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Abstract
Studying the changes of shape is a common concern in many scientific fields. We address here two problems: (1) quantifying
the deformation between two given shapes and (2) transporting this deformation to morph a third shape. These operations
can be done with or without point correspondence, depending on the availability of a surface matching algorithm, and on
the type of mathematical procedure adopted. In computer vision, the re-targeting of emotions mapped on faces is a common
application.We contrast here four differentmethods used for transporting the deformation toward a target once it was estimated
upon the matching of two shapes. These methods come from very different fields such as computational anatomy, computer
vision and biology. We used the large diffeomorphic deformation metric mapping and thin plate spline, in order to estimate
deformations in a deformational trajectory of a human face experiencing different emotions. Then we use naive transport
(NT), linear shift (LS), direct transport (DT) and fanning scheme (FS) to transport the estimated deformations toward four
alien faces constituted by 240 homologous points and identifying a triangulation structure of 416 triangles. We used both local
and global criteria for evaluating the performance of the 4 methods, e.g., the maintenance of the original deformation. We
found DT, LS and FS very effective in recovering the original deformation while NT fails under several aspects in transporting
the shape change. As the best method may differ depending on the application, we recommend carefully testing different
methods in order to choose the best one for any specific application.
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1 Introduction

Shape theory is used in several fields, fromcomputer vision to
biomedical engineering for object tracking, image segmen-
tation or categorization and probabilistic modeling. While
most biological applications usually analyze shapes and
forms utilizing a discrete set of homologous anatomical land-
marks (cf. [33]), the use of continuous surfaces without a
pointwise correspondence is faced by exploiting the poten-
tial of a plethora of diffeomorphic techniques ([26,38] and
references therein). Shapes are embedded in curved Rie-
mannian manifolds defined by a metric and a compatible
connection, as detailed in [7]. Both properties permit analy-
ses on manifolds by allowing the computations of distances
between points, i.e., metrical properties and moving on the
manifold along paths called geodesics. The parallel trans-
port (PT) allows transporting geometrical data along curves
on the manifold. Nevertheless, when defining geodesics by
means of landmarks defined on two shapes, important fea-
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tures can be neglected by this PT (cf. [48]). Diffeomorphic
approaches gained prominence in recent years, especially
for shape analysis on magnetic resonance or CT scans (see
[27]). Morphometrics has been applied to single human
organs, for instance the heart in [25,32,36,37], and the brain
as in [4]. Cardiological examinations have been conducted
on the left ventricle by shape analysis by means of statis-
tical methods, such as principal component analysis (PCA)
and generalized procrustes analysis (GPA), and only recently
there have been results obtained by investigation on trajec-
tories [25,34,35,41]. Very recently , [49] proposed a new
type of parallel transport that is independent from the path
and partially reviewed the main methods currently adopted
in different fields for (a) estimating the deformation and (b)
for transporting it toward a template. Their method can be
applied only in presence of homologous landmarks.

Herewepresent a comparison amongdifferent approaches
for the estimation of the deformation, that is, for probing a
deformation between two shapes X , X ′, and for a subsequent
deformation transport, a method to use the measured defor-
mation between a pair of shapes to deform a third different
shape Y in Y ′. We consider the following methods:

1. Deformation estimation: building a map from X to X ′.
Here we consider three methods: ordinary procrustes
analysis (OPA), thin plate spline (TPS), and large dif-
feomorphic deformation metric mapping (LDDMM).

2. Deformation Transport: the deformation measured
between a pair of shapes, considered as a source, is
applied to a different shape to generate another pair, the
target pair. Here we use four transport methods: naive
transport (NT), linear shift (LS), direct transport (DT),
fanning scheme (FS).

3. Post-processing: the performance of the various methods
will be assessed quantitatively, by using different metrics
and statistical tools.

Please note that NT and DT are based on TPS, LS is based
on OPA, while FS is based on LDDMM (see Table 1).

OPA and TPS are mostly used in geometric morphomet-
rics [2]; the LDDMM represents, today, one of the most used
approach for estimating shape differences and surfacematch-
ing both in absence of homologous landmarks [12], or in the
presence of them [19]. NT is the name we introduce here to
label the simplest way, commonly used in geometric mor-
phometric, to use the TPS for transporting deformations.
The LS is an Euclidean version of the Levi Civita paral-
lel transport recently proposed in [37]; the DT is a new
Riemannian approach described by [49]; FS is a transport
method introduced in [23,24], based on the parallel transport
along geodesics of the LDDMM. Recently, many methods
have been proposed for transporting deformations, based
upon different techniques of deformations estimation: OPA

Table 1 Estimation and transport methods

Estimation OPA TPS LDDMM

Transport LS NT DT FS

[17,18,20,48], TPS [49], LDDMM [5,15,24,27,29,31,40],
active contour [45,46], parametrized surfaces [50], station-
ary velocity field (SVF) [22]. The characteristics of most of
these have been discussed in [49] and therein summarized
in Table 1. Nevertheless, we think that the techniques we
compare here are typical of a broad spectrum of distant dis-
ciplines. In this paper, instead of common biological/clinical
applications, we perform this comparison on a set of shapes
typical in computer vision-oriented applications, i.e., defor-
mations of human faces. In particular, we focus on a set
of human emotions, i.e., neutral, scared and happy. Starting
from the neutral expression, we built a sequence of expres-
sions running through the scared and to the happy one. The
change in expression of the human sequence of faces is first
matched and then transported to alien faces, in order to gen-
erate a sequence of expressions similar to the human one.

2 Material andMethods

Let B be a body, i.e., an open subset of the m-dimensional
Euclidean space Em , and ∂B its boundary. Given k points x ∈
Em called landmarks, we may represent a k-configuration of
the body as the k ×m matrix X = (x1, . . . , xk), and we may
define theConfiguration Space Ckm as the set of all possible k-
configurations. (Note that in this work a k-configuration X is
used to indicate a discrete representation of the configuration
BX .)

Hence, the Shape Space�k
m can be defined as the quotient

of Ckm under the action of the group S(m) of the Euclidean
similarity transformations in Em . The S(m) group can be
decomposed as S(m) = T (m) × SO(m) × D, where T (m)

is the translation group, SO(m) is the rotation group, and D
is the dilation group. In this paper m = 3.

2.1 The Geometry of the Kendall Shape Space

The Kendall shape space can be conveniently generated by
removing similarity transformations one by one; the first step
is to remove location, translating each configuration in such a
way that the centroid lies on the origin o of them dimentional
Euclidean space. This brings us to the centered configura-
tion space CCkm . A centered configuration is then defined as
a configuration whose centroid lies on o. The successive fil-
tering can be done removing rotations—thus obtaining the
size-and-shape space S�k

m and then removing size to obtain
the shape space as �k

m = S�k
m/SO(m) [10]. To summarize,

we consider the following spaces:
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Ckm,Configuration Space;

CCkm,Centered Configuration Space;

S�k
m = CCkm/SO(m),Size-and-Shape Space;

�k
m = S�k

m/D,Shape Space;

CCkm can be parametrized by centered landmarks or by
Helmertized landmarks through a pre-multiplication of the
matrix X . Xc is the k ×m matrix of the centered landmarks:

Xc = CX ,

where C = Ik − 1
k 1k1

T
k , 1k is the k × k identity matrix and

1k is a k × 1 column of ones. We define the Helmertized
landmarks XH as the (k − 1) × m matrix:

XH = HX ,

where H is the so called Helmert sub-matrix. The j th row of
the Helmert sub-matrix H is given by

(h j , . . . , h j ,− jh j , 0, . . . , 0), h j = − ( j( j + 1))−1/2 ,

and so the j th row consists of h j repeated j times, followed
by j h j and then k− j−1 zeros, j = 1, . . . , k−1. The form
[X ]S ∈ S�k

m , otherwise called size-and-shape, and the shape
[X ] ∈ S�k

m of a centered configuration X are equivalence
classes defined by

[X ]S = {X R : R ∈ SO(m)}, [X ] = [X ]S/‖Xc‖.

Given two configurations X , X ′ ∈ Em , a deformation map
� : Em → Em is the map such that

x ′
i = �(xi ), ∀xi ∈ X , x ′

i ∈ X ′ ; (2.1)

we shallwrite X ′ = �(X) to indicate that X ′ is a deformation
of X , i.e.. Note that, depending on the usedmethod, suchmap
can be considered as acting on the whole Euclidean space Em

or just on the set of landmarks.

2.2 Methods for Estimating Deformations: OPA, TPS
and LDDMM

Themost used approaches to estimate a deformation in shape
analysis are OPA, TPS and LDDMM. The first is the sim-
plest way to align a pair of k-configurations, and it does
not give an interpolation of the deformation in the whole
space. The second has the advantage that it furnishes an
explicit representation of an interpolation but is not immune
from folding and non-invertibility; moreover, as explained

in [11,47] the TPS can be considered as a linearization of a
smooth deformation. The last yields a real diffeomorphism;
however, it requires computationally intensive numerical
integrations of PDE. Moreover, the Riemannian structure of
LDDMM allows the definition of a formal parallel transport
and the measurement of distances between shapes. Further-
more, LDDMMcan be used as an effective matchingmethod
that is very useful in absence of homologous landmarks.

We stress here that LDDMM is agnostic w.r.t. the pres-
ence or absence of homologous landmarks. As example,
when LDDMM is endowed with specific distances such as
current- or varifold-based distances, it can be used with non-
homologous landmarks.

2.2.1 Ordinary Procrustes Analysis (OPA)

TheEuclideandistancebetween twoconfigurations is defined
as:

d(Y , X) = ||Y − X || = √
(Y − X) · (Y − X).

where U · V = trace(UT V ). The induced distance on the
size-and-shape space S�k

m is then:

dS([Y ]S, [X ]S) = inf
R∈SO(m)

d(Y R, X)

= inf
R∈SO(m)

||Y R − X ||. (2.2)

This definition allows us to give a procedure to align a con-
figuration Y onto a configuration X . In particular, the aligned
configuration YX is obtained bymeans of an optimal rotation
RY X minimizing the Euclidean distance ||Y R − X ||.

YX = Y RY X , RY X = argminR∈SO(m) ||Y R − X ||.

It is possible to prove that RY X is the rotational com-
ponent coming from a polar decomposition of Y T X (see
[10]). That is, Y T X = RY X U with U ∈ Sym(Rm×m) and
RY X ∈ SO(m). It follows,

RT
Y XY

T X = (Y RY X )T X = (YX )T X = U .

As a consequence, we can say that two configurations YX , X
are optimally aligned if and only if the matrix Y T

X X is sym-
metric, i.e., Y T

X X ∈ Sym(Rm m). This pairwise alignment
is called OPA without scaling. Given two aligned configu-
rations X and X ′, i.e., such that (X ′)T X s symmetric, the
deformation �(X) is characterized simply by

�(X) = X + V (2.3)

where V = X ′ − X . Please note that here the deformation is
defined only on the k landmarks.
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2.2.2 Thin Plate Spline (TPS)

By following the notation of [10], we summarize the con-
struction of the TPS, andwe refer to [2,10] for further details.
In theEuclidean spaceEm , them-tuple of interpolatingTPS is
a function� represented by the triplet (cX , AX ,WX ), where
cX ∈ Em is a point represented by (m × 1) matrix; AX is
a linear transformation of Em , represented by a (m × m)

matrix; WX is a (k × m) matrix. Given a point x ∈ Em , and
a configuration X ∈ Ckm , we have

x ′ = �(x) = cX + AX x + WT
X s(x), (2.4)

where s(x) = (σ (x − x1), . . . , σ (x − xk))T a is (k × 1)
matrix, xi ∈ X is the position of the i th landmark, and σ

is the interpolating function. For a 3D shape, m = 3, the
function σ is given by

σ(h) =
{−||h|| if ||h|| > 0;
0 if ||h|| = 0.

Given two configurations X , and X ′, we can apply Eq. (2.4)
landmark-wise, yielding to

X ′ = 1kc
T
X + X AT

X + SXWX , with (SX )i j = σ(xi − x j ).

(2.5)

There are 2k interpolation constraints in Eq. (2.5), and we
introduce m × (m + 1) more constraints on W in order to
uncouple the affine and non-affine parts:

1Tk WX = 0, XTWX = 0. (2.6)

For a given pair (X ,Y ), there exists a unique set ofm(1+m+
k) = m +m2 +mk parameters for the triplet (cX , AX ,WX )

that solve the problem (2.5), constrained with (2.6). Please
note that here the deformation is defined on the whole E . The
quantity

J (�) = trace
(
WT

X SXWX

)
(2.7)

is called bending energy, and it corresponds to the integral:

J (ψ) =
n∑

i=1

n∑

j=1

n∑

k=1

∫

Rn

(
∂2ψi

∂x j∂xk

)2

.

It has been proved that TPS is the interpolation function that
minimize the bending energy [2].

2.2.3 Large Deformation Diffeomorphic Metric Mapping
(LDDMM)

The LDDMM framework [28,51] proposes to compare
shapes via the action of diffeomorphisms φ : Em → Em

of the ambient space. A convenient way to generate such dif-
feomorphisms is to compute flows of time varying smooth
vector fields of Em .

Thence, the fundamental idea in LDDMM is to choose
a priori a Reproducible Kernel Hilbert Space (RKHS) V of
smooth vector fields on Em , containing all the admissible
infinitesimal deformations of the ambient space. Following
[12], a convenient choice for V is the RKHS containing vec-
tor fields w ∈ V of the form:

w(x) =
p∑

i=1

K (x, qi )μi (2.8)

where p ∈ N is fixed, (qi )i=1,...,p ∈ C p
m is a set of control

points, (μi )i=1,...,p ∈ C p
m is a set of momenta and K (x, y) =

exp(‖x − y‖2/σ 2) is an isotropic radial Gaussian kernel of
fixed bandwidth σ . This bandwidth depends on the problem
at hand and controls the smoothness of the deformations. The
space V is endowed with the following scalar product:

〈w,w′〉V =
p∑

i, j=1

K (qi , q
′
j )μ

	
i μ′

j . (2.9)

Given an initial vector field w defined by formula (2.8), one
can show (see e.g., [12]) that there is a unique square inte-
grable time-varying vector fieldw(t, ·) such thatw(0, ·) = w

whichminimizes the energy
∫ 1
0 ‖w(t, ·)‖2K . Its control points

q(t) andmomentaμ(t) are given by a system of Hamiltonian
equations:

⎧
⎨

⎩

q̇(t) = K (q(t), q(t))μ(t);
μ̇(t) = −1

2
∇q

(
K (q(t), q(t))μ(t)Tμ(t)

)
.
. (2.10)

Considering only such geodesics, the corresponding diffeo-
morphisms φq0,μ0 are fully parametrized by the initial set of
control points and momenta q0, μ0. Following this construc-
tion, we get the a finite-dimensional Riemannian manifold
of diffeomorphisms. We denote 〈·, ·〉K and ‖ · ‖K the metric
scalar product and norm. We denote φq0,μ0 · M the action of
the diffeomorphism parametrized by the initial control points
andmomenta q0, μ0 on a shape M . If M is a mesh embedded
in Em , then φq0,μ0 acts on the points of the meshes directly,
namely φq0,μ0 · M .= φq0,μ0(M).

Then, registration to a target shape M of a template T is
done by optimizationwith respect to q0, μ0 so as tominimize
a criterion of the form:
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	(q0, μ0) = ‖φq0,μ0 · T − M‖2s + βK (q0, q0)μ
	
0 μ0, (2.11)

where ‖ · ‖s is a measure of distance between shapes and
β > 0 controls the tradeoff between the deformation energy
and the data attachment.

2.3 Methods for Transporting Deformations

Strictly speaking, none of the following applications is a PT,
because, while the definition of PT of a vector is a precise
notion of differential geometry (once built an appropriate
connection on the manifold) the procedure of transporting a
curve starting from a point X toward a different starting point
Y is not a precise notion of differential geometry.Despite this,
three methods (LS, DT, FS) make use of PT techniques to
transport trajectories.

In general, the result of a PT on a manifold depends on
the curve along which one transports a vector from a point
X toward a point Y , but this happens only if the Riemannian
curvature of themanifold does not vanish, i.e., the space is not
flat. The Euclidean space is not the only flat space, because
a space can have a vanishing curvature and a nonvanishing
torsion (typical examples are the left (right) invariant connec-
tions in Lie Groups). For example, the TPS space introduced
[49] is flat, but it has torsion. Then the DT depends only upon
the starting and the target points.

Thus, we have to distinguish between at least three differ-
ent cases:

1. The Riemannian distances between X and each point
of the curve are small, while the Riemannian distance
between X and Y is large. Here the whole curve can be
thought as a curve lying on the tangent space on X . Each
point of the curve is then represented by a vector of the tan-
gent space TX . (Formally, this can be obtained by means
of the inverse exponential map.) In this particular case, we
can parallel transport thewhole curve by performing aPT
of these vectors (and then shooting them on the manifold
via exponential map). In this case, the use the term paral-
lel transport of a curve could be acceptable. Furthermore,
for manifold that are embedded in an Euclidean space (as
the Kendall Shape Space and the TPS Space) the tangent
vectors representing the whole curve can be built simply
as differences between configurations, without using the
inverse and direct exponential map.

2. The Riemannian distances between X and each point of
the curve are small as well as the Riemannian distance
between X and Y . In this case, the curve, the source X
and the target Y can be considered as belonging to the
same tangent space TX , and then, the whole curve can be
simply translated in the tangent space (linear shift).

3. The Riemannian distances between X and each point
of the curve are large. In this case, the procedure of

Fig. 1 Scheme of the transport of a deformation from a template BX to
a different one BY

transporting a curve cannot be considered a PT and can
be performed in different ways, depending on what one
wants to obtain. A good procedure, from a geometrical
point of view, should be unrolling (see [17,20]) the whole
curve on the tangent space TX , obtaining a curve in TX .
Then, as for the previous cases, apply a PT toward TY
and then re-rolling the transported curve on the manifold.
An alternative method useful in cases of moderately large
distances is the exp-parallelization proposed in [23].

Obviously the above classification depends on the consid-
eredRiemannianmetric and then on the underlyingmanifold.
Considering the Riemannian distances in the Kendall Size-
and-Shape Space, the experiment on alien’s expressions
could be classified in the first case: The Riemannian dis-
tances between the neutral human and all its deformations
are small, while distances between the serious/neutral human
and the four initial alien faces are not so small (see below).We
note, on the other side, that for the Riemannian metric of the
LDDMM, some of the analyzed deformations cannot be con-
sidered very small. For instance, opening/closing the mouth
of an alien is very energetic in term of LDDMM. Neverthe-
less, in order to make a direct comparison, in the following,
we consider the first case as an acceptable approximation for
each method.

2.3.1 Linear Shift (LS)

Given a pair of configurations X , X ′, we want to estimate the
deformation from X to X ′ and then use it to deform a third
shape Y . The LS is based on the following steps:
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Fig. 2 An example of NT in 2D. Left: two reference configurations XB
(black) and XR (red). XB is transformed by a non-affine transformation
(defined in [49]) into the shape YB on the right. Using TPS, we find
the deformed black grid, and the associated coefficients c, A,W . Then,

using the NT as explained in the text, XR is deformed using these TPS
coefficients into YR on the right. Finally, a new TPS is calculated on the
pair XR , YR , and used to draw the deformed green grid on the right. As
you may notice, those two grids do not overlap (Color figure online)

Hierarchical alignment of the triplet X ′, X ,Y ;
Align X on Y , thus obtaining XY ;
Align X ′ on XY , thus obtaining X ′

XY
;

Evaluate the deformation vector V = (X ′
XY

− XY );
Transport the deformation by Y ′ = Y + V .

This procedure is very easy to implement, and it does not
require the computation of metrics or connections. It gives
satisfactory results when all the involved forms (X , X ′,Y )

are very close to each other, according to the Procrustes dis-
tance.

2.3.2 Naïve Transport Method (NT)

The TPS can be naively used to transport a deformation as
follows: At first, we compute the TPS parameters associated
to a pair of configurations; then, we use these parameters to
deform the entire ambient space, which includes our third
shape.

With reference to Fig. 2, given the pair of configurations
(X , X ′), we calculate the TPS parameters cX , AX ,WX that
interpolate the deformation between X and X ′:

X ′ = 1kc
T
X + X AT

X + SXWX (2.12)

Afterward, we use these TPS parameters to define a defor-
mation for the configuration Y : The points y′

i of the new
configuration Y ′ are given by

y′
i = �(yi ) = cX + AX yi + WT

X s(yi ), yi ∈ Y . (2.13)

In short, we can write:

Y ′ = 1kc
T
X + Y AT

X + S(Y , X)WX (2.14)

where

Si j (Y , X) = σ(yi − x j ). (2.15)

From (2.15) and (2.5), we observe that SX = S(X , X). We
note also that the NT, dubbed as an hybrid application of the
TPS parameters to a different shape, is widely used in some
biological fields such as physical anthropology where vari-
ous types of developmental simulation have been performed
using NT for the study of both extant and extinct hominoids
[6]. Actually, the NT shows some limits: once Y ′ has been
defined by (2.14), we can calculate a TPS between Y and Y ′,
by obtaining

Y ′ = 1kc
T
Y + Y AT

Y + SYWY (2.16)

It easy to show that, in general

cY �= cX , AY �= AX ,WY �= WX .

This means, in particular, that the affine part of the defor-
mation which is transported, AX , differs from the actual one
AY . Moreover, it can be shown that the bending energy is not
conserved by the NT, in fact:

WT
Y SYWY �= WT

X SXWX .

Some consequences of the previous observations are:
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– The Cartesian grid is transformed differently by the
TPSparameters (cY , AY ,WY ) and (cX , AX ,WX ), see the
deformed grids on Fig. 2, right.

– TheNT is not invertible along a straight path, that is going
back and forth on the same path; we recall that invertibil-
ity is one of the requirement for defining a Riemannian
PT [7].

We can conclude that we consider the NT as a method
rather than a formal parallel transport.

2.3.3 Direct Transport (DT)

Within this section, we assume all the configurations to be
centered, and represented by the Helmertized landmarks (see
[10]); then, if no otherwise specified, each matrix is a (k −
1) × m matrix. Furthermore, deformation vectors will have
a subscript denoting the starting point, that is, the source
configuration (for details see [49]).

Let X and Y be two source configurations, and VX , VY the
two associated deformation vectors, given by:

VX = X ′ − X = X(AT
X − I ) + SXWX ,

VY = Y ′ − Y = Y (AT
Y − I ) + SYWY . (2.17)

We say that VY is the parallel transport of a given VX , that is,
VY = τY ,X (VX ), if and only if the uniform part of VY equals
that of VX :

AY = AX ;

and the non-uniform partWY of VY solves the linear systems:

Y TWY = XTWX = 0 QY E
T
Y WY = QX E

T
XWX , (2.18)

where the (k − 1) × (k − 1 − m) principal warps matrix
EX , collects all the principal warps of X , while QX is a
suitable (k − 1 − m) × (k − 1 − m) orthogonal matrix (i.e.,
QT

X QX = I ), defined on each configuration X , representing
a rotation, or a reflection, of the principal warps. Once chosen
a configuration P as a Pole for the space, QX is estimated
minimizing the Euclidean distance ‖EX QX − EP‖ between
the rotated principal warps of X , and the corresponding basis
on the pole P .

The first equation of (2.18) constrainsWY to be orthogonal
to the affine part, while the second define the isometry in the
subspace of the non-affine deformations. This last require-
ment implies the conservation of the total bending energy.
The system (2.18) can be written as:

[
Y T

QY ET
Y

] [
WY

] =
[

XT

QX ET
X

] [
WX

]
.

That can be re-written as:

WY = M−1
Y MXWX

where MX =
[

XT

QX ET
X

]
and MY =

[
Y T

QY ET
Y

]
.

And so:

VY =
(
Y�21X + SY M

−1
Y MX�11X

)
VX , (2.19)

where �21X and �11X are calculated as:

�21 =
(
XT S−1

X X
)−1

XT S−1
X (2.20)

�11 = S−1
X − S−1

X X�21 (2.21)

Equation (2.19) characterizes VY as the parallel transport
of VX .

2.3.4 Fanning Scheme (FS)

Under the LDDMM paradigm, the parallel transport along
geodesics on the manifold of diffeomorphisms can be com-
puted in an efficient way using a procedure described in [23].
A pseudo-code for the procedure is given below. Thismethod
converges linearly with the number of steps used in the dis-
cretization of the geodesic.

Algorithm 1:The Fanning Scheme for parallel transport
under LDDMM approach.

Result: Parallel transport of w0 from t = 0 to t = 1 along the
geodesic with initial position q0 and initial velocity v0,
using n discretization steps.

1 initialization: q0, v0, w0, n;
2 Set h = 1

n , ε = h;
3 Set s = 〈w0, v0〉K Set w⊥

0 = w0 − s v0
‖v0‖2k

;/* Removing

the tangential component */
4 for k ← 1 to n do
5 Compute qk , vk using a single step of Runge-Kutta 2 on

equation (2.10);
6 Compute q±ε

k = Expqk−1
(h(vk−1 + ±εw⊥

k−1)) using a single
Runge–Kutta 2 step on equation (2.10);

7 Set Jk = qε − q−ε

2εh
; /* Second-order

approximation of the parallel
transport */

8 Set w⊥
k = ‖w0‖K

‖Jk‖K Jk ; /* Conservation of the

norm */
9

10 end
11 Return w⊥

n + s vn
‖vn‖2k

; /* Restoring the tangential

component */
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Table 2 The surface database used in this study with the repository, type and facial expression

Surface model Repository Type Facial expression

Face01 Tosca Human face Neutral

Face05 Tosca Human face Scared

Face13 Tosca Human face Happy

Alien1 This study Alien face Neutral

Alien2 This study Alien face Neutral

Alien3 This study Alien face Neutral

Yoda https://www.yobi3d.com/q/3D-model/YODA Alien face Neutral

Fig. 3 Upper row: original human faces XN , XS , and XH , and the resulting triangulated mesh when using homologous landmarks only. Bottom
row: all aliens with digitized landmarks. All shapes are illustrated at original size

Using this Riemannian parallel transport, we propose to
transport a deformation from X to X ′ onto a shape Y by par-
allel transporting the corresponding diffeomorphism along
a registration from X to Y and to shoot the obtained defor-
mation to obtain a prediction for Y ′. It is important to note
here that [31] highlighted that in general a parallel transport
within the LDDMM framework is not scale invariant. For
this reason, to parallel transport deformations estimated via
LDDMM, we used the FS on shapes scaled at unit centroid
size; then, we multiplied the transported shapes by the orig-
inal undeformed target sizes, times the ratio between neutral
humans and the other human configurations.

2.4 Dataset

The primary material, used in this study, consists of seven
triangular meshes (each identified by 240 homologous land-
marks and 416 homologous triangles) of facial expressions.
We used three 3D models of the same face, acquired using

a real-time range camera, available on the Tosca database
(http://tosca.cs.technion.ac.il) [3]. We built three Alien faces
(Alien1, Alien2, Alien3) modifying the topology of the
Face01, i.e., the serious-neutral human, (see Table 2; Fig. 3),
using the software ZBrush (Pixologic; http://pixologic.com,
version 4R7). The seventh 3D model was obtained cutting-
out the mesh of the fictional character Yoda available on
www.yobi3d.com online repository.

Being this face, quite different from a human one, we
refine the meshes of all our seven surfaces (Fig. 3) up to
approximately 25,000 vertices. The refinement is neces-
sary in order to manually identify anatomically homologous
points among the Yoda face and the other ones. Remeshing
is done with the software Amira®, Visualization Sciences
Group, 2013.

After this identification has been done, we down sample
all the meshes again; on each face, we set 30 landmarks, 12
bi-lateral curves (140 points) and a surface patch of semiland-
marks (100 bi-lateral points) (Fig. 4) for a total of 240 points
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that can be considered anatomically homologous (see below).
The curveswere sampled using the softwareAmira acquiring
a surface path. The coordinates of the points composing each
path were re-processed in R environment through the bezier
and Arothron R packages [1,39] to obtain a set of evenly-
spaced points for each curve. Subsequently the points were
projected on the corresponding surface using the Morpho R
package [43].

The surface semilandmarks patch was built on the Face01
(reference) specimen and the coordinates of each of the 100
semilandmarks were placed on each item of the remain-
ing surface sample (target specimens) through two steps:
landmark-based aligning of the target specimen of the refer-
ence one; projection of the 100 semilandmarks on the target
specimens. To guarantee homology for semilandmarks and
curves, they were allowed to slide along the surface and the
curves, respectively, minimizing bending energy toward the
sample average [16] using the Morpho R package [43]. The
sliding procedure establishes the geometric correspondence
of the semilandmark sets among the sample by removing the
effect of the arbitrary initial spacing [16]. After the sliding
process, the landmarks, the surface semilandmarks patch and
the semilandmarks along curves can be treated as homolo-
gous 3D coordinates in the subsequent statistical analysis.
Finally, a mesh regularization has been applied following
[44]; Figs. 3 and 4 show the final results.

2.5 The Experiment

Basing on the three human expressions XN (neutral face),
XS (scared face) and XH (happy face), we generated a
sequence of different expressions Xi , with i = 1, . . . , 20,
where X1 = XN , X10 = XS , and X20 = XH , by using a lin-
ear interpolation; (see Fig. 3 and Supplementary Information
1 where the complete animation is visualized).

Then, we evaluated 19 deformation maps�X1Xi , between
the pair X1 and Xi , using the TPS or the LDDMM method;
eventually, we transported the deformations toward the alien
faces, by using the four above mentioned transport methods.
In particular, for each�X1Xi wederived the deformationmap
�Y1Yi , where Y1 is one of the four alien faces, as summarized
in Fig. 5. Finally, we introduced some criteria to assess the
performance of the different methods.

In our framework, although shapes are different, the
underlying deformations are small enough to consider them
belonging to the same tangent space (see Sect. 2.3). The
Riemannian size and shape distances [10] for the human tra-
jectory w.r.t. the neutral spans from 0.19 to 1.67, while those
between the neutral human and the four undeformed aliens
are 2.72, 1.96, 2.46, 10.68.

Fig. 4 Full configuration of 240 points shown on the Face01: land-
marks in red, surface curves in violet and semilandmarks in blue. After
semilandmarks’ registration, all these landmarks (as well as the used
triangulation) can be considered as fully homologous for subsequent
analyses (Color figure online)

       2

       3

Fig. 5 Rationale for transporting deformations

2.6 Criteria for Evaluating theMethods Performance

Here we introduce the notion of conservation of a defor-
mation as a mean to evaluate the quality of the different
transport methods. We present two different approaches to
measure how a deformation is conserved; one is based on
local measurements and gauges the deformation of each pair
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of homologous triangles, the other one considers the global
shape.

2.6.1 Metrics for Local Deformation Evaluation

Given two different k-configurations X and Y , representing
two different templates, each undergoing its own defor-
mation, and describing these two deformations with the
diffeomorphisms�XX ′ and�YY ′ (see Fig. 1), the key point is
the ability to recognize whether or not they are experiencing
the same deformation.

Naively, we could define two configurations being simi-
larly deformed if the discrete displacement field is the same,
i.e.,

UX
.= X ′ − X = Y ′ − Y

.= UY . (2.22)

However, this approach has several drawbacks, as reported
in [49]. Here we assume a different point of view: Two
templates undergo the same deformation if, for each corre-
sponding point of the two templates, the following condition
holds (see Fig. 1):

CX
.= ∇	�XX ′∇�XX ′ = ∇	�YY ′∇�YY ′ .= CY . (2.23)

Such condition can be expressed also bymeans of the local
metric properties: In otherwords, two configurations undergo
the same deformation if themetric induced by the two diffeo-
morphisms, represented by the Right Cauchy–Green strain
tensor C, is the same for each corresponding point, see for
more details [30]. In the continuum mechanics formalism,
the gradient tensor ∇� is generally denoted as F, and in the
ensuing section it will be named as deformation tensor (the
Jacobian).

In m dimensions, a tensor is represented by an m × m
matrix that encodes the entire information about the defor-
mation. The strain tensor C is defined as FT F; we note that
F can be represented as the composition of a rotation R and
a stretch U, called polar decomposition: F = RU. Then, by
definition, C = U2; thus, the rigid part R of the deformation
F is filtered out.

In the case of triangles in 3D, the symmetric 3×3 tensors
F and C are singular as a triangle is a 2D shape, and they
are projected along the normal to the triangle to obtain two
symmetric 2 × 2 tensors F̂ and Ĉ (see. [13,14]). Performing
an eigen decomposition on Ĉ leads to find the directions
and magnitudes of the transformation (see Fig. 6). To ease
the notation, we define FXi = ∇�X1Xi , and F̂Xi as the 2D
projection of Fi , analogously, we define FYi = ∇�Y1Yi , and
F̂Yi .

It isworth noting that none of the fourmethodswe contrast
here is built in order to satisfy (2.23). Albeit this makes all
the four methods somewhat inadequate, using this criterion

Fig. 6 The procedure for evaluating local deformations

as a diagnostic makes it neutral with respect to the various
metrics involved in different parallel transports.

Here, we assess the quality of the deformation transport by
checking that triangle-wise deformations are preserved; we
note that each triangle can only have affine transformations.
Given that each shape Xi or Yi has a same number of homol-
ogous triangles, we denote with c j the center of triangle j ,
with j = 1, . . . , 416. We follow 4 steps:

1. We measure the change in area of each triangle by evalu-
ating det(F̂Xi (c j )), which measures the ratio between the
area of the triangle j of the shape Xi , and the area of the
homologous triangle belonging to the source X1; this is
done for each triangle j , and for each deformation�X1Xi ,
see Fig. 5.

2. For all the four transport methods, we measure the same
quantity also for the transported data, that is, we evaluate
det(F̂Yi (c j )). This is done for each alien face Y .

3. For each i , we run the linear regression of det(F̂Yi (c j ))
versus det(F̂Xi (c j )), and we compute the regression coef-
ficient βi . It turns out that we have 19 βi regression
coefficients for each of the four aliens, and for each
method. These coefficients give a quantitative assessment
of the average quality of the transport for all the triangles
in a shape i : the closer βi is to 1, the better is the area
preserving features of the method; see Fig. 9, right.

4. We then perform a nonparametric ANOVA using
Wilcoxon test with pairwise comparisons among the 4
groups (i.e NT, DT, FS, LS), by using the βi coefficients
for each alien as dependent variable, see Table 5.
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We use as measure the log of the area change, that is,
the function log [det(F̂i )]; a value of 0 means that no area
change took place, a value> 0 means that the target expe-
riences a local expansion, while a value < 0 indicates local
contraction.

Apart from area change, we can also have a clue about
shape change by evaluating the eigen-systemof F̂i ; this infor-
mation can be visualized by plotting unit circles at the center
of each triangle of the source shapes X1, Y1; then, at the cen-
ter of the homologous triangles belonging to the shapes Xi ,
Yi , we plot the ellipses corresponding to the eigen-system of
F̂i , see Figs. 7 and 8.

Moreover, it is possible to define a distance between ten-
sors; the choice of the proper distance formula is not trivial.
Different formulas could look at different tensor properties.
There is an entire field in image processing that deals with
tensor analysis [21]. Reference [8] proposed a set of seven
different formulas to analyze covariance matrices (strain ten-
sors in our case) in the field of diffusion tensor imaging (see
Table 3). We thus used these distances for a statistical com-
parison of the different methods, via nonparametric ANOVA
(Wilcoxon test).

2.6.2 Metrics for Global Deformation Evaluation

As for the global measures of deformation, we use the mean
strain energy density and the Procrustes distance. The mean
strain energyϕXi associated to the deformation F̂Xi is defined
as

ϕXi = 1

Area(∂B)

∫

∂B
1

2
ÊXi · ÊXi + γ Tr(ÊXi )

2 (2.24)

where ÊXi = 1/2(ĈXi − Î), with ĈXi = F̂T
Xi

F̂Xi , Î is the 2D
identity tensor, and γ is a coefficient representing the ratio
between the volumetric and shear stiffness of the considered
material [30]. Formula (2.24) can be also used to evaluate the
mean energy triangle-wise, by integrating and averaging on
each triangle BJ . An analogous formula is used for the mean
strain energy ϕYi associated to the deformation F̂Yi .

We run a linear regression of ϕYi versus ϕXi , and we com-
pute the regression coefficient βϕ , for each method and for
all the four alien faces, see Fig.11.

We run also a linear regression of the Procrustes distance
ρYi = ρ(Yi ,Y1) versus ρXi = ρ(Xi , X1), and we compute
the regression coefficient βρ , for each method and for all the
four alien faces, see Fig. 12. For both cases, the lower the
absolute deviation from 1 of the regression coefficients the
better the performance of the method.

3 Results

Figures 7 and 8 show the visualization of deformed states of
scared and happy emotions for the four aliens for the four
methods using local tensors. Supplementary Information 2–
5 shows the complete tensor animations for each method
(NT, LS, DT, FS), respectively, from which Figs. 7 and 8
have been extracted as snapshots. In addition, Supplemen-
tary Information 6–9 shows the same with the triangulation
structure instead of tensors.

Undeformed states are shown using yellow circles. The
deformed states show ellipses whose axes are proportional
to the square root of the eigenvalues of the 2× 2 tensor Ĉ in
Fig. 6. The color, instead, is proportional to the log(det(F̂))
. White ellipses indicate log(det(F̂)) that exceed the chosen
color scale range. Pictorically, it appears evident that NT
fails in recovering original deformation (e.g., the human on
the leftmost column) mainly around the lips region: in the
scary emotion (Fig. 7) the NT method applied to the first
three aliens presents a nearly closed mouth with dispropor-
tionately enlarged lips, while Yoda clearly fails in opening
mouth. This error should decrease starting from awider open
mouth, but here we are interested to check the robustness of
the methods on a very challenging example. LS performs
better than NT in opening Yoda’s mouth, while for alien 1
and 3 the opening seems too exaggerated in comparison to
the other three methods. This could be explained by the fact
that LS is very sensible to size differences as it transports,
on the size and shape space, the entire difference vector as
it is. This does not happen for DT and FS that appear the
best methods in conserving the local deformation observed
on the human. Looking at out-of-scale tensors, DT presents
a smaller number of exaggerated tensors (in terms of axes
of ellipses) in Yoda and more accurate tensors, in terms
of log(det(F̂)) (i.e., the ellipses’ colors) when compared to
human, in correspondence of the frontal and lips regions of
the first three aliens. Qualitatively, similar results are shown
in Fig. 8 for the happy emotion: There too the NT seems to be
the worst method. Yoda, in fact, shows nearly undeformed
circles, thus indicating that the corresponding tensors bear
unfaithful deformations with respect to human. DT performs
better than FS mainly for Yoda that, under FS, shows some
exaggerated tensor.

What can be seen pictorially in Figs. 7 and 8 is returned
quantitatively in Figs. 9 and 10 for local diagnostics and in
Figs. 11 and12 for synthetic diagnostics. In Fig. 9 (left panel),
the maintenance of log(det(F̂)) with respect to human and
quantified via regression analysis is evaluated for each of the
416 triangles for each of the 19 deformed states and the 19 β

regressions for each method for each alien are contrasted via
nonparamateric ANOVA (via pairwise Wilcoxon rank sum
tests; significance level was set to 0.05) and illustrated via
boxplot.
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Fig. 7 Visualization of
deformation using local tensors
on the scared emotion.
Undeformed states are shown
using yellow circles having an
arbitrary constant radius
appropriately chosen for
visualization. They are centered
on the centroid of each triangle
of the homologous triangulation.
The deformed states show
ellipses whose lengths of the
axes are proportional to the
square root of the eigenvalues of
the 2 × 2 tensor Ĉ in Fig. 6. The
color, instead, is proportional to
the log(det(F̂)). White ellipses
indicate log(det(F̂)) that exceed
the chosen color-scale. For sake
of visualization, shapes are not
at their original size (Color
figure online)

Human Alien1 Alien2 Alien3 Alien4

NT

LS

DT

FS

Scared emotion

Undeformed

Log(det( ))  

Table 4 shows means for the four methods for the four
Aliens.

Pairwise comparisons under Wilcoxon test (Table 5)
reveals that DT is always the best method. For alien 2, LS
also presents a very good performance albeit it is not sig-
nificantly different from DT. NT is always significantly the
worst method. FS is always placed in the second place except
for Yoda for which it places at the third place.

Figure 10 shows theRiemannian distance dR , according to
[8], between human and different methods for the four alien
for each deformational step. DT and LS are the methods that
approach the most the 0-value. Supplementary Information
10 shows the same using other types of distances. Synthetic

measures (i.e., mean strain energy density and Procrustes
distances) of performance are shown in Figs. 11 and 12.
According to the global strain energy density, the DT seems
to be the best method in all aliens except for the first one that
deserves special attention. There the NT seems to perform
slightly better than DT while LS and FS are the less perfor-
mant. All, however, seem to have too high β coefficients with
respect to human. Actually, after a quality check performed
on the entire set of triangles of the undeformed configuration
of alien 1we identified 30 triangles (on a total of 416) that are
degenerate, i.e., with an area very close to 0. Their individual
strain energy seriously bias the mean strain energy density.
If removed the regression β coefficients are: NT = 10.02;

123



Journal of Mathematical Imaging and Vision

Fig. 8 Visualization of
deformation using local tensors
on the happy emotion.
Undeformed states are shown
using yellow circles having an
arbitrary constant radius
appropriately chosen for
visualization. They are centered
on the centroid of each triangle
of the homologous triangulation.
The deformed states show
ellipses whose axes lengths are
proportional to the square root
of the eigenvalues of the 2 × 2
tensor Ĉ in Fig. 6. The color,
instead, is proportional to the
log(det(F̂)). White ellipses
indicate log(det(F̂)) that exceed
the chosen color-scale. For sake
of visualization, shapes are not
at their original size (Color
figure online)

Human Alien1 Alien2 Alien3 Alien4

NT

LS

DT

FS

Happy emotion

Undeformed

LS = 3.78; DT = 1.63; FS = 0.7. It follows that, globally,
DT can be considered the best method followed by FS, LS
and NT, respectively. A similar behavior can be appreciated
when looking at Fig. 12where Procrustes distances of human
and those of the four methods applied to the four aliens are
contrasted.

4 Conclusions

The long-standing problem of the evaluation/estimation of
the deformation and of its transport has been here faced using
four different methods, NT, LS, DT and FS that are used in

very distant fields and applications. To the best of our knowl-
edge, this is the first study oriented at the comparison of these
four approaches and at evaluating their performances quanti-
fied by different parameters. This has been done in the case of
the transport of human emotions mapped on the surfaces of
a face. This operation is commonly known as facial motion
capture retargeting in the field of computer animation. The
results obtained here are then referred to this particular case,
while other applications should be of course re-evaluated
using the sameperformance criteria used here and could yield
anecdotally to slightly different conclusions. For example,
one could face the problem of comparing not only neutral,
scared and happy emotions but also a wider range of senti-
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Table 3 Dryden et al. 2009
tensor distances

Name Notation Form

Euclidean dE (S1, S2) ||S1 − S2||
Log-Euclidean dL (S1, S2) || log(S1) − log(S2)||
Riemannian dR(S1, S2) || log(S−1/2

1 S2S
−1/2
1 )||

Cholesky dC (S1, S2) ||chol(S1) − chol(S2)||
Procrustes size-and-shape dS(S1, S2) inf R∈O(k) ||chol(S1) − chol(S2)R||
Full Procrustes shape dF (S1, S2) inf R∈O(k),β || chol(S1)||chol(S1)|| − βchol(S2)R||
Power Euclidean dA(S1, S2)

1
α
||Sα

1 − Sα
2 ||

ments and in a wider range of initial face shapes; in this case,
the highnumber of combinations of initial shape/type of emo-

tion lead to a big rise of experimental complexity potentially
very difficult to manage. As we anticipated in the previous
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Fig. 9 Left panel: distributions, for the four aliens Y , of the βi
coefficients calculated at each deformational step, of the regressions
computed between log(det(F̂)) of transported shapes, for the four meth-

ods, and those of the corresponding human benchmark. Significances of
pairwise comparisons under nonparametric ANOVA are given in Table
5. Right panel: course of βi coefficients for the four methods and the
four aliens
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Fig. 10 Riemannian distance dR according to Dryden et al. 2009
between human strain tensors and transported shapes for the four aliens
for the four methods. We show 76 pairwise comparisons (19 steps for
the 4 methods); each of the four plots shows the Riemannian distance
between the human face and a given alien face, once it has been trans-
ported with the four transport methods (each method corresponds a to
color, see legend). For each alien and for each method, we show the

boxes of the 50% of the distribution for each of 19 deformation steps.
The number in the top x-axis indicate the global ANOVA p-value. For
the sake of visualization, we do not show here the labels of pairwise
comparisons for each step while they can be appreciated in the supple-
mentary information for this kind of distance as well as for the others
(Color figure online)
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Fig. 11 Plot of the mean strain energy density ϕYi versus ϕXi , for the
four aliens and the four methods. Solid line represents isometry; the
value of the regression coefficient βϕ is shown in the title of each panel.
It is worth noting the kinks that appear in some cases, as example, on
line 2 in columns 2 and 4. Each point of the plot comes from data

related to one deformation �X1Xi ; the whole sequence of deformations
is actually associated with two different sub-trajectories: i = 1, . . . , 10
corresponds to XN → XS (black dots), while i = 11, . . . , 20 corre-
sponds to XN → XH (red dots) (Color figure online)
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Fig. 12 Plot of Procrustes distances ρYi versus ρXi , for the four aliens
and the four methods. Solid line represents isometry; the value of the
regression coefficient βρ is shown in the title of each panel. Each point
of the plot comes fromdata related to one deformation�X1Xi ; thewhole

sequence of deformations is actually associated with two different sub-
trajectories: i = 1, . . . , 10 corresponds to XN → XS (black dots),
while i = 11, . . . , 20 corresponds to XN → XH (red dots) (Color
figure online)

sections, the maintenance of tensor distances and Jacobians
are not the conservation criteria encoded on the contrasted

methods. However, this neutrality was the sole way able to
compare fairly different techniques. In fact, adopting the con-
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servation criterion encoded on one particular method (some
kind of energy, or shape distances, or displacement vector
fields) inevitably would confer to that method an unjustified
advantage in evaluating performance. On the other hand, the
use of both local (i.e., tensor distances and Jacobian) and
synthetic/global criteria (i.e., strain energy and Procrustes
distance) can furnish, in our opinion, a complete picture of
the actual ability of the four procedures in transporting the
deformation trajectory. We observed that DT is very effec-
tive in doing that when looking at both the local and global
criteria. FS and LS also perform rather well while NT does
not seem properly equipped for doing what is asked by our
experiment. Probably the goodness of DT could reside on
the fact that it firstly separates affine and non-affine com-
ponents of the deformation (not done by either FS or LS)
and maintains them orthogonal w.r.t. each other. Moreover,
both affine and non-affine parts are conserved during the con-
struction of the Parallel Transport. The inability of NT in
performing our experiment has been succintly explained in
Sect. 2.3.1 wherewe have shown that NT performed on a pair
(X, X′), being an interpolant, is forced to become an extra-
polant when demanded to deform the ambient space built
around a third shape. We are of course aware that many more
than only four methods exist in order to transport a deforma-
tion occurring between two shapes toward a third shape. In
[49], it was shown that several methods have been developed
and it could be desirable to compare them all albeit this is
far beyond the scopes of the present paper. In other appli-
cations, the identification of homologous landmarks is not
so easy to obtain. This can be seen, for example, in the case
of brain CT-scan or other types of organs such the liver or
spleen. In these cases, only a method equipped with a surface
matching algorithm, such as LDDMMor similar approaches,
can be applied as those methods requiring point correspon-
dence cannot be used at all. We finally stress here that our
comparison can be extended to other types of experimen-
tal/simulated examples as the transport of deformation is very
often needed and applied to a variety of very distant scientific
applications, and for this reason it always should be cho-
sen the best approach for the specific experimental setting.
We then encourage further investigation into our techniques
using at least two possible courses: (1) analyzing the same
dataset using different methods. In fact, as we stated in the
Introduction, we did not exploited the potential of the full
available number of methods for transporting the deforma-
tion; (2) applying the same four methods we explored here
to different types of dataset not only in terms of human face
emotions but also in terms of initial body that undergoes some
kind of deformation such as an entire human body or an ani-
mal body, etc. For these reasons, we provide the following
information:

Table 4 Average of the 19 βi regression coefficients for the four aliens
for the four methods

Method Alien1 Alien2 Alien3 Alien4

DT 1.0527 0.7907 0.9514 0.7689

FS 0.8945 0.6959 0.6223 0.2158

LS 1.3883 0.8232 1.2854 0.4233

NT − 0.1004 0.0599 − 0.0821 0.0075

Table 5 Pairwise comparison p-values according to Wilcoxon test for
differences of means of the 19 βi regression coefficients for the four
aliens for the four methods

DT FS LS NT

Alien 1

DT NA 1.783e−03 1.655e−04 1.475e−07

FS 1.783e−03 NA 5.593e−05 1.475e−07

LS 1.655e−04 5.59e−05 NA 1.475e−07

NT 1.475e−07 1.475e−07 1.475e−07 NA

Alien 2

DT NA 1.203e−02 6.584e−02 1.475e−07

FS 1.203e−02 NA 7.883e−03 1.475e−07

LS 6.584e−02 7.883e−03 NA 1.475e−07

NT 1.475e−07 1.475e−07 1.475e−07 NA

Alien 3

DT NA 2.022e−07 1.039e−05 1.475e−07

FS 2.022e−07 NA 2.244e−06 3.765e−07

LS 1.039e−05 2.244e−06 NA 1.475e−-07

NT 1.475e−07 3.765e−07 1.475e−07 NA

Alien 4

DT NA 0.0017830 5.2415e−06 2.5905e−06

FS 1.7830e−03 NA 1.3071e−02 2.3126e−01

LS 5.2415e−06 0.0130711 NA 3.7655e−07

NT 2.5905e−06 0.2312614 3.7655e−07 NA

– The R scripts used in this paper for DT and LS are
attached in Supplementary Information 11. For NT, we
suggest the R packageMorpho [42]. For FS, we suggest
installing the software Deformetrica from https://www.
deformetrica.org.

– The whole dataset used in the present paper is attached
in Supplementary Information 12.

– The R scripts for the visualization and evaluation of the
deformation are attached in the supplementary informa-
tions of [34],

– For the calculation of the tensor distances, it is possible
to use the R package shapes [9].

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10851-021-01030-
6.
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