0, L) the relative complex
valued amplitude 7., normalized to A, is also obtained.

2.2. Experimental Evidence of Fano Resonance

Figure 6 shows (R, T) and 7, against the wavelength A = 271/k obtained experimen-
tally (circles) along with the same quantities calculated numerically (plain and dashed
lines). The dashed lines in the lossless case are characteristic of a Fano resonance with
striking variations of the scattering curves around the smooth curve of the dock on its own.
The measurements of (R, Tdock) for the dock on its own (green circles) coincide with the
numerics without a loss (plain green line). In contrast to the resonant, cavity-significant
shifts between measurements and lossless numerics are observed. Accordingly in the nu-
merics, we have accounted for the losses in the cavity only by adding a small complex part

to the real wavenumber satisfying k tanh kh = “’?2, namely we have considered k — k + ik;

(the plain lines show the best agreement for k; = 1.5 m ). Although the losses weaken
the resonance, the cavity efficiently reduces the transmission (compared to a dock) for
wavelengths smaller than about 35 cm.
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Figure 6. Scattering coefficients (R, T) and amplitude 7. against the wavelength A. Circles show the
experimental measurements; dashed lines show the numerical results without losses and plain lines
the numerical results with losses within the cavity, k — k + ik; with k; = 1.5m™1.

This shielding effect is further illustrated in Figure 7a where we report the 2D patterns
of the velocity potential in the (x,z) plane at the minimum of transmission obtained from
Figure 6 (without and with losses in the cavity). For comparison, the patterns at the
maximum of transmission are reported in the panels (b). The presence of losses does not
much affect the resonant mechanism in which the potential inside the cavity oscillates in
phase quadrature with the incoming wave to prevent the transmission while it oscillates in
phase with the incoming wave to foster it.

L - z
(a) minimum of transmission

w=12.1rads™!

w=12.3 rad.s™!

(b) maximum of transmission

10.4 rad.s™*

W

w=10.4 rad.s~!

Figure 7. 2D patterns of the velocity potential ¢(x, z) obtained numerically (a) at the minimum of
transmission without losses realizing perfect reflection at v = 12.1 rad-s ! and with losses realizing
low transmission w = 12.3 rad-s~!, (b) at the maximum of transmission without losses realizing
perfect transmission at w = 10.4 rad-s~! and with losses at the same frequency (as the resonant curve
does not present clear maximum in Figure 3b).

3. One-Dimensional Model of the Resonator

In this section, we analyze our experimental and numerical results with a one-
dimensional model whose derivation is detailed in [21]. The model holds for waves
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propagating over a small water depth and for subwavelength dimensions of the resonator;
namely for kH, kL < 1, with k = w//¢H in the shallow water regime. With these assump-
tions, asymptotic analysis allows us to reduce the actual problem to a one-dimensional
problem along x which applies for the complex swell amplitude at the free surface 7(x)
(the dependence of # on w is omitted in this section). In the harmonic regime, the reduced
problem reads

Axat (x) + K% 5(x) =0, x € (—00,0) U (L, +00),

— 2y 4)
] = HB 3y, [0wr] = =17

where [57] = 1(L) — (0) is the jump of 1 across the resonator (the same for [dy7]), 9y =
$(941(0) + 9y (L)) is the mean value of 9,57 and L, = (L — 2e) is the inner width of the
cavity. Next the uniform surface elevation 7, within the cavity satisfies the equation of a
damped harmonic oscillator of the form

(wé — a)2 — 2iw(0’R + UL))UC = C‘7(2) Winc(o)r

p” VAT Q)

where wg = , Ox = .
L, 4e; V H

In the above expressions, wy is the resonance frequency, o; the radiative damping due
to the coupling of the resonator with the surrounding fluid and ¢, the damping due to the
losses (viscous and nonlinear). The forcing term 7. (0) is the surface elevation at x = 0
associated to an incident wave #inc (x). Eventually, aside from the geometrical parameters,
the reduced models (4) and (5) involve two parameters, 3 being the blockage coefficient of
the dock and e being the so-called effective length of the resonator which read

L _
(6)

cw=e+3(ButBu), 1=1ip0=1

where By, is a function of y only, defined by

2
By:l@l +1)10g1+]4_31 4y

Tou 1—pu nogl—yz'

It is worth noting that in (5) and (6), two elements have been introduced heuristically
in the result of the asymptotic analysis (see Appendix A). Firstly, we added the damping
due to the losses as the analysis is performed in an inviscid fluid and linear case (the
radiative damping is obtained from the asymptotic analysis). Secondly, the effective length
e with an added length which would appear in the analysis at a higher order (this added
length accounts for boundary layer effects at both ends of the neck).

3.1. Scattering Coefficients and Amplitude within the Cavity

For an incident wave producing a surface elevation 7inc(x) = ¢, the reflected and
transmitted waves are written as in (3) and the solution for the uniform surface elevation
in the cavity read, from (5),

wg
< = . 7
() w3 — w? = 2iw(ox + 07) @)
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The above result can be further used (4), and with Cg%; = ﬁ, we obtain
0

1 wi — w?+ 2iw(oy — o 1 j 2
R - E (2) 2 + ; ( - L) Y U'dOCk + lw Wlth Udock > &I
wi — w? =2iw(0x +01) 2 Oga — IW B\ H
8)
T_ 1w%—w2+2iw(UR—UL) 1 Gyou + iw

N Zw% —w? =2iw(ox+0.) 2 Ogea — W

which produces |R|?> + |T|?> = 1if 6, = 0 (the system resonator+surrounding water is
conservative) and |R|2 + |T|2 < 1 otherwise. For the dock on its own, 7. = 0, resulting in

(Udock + lw)

1
Riw = = — = ,
dock 2 (Cgou — i)

% Toosc = 1 = Ruar- )

In (7) and (8) all the parameters are explicit with (wp, 0%, T4 ) in (5) except for o; which
has been introduced heuristically. As in the previous section, the damping ¢; can be viewed
as the small imaginary part of the complex frequency w — w + ig, with wy — wp — ioy
the complex resonance frequency due to the leakage by radiation being the pole of the
scattering coefficients.

The Figure 8 shows the same sequence of results as the Figure 6 for (T, R, 7.) from (7)
and (8). Although the overall variations of the resonance curves are well reproduced, we
observe a significant shift from wy = 11.1 rad-s~! (g = 38 cm from w? = gk tanh(kH))
in the experiments to wy = 16.0 rad-s~! (Ag = 30 cm with w = \/giH k in the shallow
water approximation) given by the reduced model. At these higher frequencies, the losses
have been accounted for using o; = 1.6 s~! to reproduce the significant attenuation of
the experiments (this value is roughly twice that given by the simple correspondence
0. = \/ghk;). The main reason for the observed discrepancy is attributable to the neck of
the resonator chosen in the experiments. At the small scale of our laboratory experiments,
viscous effects would destroy the resonance being too important in a very thin neck. This
certainly modifies the form of the effective length e, in (6) as the boundary layers are
weaker for a relatively large neck but they are also wider. Note also that the experiments
do not fulfill the hypothesis of shallow water, with |A — Agy|/|A| ~ 20% in the considered
range of frequency but this affects mainly the response of the dock on its own (from the
Figures 6 and §, it is slightly underestimated).

1 ==

imag(n. )

5 A (cm) 50 5 A (cm) 50 5 A (cm) 50

Figure 8. Predictions of the reduced model. Scattering coefficients (R, T) from (8) and amplitude 7.
from (7) against the wavelength A; plain lines in the lossless case (0. = 0) and dashed lines in the
lossy case (0, = 1.6s71).
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4. Conclusions

We have presented experimental results on a resonator of the Helmholtz type in
the context of water waves. As its acoustic analog, this resonator can be used as the
building block of devices able to control the energy flow of the swell. When a single type of
resonator is used, we have illustrated its capability to reduce the transmission up to almost
zero at a single frequency. Extensions concern perfect absorption induced by losses or
nonlinearities [22,23], a concept which has been already exploited in the context of water
waves [13]. For applications to breakwaters, the broadband absorption obtained in acoustic
devices should be transposable using a set of graded resonators [24,25].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cryst11050520/s1, Video: crystals-1093684-supplementary.mov.
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Appendix A. Comment on the Reduced Problem

The asymptotic analysis providing the models (4) and (5) has been detailed in [21].
Here, we provide a summary of the main results of the analysis.

Appendix A.1. Scalings
The asymptotic analysis uses the small parameter ¢ = kH withk = ﬁ the wavenum-

ber in the shallow water regime. We assume in addition that the dimensions L) is of the
same order of magnitude than H. Next, the neck of the resonant cavity satisfies the scalings
e ~ ¢H and ¢ ~ ¢3H which ensures the considered frequencies are of the same order of
magnitude than the resonance frequency. To show the meaning of these scalings, we use
the following heuristic arguments. We assume that the potential ¢. is uniform in the cavity
and we assume that the velocity v)y is uniform in the neck hence vy = L. — P, <), with
¢ the potential at the bottom end of the neck. Now, we integrate the incompressibility
relation divu = 0 from (1) and (2) in the region of the cavity resulting in two non vanishing
contributions, on the free surface where v(x,0) = “’?24% for x € (0,L,) and at the top end of

the neck where v(x, —=h™") = v}y over the length £. We obtain

/
9.~ L0 90) =0, (A1)

which applies to 7, as ¢. = —i %ch. The potential Py at the bottom end of the neck is

unknown but the resonance frequency has been determined and the analogy with the

Helmholtz resonance in acoustics is perfect owing to ¢ = /gh within the cavity. Our
2

scalings have to ensure that w ~ wp, hence €2 ~ % = fTH, which is fulfilled with

(H,e,L,) ~eand £ ~ €.
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Appendix A.2. Main Result of the Analysis

The macroscopic scale is that of the large wavelength; at this scale, the asymptotic for
small water depth H provides classically the shallow water equation in (4) which applies
to the potential at the free surface, hence to the surface elevation 7(x) for x ¢ (0,L) but
relations across x = 0 and x = L are missing. They are obtained by zooming on the
resonator and as the neck is thin this first zoom at the “mesoscopic scale” produces two
disconnected regions, outside and inside the resonator. Outside the resonator (the region
Q) in Figure A1), the mesoscopic potential is regular and it satisfies the problem of a perfect
fluid flowing in () with a velocity at infinity 9,¢ uniform along z. This problem is classical
and conduces to a solution of the form

P () ~ o + (x + HzBO)M, (A2)

far from the resonator where the evanescent fields have vanished.

ol

Figure A1. Mesoscopic regions () and (). The jump on the potential ¢ (or on the surface elevation 7
in (4)) is given at the mesoscopic scale and it corresponds to the dock problem on its own. The jump
on the horizontal velocity dx¢ (or on 9,7 in (4)) is provided by zooming further in the vicinity of the
points N and N and within the neck N'N. This provides the microscopic problems which allows to
connect the behaviors of the velocity potential dx¢ inside and outside the resonant cavity.

The constant By is the blockage coefficient and ¢ is unknown. The far mesoscopic
regions coincide with x = 0 and x = L in the macroscopic region where the potential is
¢(x). We recognize that ¢,, coincides with the Taylor expansions ¢(x) = ¢(0) + xd,¢ and
¢(x) = ¢p(L) + (x — L)9x¢ valid up to O(e?) for x € (0, L). It follows that

00 =0 "0g o) =go+ (T30 L),

resulting in the transmission condition 4] in (4), with B = By + % (with ¢ = —i£n). We
also link ¢ to ¢ as by definition ¢ = J(¢(0) + ¢(L)), hence

=9 559 (A3

The transmission condition on the velocity is more demanding as the velocity in () is
singular near N and the velocity in () is singular near N. The form of the singularity can
be determined in the cavity by integrating the incompressibility relation in () as we have
done to get (A1). We obtain

~ szo (P e}’
o8 g x|
with ¢, the uniform potential in the cavity far from N. In ), we know that the singularity at

Nisin |—f‘ but we have to determine A. This requires an additional zoom on the microscopic
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region being the vicinity of the neck ends and the interior of the neck. Expectedly we find
that the velocity in the neck is constant and the potential is linear resulting in

1 _
O = e (¢c - ‘P)
The incompressibility condition provides mA = — “’;LO ¢. = —{v, and
— W+ wip. = Wi b, (Ad)

with wp in (4). Integrating the incompressibility condition outside the cavity in () between
—x and x provides

w?L,

H(fn (%) —am<—x>>+“; [ fulx Sl o,

with £ = (—x,0) U (L, x). From (A2) and (A3), ¢ (x) = ¢po = ¢ up to O(x). Hence the inte-
gral over L reads (2x — L) “’?2 ®o. We recognize the Taylor expansions u(—x) = u(0) — xdyu
and u(x) = u(L) + (x — L)oxu up to O(x?). Identifying with the above equation, and using
that gHoyu + w?$ = 0, we obtain

w?L,
8

H(u(L) = u(0)) + ——=¢. = 0. (A5)

The above equation is close to the jump announced in (4) as # = dx¢ owing to (2). It
remains that (A4) slightly differs from (5). Specifically, (A4) reads

(—w? + @) = w7, (A6)

as ¢ o 17. To get (5) we have to link 7 to #inc(0). This is done owing to the form of the solu-
tion in (3) (and this holds in the transient regime thanks to the d’Alembert solutions [21]).
We have #in.(0) = A hence

_w

@(ﬁ - Uinc(o))/

as k = w/+/gH in the shallow water regime. We also have [d,#] in (4) whose identification
with the above relation provides

[0xy] = 2i (A7)

_ . .
w(z)q = w(z]ninc(O) +iw 2. % e = w(z)iyinc(O) + 2iwoy 1., (A8)

which reported in (A6) provides (5).
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