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Summary: 

Geophysical imaging using the inversion procedure is a powerful tool for the exploration of the Earth’s 

subsurface. However, the interpretation of inverted images can sometimes be difficult, due to the inherent 

limitations of existing inversion algorithms, which produce smoothed sections. In order to improve and 

automate the processing and interpretation of inverted geophysical models, we propose an approach 

inspired from data mining. We selected an algorithm known as DBSCAN (Density-Based Spatial Clustering of 

Applications with Noise) to perform clustering of inverted geophysical sections. The methodology relies on 

the automatic sorting and clustering of data. DBSCAN detects clusters in the inverted electrical resistivity 

values, with no prior knowledge of the number of clusters. This algorithm has the advantage of being 

defined by only two parameters: the neighbourhood of a point in the data space, and the minimum number 

of data points in this neighbourhood. We propose an objective procedure for the determination of these two 

parameters. The proof of concept described here is applied to simulated ERT (Electrical Resistivity 

Tomography) sections, for the following three cases: two layers with a step, two layers with a rebound, and 

two layers with an anomaly embedded in the upper layer. To validate this approach, sensitivity studies were 

carried out on both of the above parameters, as well as to assess the influence of noise on the algorithm’s 

performance. Finally, this methodology was tested on real field data. DBSCAN detects clusters in the 

inverted electrical resistivity models, and the former are then associated with various types of earth 

materials, thus allowing the structure of the prospected area to be determined. The proposed data-mining 

algorithm is shown to be effective, and to improve the interpretation of the inverted ERT sections. This new 

approach has considerable potential, as it can be applied to any geophysical data represented in the form of 

sections or maps. 
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1 Introduction 

Geophysics is a discipline, the aim of which is to derive information related to geological materials, based on 

the measurement of physical properties (e.g. the measurement of electrical potential can be used to infer 

the material’s electrical resistivity; the propagation time of mechanical waves can be used to retrieve its 

associated wave velocities). Geophysical measurements are widely used because they make it possible to 

use non-destructive techniques to obtain an extended spatial view of the prospected area, as opposed to 

other destructive techniques used for geotechnical measurements, which produce local information only. An 

inversion operation needs to be applied to the measured data, in order to determine a physical model of the 

prospected area, which is able to explain the measurements in terms of known geophysical parameters (e.g. 

Menke, 1989). Geophysical measurements can be used for various applications. Examples would include 

applications in geological prospection, based on electromagnetic and seismic measurements (e.g. Bauer et 

al., 2010; Finco et al., 2018; Hsu et al., 2010), earthen embankment diagnosis and monitoring using electrical 

measurements to detect possible leakages or weakened areas (e.g. Bièvre et al., 2017; Fargier et al., 2014; 

Johansson & Dahlin, 1996; Ling et al., 2019), archaeological prospection by means of electromagnetic 

sounding (e.g. Simon et al., 2012 ; Thiesson et al., 2011), water table monitoring using seismic 

measurements (e.g. Garambois et al., 2019; Goldman et al., 1989; Pasquet et al., 2015), and landslide 

characterization using seismic refraction tomography (e.g. Samyn et al., 2012; Uhlemann et al., 2016). 

Improved techniques for the processing and interpretation of geophysical data are constantly gaining the 

attention of various research teams. The inversion of geophysical data often requires the use of constraints, 

in order to address the problems of under-determination and equivalence, which are inherent to its physics. 

The frequently encountered smoothed, inverted sections, which are obtained as a result of the 

regularization process (e.g., Tarantola, 2005), make it difficult to extract accurate information related to the 

prospected subsoil structures, such as interface positions, and the extent and shape of anomalies. The 

interpretation of inverted sections is also biased by the colour scale used to represent them (Borland & 

Russell, 2007; Nicollo, 2014). 

 Conversely, emerging automatic data analysis techniques based on data mining algorithms have stimulated 

their application in different fields. In particular, data mining is already used to automatically explore, 

classify and synthetize texts in the frame of text mining (Tan, 1999; Amado et al., 2018; Westergaard et al., 

2018). It is also used in the medical field, for instance to analyze patients’ medical and genetic information 

for the prediction of heart disease (Soni & Ansari, 2011). In geophysics, previous studies have used neural 

networks: to improve the inversion process (e.g. Krasnopolsky & Schiller, 2003; Russell, 2019; Zheng et al., 

2019; Jin et al., 2019), to automatically pick seismic first arrivals (e.g. Chen, 2017), to interpret ERT time-

lapse measurements (e.g. Xu et al., 2017), and for parameter estimation (e.g. Calderon-Macias et al., 2000).  

In the present study, we propose a proof of concept regarding the use of a specific data-mining algorithm to 

better interpret inverted geophysical sections. Many studies have dealt with discontinuities and interface 

characterization, using different methods: analyzing the electrical resistivity gradient and assigning the 

interface to the steepest gradient area (Chambers et al., 2014), conducting a probabilistic inversion with 

interface reconstruction and updating, at each step of the inversion (De Pasquale et al., 2019), and 

performing fuzzy clustering of the inverted geophysical section (Ward et al., 2014). These methods require 

prior knowledge of the geological structure. The proposed approach enables the automatic determination of 

shapes and interfaces, leading to a more accurate interpretation of the geophysical data, without any prior 

knowledge, unlike other approaches (e.g., Dezert et al., 2019). To illustrate this new approach, we selected 
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data recorded using the 2D ERT (Electrical Resistivity Tomography) technique, because it is one of the most 

commonly used geophysical methods. ERT measurements also provide a very good example of smooth 

imagery. Indeed, inverted resistivity sections are derived from an integrative physical method, based on 

diffusive processes (e.g., see discussion in Jougnot et al., 2018 ), which is enhanced by the regularization of 

the inversion process (e.g., Day‐Lewis et al., 2005). As it can be very challenging to interpret the resulting, 

smooth sections, this represents a perfect field of application for our proposed algorithm.  

We first introduce ERT measurements, and describe the processes used by the data mining technique, in 

particular for the case of ERT data where it is applied to the automatically interpret geophysical sections. We 

then present simulated sets of 2D ERT data as well as real field data, which are processed according to the 

proposed methodology. Finally we discuss the sensitivity of the algorithm to its parameters and to noise.  

 

2 Materials and methods 

2.1 Selected geophysical method: Electrical resistivity tomography 

Electrical resistivity measurements involve the injection of a DC (Direct Current) electric current into the 

ground, using two electrodes, and measuring the resulting potential with another two electrodes (Keller & 

Frischknecht, 1966). Measurements can be recorded using 1D, 2D or 3D electrode configurations (Dahlin, 

2001). 1D configurations are used for profiling or electrical sounding. Profiling allows lateral variations in 

resistivity to be analyzed at a fixed depth, while electrical sounding allows the vertical variations in resistivity 

to be analyzed at a fixed lateral position. 2D and 3D configurations are a combination of both profiling and 

electrical sounding, which allows 2D resistivity maps or 3D resistivity tomograms to be retrieved. 2D and 3D 

measurements are called ERT. For a more detailed description of 1D, 2D and 3D configurations, see Binley 

(2015). In the present study, 2D electrical resistivity tomography measurements are considered because 

they correspond to the most commonly used ERT application. The relationship between the source location 

𝐫𝐬, its intensity 𝐼 and the resulting electrical potential field 𝐕 is described by combined Maxwell’s equations 

(Kunetz, 1966): 

 
𝛁. (

𝟏

𝛒
𝛁𝐕) = −𝐼δ(𝐫 − 𝐫𝐬), 

(1) 

with rs being the position of the injecting source, r the measurement position, I the injected current, 𝛒 the 

electrical resistivity and V the electric potential.  

We denote by 𝑽mes the vector containing the values obtained with a given measurement protocol. The aim 

of the inversion process is to retrieve the underground electrical resistivity distribution from the potential 

differences 𝑽mes measured at the surface. For this, a forward model is used to generate simulated values of 

electric potential, based on knowledge of the underground electrical resistivity distribution and the location 

and intensity of injected currents. In general, a finite-elements method is used to numerically solve the 

combined Maxwell’s equations. In the following, we denote by 𝝆 the vector containing the discretized 

electrical resistivity values, and by 𝑓 the forward model function. 

Due to the ill-posed problem of the inversion (Ellis & Oldenburg, 1994), 𝝆 cannot be derived directly from 

the measurements 𝑽mes. This problem is generally solved by minimizing a regularized least-squares criterion 

(Rücker et al., 2006): 

 𝜙(𝝆) = 𝜙d(𝝆) + 𝜙r(𝝆), (2) 
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where 𝜙d is a data misfit term corresponding to the sum of the squared differences between the 

measurements and the output produced by the forward model: 

 𝜙d(𝝆) = ‖W(𝑽mes − 𝑓(𝝆))‖
2

2
, (3) 

where W is a weighting matrix derived from the measurement uncertainties, estimated during the 

acquisition procedure, and 𝜙r(𝝆) is a regularization term which allows prior information related to the 

underground characteristics to be included. The first-order Tikhonov regularization scheme is very 

commonly used in the framework of geophysical tomography (Cardarelli & Fischanger, 2006; Ditmar & 

Makris, 1996). This method relies on the penalization of spatial variations in the estimated electrical 

resistivity field, in both the horizontal and vertical directions: 

 𝜙r(𝝆) = λx‖𝐃𝑥𝝆‖2
2 + λz‖𝐃𝑧𝝆‖2

2. (4) 

The matrices 𝐃𝑥 and 𝐃𝑧 are used to compute the first-order spatial derivatives along the 𝑥 and 𝑧 axes, and 

λx and λz are two regularization parameters, which balance the impact of each member in the minimized 

criterion. This regularization technique enforces the reconstruction of smooth areas, which is consistent with 

the fact that the underground medium is composed of several homogeneous layers of unknown shape. 

However, this regularization scheme tends to make real sharp resistivity variations appear to be excessively 

smooth, such that the boundaries between layers cannot be accurately identified in the reconstructed 

underground image (e.g., Day Lewis et al., 2005). 

For the present study, we used the open-source pyGIMLI package for inversion (python Geophysical 

Inversion and Modelling Library, Rücker et al., 2017). This package, which makes it possible to model and 

invert ERT measurement data as described above, was chosen for its ability to rapidly and straightforwardly 

create different underground geometries, and to freely set the inversion parameters. A further advantage of 

this package is that its library can be used with other geophysical methods (e.g., induced polarization and 

seismic refraction). 

2.2 Description of the data mining approach 

Data mining refers to the process of analyzing large data sets to extract information for further use (e.g. 

decision-making, trends, patterns or class determination). This process involves several steps, which depend 

on the field of application, and can be transposed to the interpretation of geophysical data (Han et al., 

2011). In the present study, we adapted the procedure to the case of ERT ( 

Table 1). Note that 𝜌𝑖𝑛𝑣 refers to the inverted electrical resistivities. In the following, the term “data” 

generally refers to different variables, depending on the step being applied ( 

Table 1), whereas the “data” referred to in “data mining” and the term “data point” refer to the logarithm of 

𝜌𝑖𝑛𝑣. 

 

Table 1 Data mining steps in the particular case of ERT data 

Data mining step Corresponding step in the geophysical application to ERT 

a. Data selection Select the geophysical measurement, which in the case of our study is 

the electric potential, as well as the measurement configuration and 

parameters needed to obtain the apparent electrical resistivity  

b. Data pre-processing Invert the measured values of electric potential and represent the 
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profiles in tabular form, using the parameters x, z, 𝜌𝑖𝑛𝑣 

c. Data transformation Compute the logarithm of each pre-processed data point 𝜌𝑖𝑛𝑣 

d. Data mining Apply the clustering algorithm: DBSCAN (Density-Based Spatial 

Clustering of Applications with Noise, Ester et al., 1996) to the data 

produced by step (c) 

e. Interpretation Identify the geological structure corresponding to the inverted data. 

 

a. Data selection: This is an important step in the general use of data mining and in particular for the case of 

geophysical applications. It consists in choosing the parameter that could contain information related to 

what we are seeking. In the present case, the appropriate geophysical method is chosen for its sensitivity to 

the properties of interest, which depend on: the aim of the prospection (e.g. geological structure 

characterization, leakage monitoring, anomaly detection), the nature of the prospected area (e.g. silty soil, 

clay-rich soil) and the desired spatial resolution. These criteria are also taken into account when selecting the 

measurement parameters (e.g. number of probes, probe spacing, type and amplitude of the sources). In the 

present case, we consider ERT measurements only, although a similar approach could be used with any kind 

of geophysical profile or map. 

b. Data pre-processing: This step consists in cleaning the raw measurements, removing invalid measurement 

points, and applying any necessary calculations (e.g., if the raw measurements do not contain information of 

interest for the study). In the present case, invalid measurement points that are attributable, for example, to 

poor coupling of the probes must be removed prior to the inversion process used to retrieve the electrical 

resistivity 𝜌𝑖𝑛𝑣. In order to simplify manipulation of the pre-processed measurements, and to apply suitable 

algorithms in the following steps, the data needs to be represented in a standard format, i.e. typically tables 

and matrices. In the present case, our inverted ERT profiles are converted to a listing in the form of a table: x 

(horizontal position), z (vertical position) and 𝜌𝑖𝑛𝑣, where x and z are the coordinates of the centres of the 

cells in the inversion mesh.  

c. Data transformation: In order to enhance the contrast in the data, or to facilitate the extraction of 

information, transformations can be applied (e.g., the square of the data, the logarithm of the data). In the 

present case, as we usually analyse the logarithm of the resistivity in the context of ERT interpretations, a 

logarithmic operation was applied to the inverted electrical resistivity.  

d. Data mining: This is the main step of the proposed approach, as it deals with the data-mining algorithm 

per se. Once the data has been pre-processed and transformed, it is analysed by applying the appropriate 

algorithms. Three broad classes of algorithm can be distinguished:  

(i) Regression algorithms, which try to establish a linear or nonlinear model that is well adjusted to the data.  

(ii) Classification algorithms, which consist in allocating data points to different classes, on the basis of their 

value. Classes could for example include soil types, vegetation types, or a client’s gender. Classification is 

performed in two successive steps. Firstly, data associated with known classes or outputs are fed to the 

algorithm, which then learns the limits between existing classes or patterns in the data provided. Then, 

when new data is introduced, the algorithm is able to predict the output or the class, on the basis of what it 

has learned. It should be noted that classification algorithms require data with known outputs, in order to 

predict the output of other new data.  
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(iii) Finally, clustering algorithms are designed to infer clusters or categories present in the data. However, 

unlike a classification algorithm, no learning step is performed because the clusters are assumed to be 

unknown. This type of algorithm analyses the data and proposes a set of clusters or patterns in the data. In 

the case of the present study, as is generally the case, the different soil types or geological composition of 

the prospected area are unknown.  

A clustering algorithm was selected for the research presented here. Note that the position of the data 

points in the inversion mesh is not included in this algorithm. 

e. Interpretation: This step uses the results of the previous steps to interpret the data, depending on the aim 

of the study or analysis. This could, for example, correspond to decision-making, based on a prediction using 

a model obtained by regression, or a prediction using classification results. It could also involve pattern 

extraction, based on the results of clustering.  

In the present application, as geophysical methods are often used to determine the structure of the 

prospected areas, clusters could be identified on the basis of electrical resistivity values. These clusters were 

associated with the different soil types present in the prospected area, which contributed to the assessment 

of the structure of the prospected area. The same electrical resistivity values were assigned to the same 

cluster, even when they were associated with different spatial locations. 

 

2.3 Chosen data-mining algorithm: DBSCAN   

There are many well-known clustering algorithms (e.g., Nagpal et al., 2013; Shirkhorshidi et al., 2014), which 

differ mainly in terms of the data analysis applied (statistical analysis, density-based analysis) and the data 

distribution they can handle. Some of these would not be appropriate for our application, as they require a 

high number of parameters to be set, or they are more specifically designed for Gaussian distributions. 

Following a careful review of various existing algorithms (Nagpal et al., 2013; Shirkhorshidi et al., 2014), we 

selected the so-called DBSCAN algorithm (Density-Based Spatial Clustering of Applications with Noise, 

proposed by Ester et al., (1996). This algorithm relies on the local analysis of data-point densities in the data 

space, and forms clusters in an iterative manner. This approach makes it possible to handle data 

distributions with a wide variety of different shapes (profiles, sections, maps, 3D volume). In addition, only 

two parameters need to be determined by the user: 

 𝜀 which corresponds to a variable range around a data point. The 𝜀-neighbourhood of a data point P 

is defined as the interval centred around P, of width equal to 𝜀. This width is defined in terms of the 

clustering variable (the logarithm of the inverted electrical resistivity in the present case). The spatial 

coordinates (x,y) refer to the horizontal distance and depth of each point, respectively, but are not 

included in the clustering algorithm. This information is used only to reposition the clustered points 

at their spatial locations, once the clustering has been performed for all points in the dataset. 

 N which corresponds to the required minimum number of data points in the 𝜀-neighbourhood of a 

point P, for P to be considered as belonging to a given cluster 

Figure 1 summarizes how the method is used by the algorithm to analyze each data point, and to assign it to 

a cluster or to noise. For a data point P, the algorithm counts the number of points e in the 𝜀-neighbourhood 

of P. If this number of points is greater than or equal to N, two possible cases are distinguished. If one of the 

points in the 𝜀-neighbourhood of P is already assigned to a cluster, P is assigned to that same cluster. 
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Otherwise, P is assigned to a new cluster and the noise points in the 𝜀-neighbourhood of P are assigned to 

the same new cluster as P. If e is less than N, then the points found within the 𝜀-neighbourhood of P are 

checked. If any of these points have been assigned to a cluster, then P is assigned to the same cluster, 

otherwise it is considered to be a noise point. 

 

Figure 1 Flow diagram describing the DBSCAN algorithm and data point analysis methodology 

 

Figure 2 describes the main types of point analysis handled by the algorithm, in the case of electrical 

resistivity values for a random value of epsilon 𝜀 and for N=3. For a set of data points, such as that 

represented in Figure 2, along an axis representing the clustering variable (i.e., the logarithm of the inverted 

electrical resistivity in the present case), a random point P is chosen and the number of points e in the 𝜀-

neighbourhood of P is computed, as shown in step (1) of Figure 2. For this first case, e is equal to 1 and is 

then less than the minimum number of points (N) required to assign P to a cluster. P is thus considered to be 

a noise point. In the next step (2), a random second point is chosen, leading to a second noise point. In step 

(3), the next point Q is explored. As it has four points in its 𝜀-neighbourhood, it is classed as belonging to a 

cluster. Since all the points in the 𝜀-neighbourhood of Q are either noise points or have not yet been 

analyzed, a new cluster is created and Q is assigned to that cluster. The noise points found in the 𝜀-

neighbourhood of Q are then re-assigned to that cluster. Another case can arise when the selected point has 

more than N points in its 𝜀-neighbourhood, but none of those points belong to any previous cluster. Another 

new cluster is then defined, as shown in step (4). This analysis is maintained until all the points have been 

analyzed, as shown in step (5). Then, using the known positions (x,z) of each point, the profile is 

reconstructed and each cluster is associated with a specific soil type.  
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Figure 2 Illustration of the DBSCAN steps followed in the case of ERT data analysis, for N = 3 and a random 

range of ɛ. These 5 steps summarize different point cases that the algorithm can handle. 

 

Note that the example shown in Figure 2 is highly simplified, since the clusters can be clearly distinguished, 

with no need for any particular analysis. However, in real cases the data points (i.e., the logarithm of the 

inverted electrical resistivity values in the present study) are more densely packed, and the boundaries 

between clusters cannot be distinguished. As an example, Figure 3a shows the electrical resistivity data 

distribution for a two-layer tabular model. By applying the DBSCAN algorithm to this dataset, with 

appropriate values of 𝜀 and N, two clusters are clearly distinguished (Figure 3b).  
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Figure 3 (a) Example of the distribution of the logarithm of electrical resistivity values, for a two-layer tabular 

model. (b) Visualisation of the clustering determined when DBSCAN is applied to the resistivity distribution 

in (a) 

The remaining question is the choice of DBSCAN parameters, as these can vary from one DBSCAN field of 

application to another, as described in the following section.  

2.4 Choice of DBSCAN parameters  

Choice of N 

In the case of the present study (i.e., 2D ERT profiles), the numbers of points, N, needs to be chosen with 

respect to the objectives of the ERT prospection campaign, and two special cases need to be distinguished. If 

the aim is to find anomalies or special objects, N should be chosen to be greater than or equal to the 

expected number of data points needed to cover the anomaly, as defined by the resolution of the inversion 

mesh. Selecting a higher value of N will cause the anomaly to merge with the cluster representing the area 

containing the anomaly. The second case arises when an accurate description of the general soil structure is 

needed, with no specific expectation of an anomaly. Under these conditions, we recommend using: 

N =  
𝑁𝑚𝑒𝑠ℎ

2∗𝑘
 , where 𝑁𝑚𝑒𝑠ℎ is the number of the data points, log (𝜌𝑖𝑛𝑣), which is equal to the number of 

inversion mesh cell centres and k is the maximum number of expected soil types. Although the use of a 

smaller value has no influence on the outcome of the clustering step, the selection of a higher value of N can 

cause certain clusters to merge, and hence mask the presence of some structures. The choice of a very small 

value of N can lead to the detection of clusters that don’t really exist, and which are formed only because N 

is too small. For these reasons, the choice of N is an essential step for a successful clustering process. These 

aspects are analysed in the discussion. The criteria used when selecting the most appropriate value for N are 

summarized in Table 2. 

 

 

Table 2 Suitable N value, depending on the aim of the geological prospection. 𝑁𝑚𝑒𝑠ℎ is the number of data 

points, which is equal to the number of inversion mesh cells. k is the maximum number of expected soil 

types. 

Aim of the prospection Suitable N value 
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General structural analysis 
𝑁𝑚𝑒𝑠ℎ

2 ∗ 𝑘
 

Anomaly detection Expected number of mesh cells to cover the anomaly 

Unknown structure Expected number of mesh cells to cover a potential anomaly 

 

Choice of 𝜺  

In order to choose a suitable value for 𝜀, we represent the data-point density using an N-dist plot, where N is 

the number of points, as defined in the previous paragraph. Figure 4 provides a diagrammatic description of 

the process used to obtain this type of plot. First, for each data point P, we compute the mean value of the 

distances from this point to all of its N nearest neighbours, i.e. the N closest points to P in terms of resistivity, 

rather than spatial distance. This step is executed for all data points (i.e. all inversion mesh cell centre points 

to which a resistivity value has been assigned). The computed mean values are then sorted in ascending 

order and plotted. An example of a N-dist plot is provided in Figure 5, where the initial N-dist curve is shown 

in Fig. 5a. The most suitable value for 𝜀 is then defined as the value of N-dist corresponding to the point of 

maximum curvature in the N-dist plot. To retrieve this point we compute the first and the second derivatives 

of N-dist (Figure 5b and 5c). The correct value of 𝜀 is then defined by this point of inflection, where the 

second derivative of the N-dist plot reaches a maximum. 

 

 

Figure 4 Diagram describing the steps followed in order to obtain a N-dist plot starting from inverted 

electrical resistivity profile. The mentioned distance refers to the distance between points in parameter 

space, and is not a spatial distance. 
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Figure 5 Example of the analysis of an N-dist plot. (a) N-dist plot for N = 2000. (b) Plot of the first derivative 

of N-dist. (c) Plot of the second derivative of N-dist. The vertical red line indicates the position of the 

maximum curvature point in the N-dist plot, corresponding to the maximum value of the second derivative 

of N-dist. 

 

3 Simulations 

The approach described in the previous section has been applied to three numerical examples, in the 

context of the present study. These examples are presented in the following, and correspond in all cases to 

two layers, with (A) a step, (B) a rebound and (C) an anomaly. In the present study, the same electrode 

configuration is considered: a set of 96 electrodes with 2 m spacings. A Schlumberger reciprocal 

configuration with 2100 apparent electrical resistivity measurements is considered, allowing a maximum 

depth of investigation of 32 m to be reached. The inversion was performed using a mesh with circa 9000 

cells, in order to have a sufficient volume of data for the data-mining algorithm. For the purposes of this 

analysis, the simulated data are noise free. The aforementioned examples, with a set of 10000 data points, 

were run in less than 1 minute using an Intel core i7 CPU. This level of computing performance allows this 

approach to be integrated into a fast workflow for the interpretation of ERT data. 
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3.1 Case A: Two layers with a step 

The first example is defined by a tabular model of two layers of soil, with a step in the middle (Figure 6a). 

The upper layer is conductive, with an electrical resistivity equal to 200 Ωm that could represent clay soil, 

whereas the lower layer is resistive, with a resistivity equal to 2500 Ωm, corresponding to bedrock. The 

upper layer has a thickness of 7 m, which then becomes 10 m, corresponding to a 3 m step height. The 

inversion mesh has 9200 cells. The inverted electrical resistivity profile (Figure 6a) exhibits two structures 

with a smooth variation, and the exact shape of the interface does not appear clearly. The distribution of the 

logarithm of electrical resistivity values (Figure 6b) reveals no gaps or clear transitions between the values 

associated with each of the two layers. The clustered distribution (Figure 6c) confirms that it is not possible 

to visually detect the difference between the two layers (i.e., between the two clusters) in the raw 

distribution, because the transition from one cluster representing a specific soil type, to another, does not 

occur at any specific position and cannot be determined before applying DBSCAN. The clustering is 

performed using N = 1000 and ɛ = 0.5. Knowing the position of their associated data points, the two clusters 

are used to reconstruct the physical makeup of the model (Figure 6d) – it can be seen that its structure is 

well matched with the originally imposed, two-layer terrain distribution used for the simulation (Figure 6d). 
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Figure 6 (a) Inverted electrical resistivity of the tabular two-layer model, characterised by a small step in the 

middle (case A). (b) Raw distribution of the logarithm of the inverted electrical resistivity values 

corresponding to case A. (c) Result produced by the DBSCAN clustering algorithm, when applied to the 

logarithm of the inverted electrical resistivity values in (a). The clustering shown here is implemented using 

N = 1000 and ɛ = 0.5. (d) Result produced by the clustering algorithm, after placing each clustered electrical 

resistivity value in its correct spatial location. The white line indicates the true position of the interface 

between the two layers, defined in the model. 

 

3.2 Case B: Two layers with a rebound 

The second example is defined by a tabular, two-layer model with a rebound in the middle (Figure 7a). The 

first layer is conductive, with an electrical resistivity equal to 200 Ωm and a thickness of 10 m, whereas the 

second layer is resistive, with a resistivity equal to 2500 Ωm. The rebound has a height of 6 m. The inversion 

mesh has 9000 cells. The inverted electrical resistivity profile (Figure 7a) exhibits a blurred structure, and the 

exact shape of the interface is unclear on the inverted profile. As in the case of the previous example (shown 

in Figure 3a), the distribution of the logarithm of electrical resistivity values is not characterised by any gaps 

or clear transitions, from one layer to the other. The clustered distribution (Figure 3b) confirms that it is not 

possible to visually detect the difference between the two layers in the raw data distribution. When the 
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clustering algorithm was executed using N = 2000 and ɛ = 0.16, the retrieved (inverted) structure was found 

to be very well matched with the initially simulated structure (Figure 7b). Note that the black data points 

refer to noisy data, i.e. data points with very high inverted resistivity values, which are produced by the 

influence of rebound effects in the electric field. These noisy data points, which are not considered in the 

interpretation of the data, are located at depths where the sensitivity of the measurements is not as high as 

in the shallow sections, especially for the case of the simulated configuration with a conductive layer of soil 

above a resistive one. 

 

 

Figure 7 (a) Inverted electrical resistivity of the tabular two-layer model, characterised by a rebound in the 

middle, (case B). (b) Result produced by the DBSCAN clustering algorithm, after placing each clustered 

electrical resistivity value in its correct spatial location. The white line indicates the true position of the 

interface between the two layers, as defined in the model. The clustering was performed using N = 2000 and 

ɛ = 0.16. 

 

3.3 Case C: Two layers and an anomaly  

The last example is provided by a tabular model with two layers and a small anomaly embedded in the first 

layer (Figure 8a). The latter has an electrical resistivity equal to 200 Ωm and a thickness of 10 m, whereas the 

second layer has an electrical resistivity equal to 2500 Ωm. The anomaly has an electrical resistivity of 25 Ωm 

and its dimensions are 5 m in length and 2 m in thickness. The inversion mesh has 4500 cells. The inverted 

electrical resistivity profile (Figure 8a) has two distinct structures with some smooth variations at their 

interface. Although a vaguely distinguishable, blurred anomaly can be seen, its exact shape and extent are 

not clear. The same observations can be made as in the case of the previous examples: the DBSCAN 

algorithm significantly improves the ease with which the structure of the ERT profile can be distinguished, 

and permits enhanced interpretation of this profile (Figure 8b and 8c and 8d). The clustering was performed 

using N = 500 and ɛ = 0.49. In the retrieved structure, the interface between the two layers is well defined 

and the anomaly is also detected. Although it is represented by noisy data points, since these are located 
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inside the first layer, which has a good sensitivity, they cannot be neglected in the interpretation of the 

clustering results, as was the case for the previous rebound example. 

 

 

Figure 8 (a) Inverted electrical resistivity of the tabular two-layer model, characterised by an anomaly, (case 

C). (b) Raw distribution of the logarithm of the inverted electrical resistivity values corresponding to the two-

layer model with an anomaly. (c) Result produced by the DBSCAN clustering algorithm, when applied to the 

inverted electrical resistivity values in (a). The clustering shown here is implemented using N = 500 and 

ɛ = 0.49. (d) Result produced by the clustering algorithm, after placing each clustered electrical resistivity 

value in its correct spatial location. The white line indicates the true position of the interface between the 

two layers, as defined in the model. 
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4 Sensitivity analysis  

In this section we investigate various properties of the DBSCAN parameters, in an effort to understand how 

the algorithm works, and how its parameters influence the results.  

4.1 Analysis of the criterion of the choice of 𝜺 

In order to better understand the criteria that should be taken into account when defining the parameter ԑ, 

we analyse the N-dist plot, for the case of the last example (case C), with N = 50. Figure 9 presents the 

results of the DBSCAN clustering algorithm, through the use of different colours, revealing which of the three 

different clusters each data point belongs to (Figure 9a). A zoom on the position of the optimal value for 𝜀 

(Figure 9b) shows that this position marks the transition between the clustered data points having similar 

high densities (small distances) and the noisy data points, characterised by a very low density (much greater 

distances), thus corresponding to outliers or anomalies. In the present example, the first portion of the N-

dist distribution (bordered by an orange rectangle, Figure 9a) corresponds to the densest set of data points, 

and comprises the lowest values of N-dist. This corresponds to the shallow portion of the structure (Figure 

9c), where its inversion is the most accurate and its sensitivity is the highest. As the data points have 

inverted resistivity values that lie very close to each other, their arrangement is very dense. The second 

portion of the N-dist distribution (bordered by a purple rectangle, Figure 9a) is characterised by a slightly 

lower density (slightly higher mean distance between points) and corresponds to the deeper part of the 

structure, which is affected by the strongest smoothing effects produced by the inversion (Figure 9d). Finally, 

the last portion of the N-dist distribution (bordered by a red rectangle, Figure 9a) corresponds to a sparsely 

populated set of data points, since they represent electrical resistivity values that are very different from 

those of the surrounding values, and are thus characterised by greater distances. In the present example, 

these points are related to the anomaly (Figure 9e), which has electrical resistivity values that are quite 

different to those of the surrounding soil in the first layer. This example provides useful insight into the 

processes implemented by the DBSCAN algorithm, which analyses the data-point density, thus making it 

possible to distinguish between the different structural components of a prospected area. 

 



17 
 

 

Figure 9 (a) N-dist plot using different colours to reveal the three different clusters produced by DBSCAN 

(with N = 50). (b) Zoom on the position of the selected value of epsilon ε located at the interface between 

the clustered points and the noise data points. (c) Spatial position of the clustered points corresponding to 

the first portion of the N-dist plot shown in (a), bordered by an orange rectangle. (d) Spatial position of the 

clustered points corresponding to the second portion of the N-dist plot shown in (a), bordered by a purple 

rectangle. e) Spatial position of the clustered points corresponding to last portion of the N-dist plot shown in 

(a), bordered by a red rectangle. 

 

4.2 Sensitivity to noise 

The previous analysis was applied to simulated models, in the absence of noise. In this section, different 

noise values are considered in order to assess the impact of noise on the clustering results. For this, a 

Gaussian noise was added to the simulated values of raw apparent electrical resistivity: 

 𝜌𝑎 𝑛𝑜𝑖𝑠𝑒 = 𝜌𝑎 (1 + 𝒩0,1 × 𝑒𝑟𝑟𝑜𝑟 (%)), (5) 

with 𝒩0,1 being a random, centred Gaussian distribution. 

The previously described approach was applied to the rebound example, following the addition of 

respectively 5% and 10% of noise to the raw apparent electrical resistivity data. The resulting distribution of 

data points, for the three cases of 0%, 5% and 10% noise (Figure 10), is found to lead to smoothing of the 

(DBSCAN) reconstructed structures, which increases as the noise increases (Figure 11). Although these 

reconstructed structures are similar to those used in the simulated model, the position of the interface 

becomes increasingly inaccurate as the noise increases. This effect can be understood as follows: the 

addition of noise smooths the data distribution, such that the data points tend to have more similar values 

of inverted electrical resistivity and are thus interpreted to belong to the same cluster. This forces the 

transition from the first to the second cluster to occur at greater depths than in the original model. The 

addition of noise also increases the number of data points in the noise cluster. 
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Figure 10 Distribution of the logarithm of inverted electrical resistivity values in case B, for three noise 

values: 0%, 5% and 10%. 

 

Figure 11 Reconstructed structures obtained when the clustering algorithm is applied to case B, for noise 

values equal to (a) 0% (b) 5% and (c) 10%. The white line indicates the true position of the interface defined 

in the model.  
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4.3 Sensitivity to N 

Another parameter that merits closer scrutiny is the number of points, N, since this is the first parameter to 

be chosen, and its choice impacts the remaining steps of the proposed methodology. To illustrate the 

influence of N, two different modelled structures were chosen. The first of these corresponds to case A, 

whereas the second one is provided by the tabular model with an anomaly in case C. In the previous 

analysis, the clustering results were represented by the distribution of inverted electrical resistivity values, 

which is not affected by changes in the value of N. Thus, in order to visualize the impact of N on the 

clustering, the distribution of the N-dist points has been plotted as shown in Figure 12b, for the first 

example. 

 

 

Figure 12 Analysis of the impact of the number of points, N, on the density distribution represented by the 

N-dist plots (a-c-e), and by the distribution of the N-dist values (b-d-f). (a-b) N = 10. (c-d) N = 100. (e-f) 

N = 1000. 

 

4.3.1 Case A: Two layers with a step 

As the number of points N increases, N-dist increases because the algorithm calculates the distance to the N 

nearest points in terms of electrical resistivity. When N is high, the Nth nearest neighbour may have a very 

different value of electrical resistivity, resulting in a higher number of N-dist data points, with an increasingly 

sparse distribution, as can be seen in Figure 12. Indeed, as N increases, N-dist increases, and its distribution 

is characterised by a clear transition from one layer to the next. Nevertheless, for all three cases, the 

algorithm was able to reconstruct the simulated structures (Figure 13). Note that in the case of the two 

smallest values of N, i.e. N = 10 and N = 100, an additional cluster (yellow cluster 3 in Figure 13a and 13b) is 

produced, close to the noise data points. This occurs because a low value of N allows a cluster to be created 

within the noise data points. However, this type of cluster, in the vicinity of noise data points, and located at 
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depths where the sensitivity is poor, should not be considered during the interpretation of the clustering 

results. 

 

 

Figure 13 Reconstructed profiles obtained by applying DBSCAN to the example (characterised by a step in 

the interface) of case A, using (a) N = 10, (b) N = 100 and (c) N = 1000. The white line indicates the true 

position of the interface between the two layers, as defined in the model.  

 

4.3.2 Case C: Two layers and an anomaly 

As in the case of the previous example, an increase in the number of points N for the example with an 

anomaly causes the distribution of N-dist to become more sparse, and also allows the transition between 

the two layers to become more visible in the N-dist distributions. However, unlike the case of the step 

model, the reconstructed structure is not always similar to the original shape of the simulated model (Figure 

14). A low value for N tends to lower the reconstructed depth of the interface, and can also generate 

parasitic clusters around the noise points (Figure 14a). A low value for N allows data points to gather in 

clusters, even when they are sparsely distributed. Taking the example of the above values of N, although it 

would be possible to combine 10 points in a cluster, this would not be realistic for 1000 noisy data points. 

This is the reason for which the algorithm does not retrieve parasitic clusters when N is high. However, when 

the value of N is (too) high, the anomaly tends to be absorbed by the surrounding layer. As the anomaly 

corresponds to a small number of points (less than 1000), setting N = 1000 as the minimum number of 

points required to define a cluster causes the anomaly to merge with the first layer (Figure 14c). This analysis 
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shows that N must be carefully chosen, depending on the expected structure of the terrain, and/or the 

extent of the anomalies it may contain. 

 

 

Figure 14 Reconstructed profiles obtained by applying DBSCAN to the example of case C, using (a) N = 10, (b) 

N = 500 and (c) N = 1000. The white line indicates the true position of the interface between the two layers, 

as defined in the model.  

 

5 Field case study 

In order to study the effectiveness of our approach when it is applied to real data, we selected a set of ERT 

measurements recorded during the hydro-geophysical investigation of a shallow aquifer at the Orgeval 

basin, which is located 70 km east of Paris (Pasquet et al., 2015). The upper layers of this area are known to 

be strongly tabular. During this investigation, ERT measurements were recorded using a multi-channel 

resistivity meter, with a 96-electrode Wenner-Schlumberger array. The base electrode separation was 0.5 m. 

A geological log (Figure 15a) was used to describe the layers of soil. The shallow layer has a thickness of 0.25 

m, corresponding to the agricultural soil. The second layer of table-land loess has a thickness of 3.75 m, and 

this covers a semi-infinite layer of Brie limestone.  
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Figure 15 Application of the DBSCAN clustering algorithm to field data measured at Orgeval. a) Interpreted 

geological log and electrical resistivity (Pasquet et al., 2015). b) Inverted electrical resistivity profile. c) Result 

obtained by applying the DBSCAN clustering method to the inverted electrical resistivity values in (b). The 

clustering is performed using N = 500 and ɛ = 0.06. The white lines indicate the location of the layer 

interfaces, derived from the geological log. 

 

Figure 15b presents the inverted electrical resistivity profile, showing the tabular, three-layer aspect of the 

prospected area. However, the resulting smoothed, inverted electrical profile does not allow the clear-cut 

physical interfaces between the layers to be identified. These interfaces are more accurately derived from 

the electrical resistivity log. By applying the clustering approach to the inverted electrical resistivity profile 

shown in Figure 15b, we retrieved the reconstructed soil structure shown in Figure 15c. The clustering 

produced by this analysis provides a detailed description of the site’s stratigraphy. The first and second 

interfaces, at 0.25 m and 4 m respectively, are retrieved and found to be in good agreement with the 

geological log. No prior knowledge from the geological log was included in the clustering algorithm. 

However, the algorithm detects two clusters. The soil layer and the Brie formation are represented as 

merged into the same cluster, because they are characterized by the same value of electrical resistivity, i.e. 

from 30 Ωm to 35 Ωm. In order to discriminate between the two soil types in the clustering analysis, another 



23 
 

geophysical method would be required, revealing different geophysical characteristics for each of these two 

layers. 

 

6 Discussion and conclusions  

In this research presents a proof of concept for the use of data mining techniques, DBSCAN in particular, for 

the improved, automated interpretation of geophysical sections. When applied to inverted electrical 

resistivity, it is able to identify clusters that are associated with distinct soil structures, and allows accurate 

reconstruction of the prospected area. This new approach to the interpretation of ERT profiles has been 

validated on simulated data. Using DBSCAN, we can recover sharp interfaces as well as the location and 

extent of anomalies, whilst avoiding the smoothness problem of previously reported inverted profiles. When 

applied to real field data, this technique provides a detailed description of the site stratigraphy, with an 

accurate determination of the position of layer interfaces. However, as can be seen in the real field example 

(Fig. 15), the algorithm assigns the same cluster to earth materials that are characterized by the same value 

of electrical resistivity, or the same geophysical parameter in general. This outcome is not surprising, since 

DBSCAN is an unsupervised algorithm, and the user is not involved with its interpretation. Users could use 

further judgement or analysis, such as geological sections, to distinguish between distinct unit(s) that could 

be represented by each cluster. The use of a different geophysical method more sensitive to the differences 

between adjacent, electrically similar materials/units, could also be considered if the aim of the study is not 

only to determine the soil structure but also to identify the different earth materials. An alternative 

approach would be to apply the clustering algorithm to two geophysical parameters at the same time (e.g., 

electrical resistivity and seismic velocity), as a way of coupling. The DBSCAN clustering analysis is performed 

quickly, and could therefore be used in an interpretation workflow, with negligible increase in overall 

computing time. This algorithm requires only two parameters, and does not require the user to have a deep 

understanding of data mining. In addition, it does not require any prior knowledge of the prospected area. 

The present study defines the steps needed to determine the two DBSCAN parameters. The approach 

described here could be applied to any other type of geophysical data that can be represented in the form of 

maps (e.g., magnetic, gravimetric), profiles (e.g., borehole logging), sections (e.g., seismic velocities), or 

images (e.g., thermal imaging). It is a useful approach for the study and characterization of discontinuities in 

different earth science applications (e.g. determination of saltwater/freshwater interfaces, detection of the 

interface between frozen and unfrozen areas, detection of cavities). This algorithm can also be directly 

applied to non-inverted data, such as apparent measurements. Although in the present study, DBSCAN was 

applied to 2D ERT profiles, the same approach could be applied to 2D apparent resistivity maps or 3D 

sections. In this case, the algorithm would also require the use of just two parameters, N and ɛ. 
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