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Abstract

In this writing, we point out some errors made in [D. L. Boutin, Determining sets, re-
solving sets and the exchange property, Graphs and Combin., 25(2009), 789-806], where the
author claims that a maximal independent set in a hereditary system is a minimal determin-
ing (resolving) set. Further more, the author claims that if the exchange property holds at
the level of minimal resolving sets, then, the corresponding hereditary system is a matroid.
We give counter examples to disprove both of her claims. Besides, we prove that there exist
graphs having such maximal independent sets which are not necessarily determining (resolv-
ing) sets. Also, we give necessary and sufficient conditions for a class of graphs to have a
maximal independent set which is not minimal determining (resolving).
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1 Introduction

A set U of vertices of a connected graph G is called a determining set for G if every automorphism
of G is uniquely determined by its action on the vertices of U . If the vertices in U are unable to
determine all the automorphisms of G, then we call U a non-determining set for G. The minimum
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cardinality of a minimal determining set for G is called the determining number of G, denoted by
D(G) [2]. A set W of vertices of G is called a resolving set for G if every vertex in G is uniquely
determined by its distances to the vertices of W . If the vertices in W are unable to determine
all the vertices of G, then we call W a non-resolving set for G. The minimum cardinality of a
minimal resolving set for G is called the metric dimension of G, denoted by β(G) [3, 4].

Determining (resolving) sets are said to have the exchange property in G if whenever S and
R are minimal determining (resolving) sets for G and r ∈ R, then there exists s ∈ S so that
S − {s} ∪ {r} is a minimal determining (resolving) set [1]. It is noteworthy that if determining
(resolving) sets have the exchange property in a given graph, then every minimal determining
(resolving) set for that graph has the same cardinality.

A set system is a finite set H together with a family F of subsets of H and is denoted by the
pair (H,F). A set system (H,P) is said to be a hereditary system (an independence system) if for
every subset X of H possessing the property P , each subset of X also possesses the property P .
That is, for each X ⊆ H such that X ∈ P , Y ∈ P for all Y ⊆ X. In fact, in a hereditary system
(H,P), P is identified by the family of subsets of H possessing the property P . A subset X of H
which possesses the property P is said to be an independent set, and a dependent set otherwise.

A subset H of the vertex set V of a graph G is a det-independent (res-independent) set if no
proper subset of H is a determining (resolving) set for G. This concept was first introduced by
Boutin in [1]. If we denote the property of being det-independent (res-independent) by det (res),
then the hereditary system in G corresponds to this property is as follows:

(V, det (res)) = {H ⊂ V | H possesses the property det (res)},

where V is the vertex set of G. It is also worth mentioning here that, by definition, a non-
determining (non-resolving) set is always a det-independent (res-independent) set.

2 Counter examples

Formally, determining and resolving sets are defined as follows: Let Aut(G) be the automorphism
group of G and U be a set of vertices of G. For every two automorphisms ϕ, ψ ∈ Aut(G), if
ϕ(u) = ψ(u) for all u ∈ U implies ϕ = ψ, then U is called a determining set for G [2]. Let d(x, y)
be the number of edges in a geodesic (shortest path) between the vertices x and y, and is called
the distance between x and y in G. A set W of vertices of G is a resolving set for G if for every
two vertices v and z of G, there is a vertex w in W such that d(v, w) ̸= d(z, w) [3, 4].

Boutin formally defines det-independence (res-independence), so that a set S of vertices in a
graph G is a det-independent (res-independent), if for every s ∈ S, S − {s} is not a determining
(resolving) set for G [1]. With this definition, she claims that a maximal det-independent (res-
independent) set is a minimal determining (resolving) set. (line -6 at page 791 of [1]). But, her
claim is unfortunately wrong, as we observe in the following two examples.

Example 1. Let us consider the graph G of Figure 1. Minimal determining sets for G are: {v4}
and {v5}. Thus, D(G) = 1. According to the property of det-independence, we have the following
hereditary system for G:

(V, des) = {{vi} ; 1 ≤ i ≤ 5} ∪ {{v1, v2}, {v1, v3}, {v2, v3}} ∪ {{v1, v2, v3}}. (1)
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Figure 1: A graph G

It can be observed that the sets {v1, v2}, {v1, v3}, {v2, v3} and {v1, v2, v3} are maximal det-
independent sets, but not minimal determining sets.

Example 2. Consider the graph G of Figure 1. Minimal resolving sets for G are: {v1, v4}, {v2, v4},
{v1, v5}, {v2, v5} and {v4, v5}. Thus, β(G) = 2. According to the property of res-independence,
we have the following hereditary system for G:

(V, res) = {{vi} ; 1 ≤ i ≤ 5} (2)

∪ {{v1, v2}, {v1, v3}, {v1, v4}, {v1, v5}, {v2, v3}, {v2, v4}, {v2, v5}{v3, v4}, {v3, v5}, {v4, v5}}
∪ {{v1, v2, v3}}.

Here the set {v1, v2, v3} is a maximal res-independent, but not a minimal resolving set.

In [1], the author also claims that if the exchange property holds at the level of minimal
determining (resolving) sets, then the property holds for maximal independent sets in the corre-
sponding hereditary system (lines 1-5 at page 792 [1]). Consequently, the hereditary system is a
matroid [6]. But, it is not true regrettably, because Examples 1 and 2 provide that a maximal
det-independent (res-independent) set need not to be a minimal determining (resolving) set, and
so the corresponding hereditary systems (1) and (2) are not matroids. Since the graph considered
in Examples 1 and 2 is a tree graph, so the hereditary system (produced due to Theorem 3 at
page 793 of [1]) for tree graphs is not a matroid.

3 Necessary and sufficient conditions

Let v be a vertex of a graph G having the vertex set V . Then, the open neighborhood of v
is N(v) = {u ∈ V : u is adjacent with v in G} and the closed neighborhood of v is N [v] =
N(v) ∪ {v}. Two vertices of G are said to be twin vertices (simply called twins) if they have
the same (open or closed) neighborhoods. The relation of twins between the vertices of G is an
equivalence relation, which produces classes of twin vertices in G, called the twin classes. That
is, a twin class in G is a set of vertices of G such that its every two elements are twins [5]. A
non-singleton twin contains two or more elements. The next lemma is due to the definition of
twins.

Lemma 1. [5] If u and v are twins in a graph G, then d(u, x) = d(v, x) for each x ∈ V − {u, v}.

Due to Lemma 1, the following remark is directly followed.
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Remark 2. If u and v are twins in a graph G and U (or W ) is a determining (resolving) set for
G, then either u ∈ U (W ) or v ∈ U (W ). In other words, if T is a twin class of order t ≥ 2 in G,
then every determining (resolving) set for G must contain at least t− 1 elements of T .

The removal of only two twins from the vertex set of a graph G makes it a maximal det-
independent (res-independent) set for G.

Lemma 3. Let T be a twin class of order t ≥ 2 in a graph G with vertex set V . Then, for any
two elements u, v ∈ T , the set V − {u, v} is a maximal det-independent (res-independent) set for
G.

Proof. Since d(u, x) = d(v, x) for all x ∈ V − {u, v}, by Lemma 1, so no subset of V − {u, v} is a
determining (resolving) set for G. It follows the result.

In next result, we observe the condition when a hereditary system for a graph corresponds to
the det-independence (res-independence) property is not a matroid.

Theorem 4. If there is a non-singleton twin class in non-complete graph (not a complete graph),
then there is a maximal det-independent (res-independent) set which is not a minimal determining
(resolving) set. In fact, the corresponding hereditary system for the graph is not a matroid.

Proof. Let G be a non-complete graph with vertex set V and let T be a twin class in G of
cardinality at least two. Then, for any u, v ∈ T , the set X = V − {u, v} is a maximal det-
independent (res-independent) set for G, by Lemma, 3. But, X is not a determining (resolving)
set for G, because d(u, x) = d(v, x) for all x ∈ X due to Lemma 1 and Remark 2. Thus, the
hereditary system for G corresponds to det-independence (res-independence) property contains
a det-independent (res-independent) set which is not a minimal determining (resolving) set, and
hence it is not a matroid.

The next result provides necessary and sufficient conditions for a class of graphs to have a
maximal independent set which is not minimal determining (resolving).

Theorem 5. The following assertions are equivalent for a non-complete graph G in which deter-
mining (resolving) sets have the exchange property.

1. G has a non-determining (non-resolving) set of cardinality greater than D(G) (or β(G)).

2. G has a maximal det-independent (res-independent) set which is not minimal determining
(resolving).

Proof. Suppose thatG has a non-determining (non-resolving) set Y such that |Y | > D(G) (or β(G)).
Since the exchange property holds in G for determining (resolving) sets, so the cardinality of all
the minimal determining (resolving) sets is the same, and is D(G) (or β(G)). Thus, any non-
determining (non-resolving) set Y with |Y | > D(G) (or β(G)) is a a maximal det-independent
(res-independent) set which is not minimal determining (resolving).

Conversely, suppose that G has a maximal det-independent (res-independent) set X which is
not minimal determining (resolving). Then, of course, X is a non-determining (non-resolving) set
with |X| > D(G) (or β(G)) due to holding of the exchange property.
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