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Abstract 

Improved understanding of tumor immunology has enabled the development of therapies that harness the immune 
system and prevent immune escape. Numerous clinical trials and real-world experience has provided evidence of 
the potential for long-term survival with immunotherapy in various types of malignancy. Recurring observations 
with immuno-oncology agents include their potential for clinical application across a broad patient population with 
different tumor types, conventional and unconventional response patterns, durable responses, and immune-related 
adverse events. Despite the substantial achievements to date, a significant proportion of patients still fail to benefit 
from current immunotherapy options, and ongoing research is focused on transforming non-responders to respond-
ers through the development of novel treatments, new strategies to combination therapy, adjuvant and neoadjuvant 
approaches, and the identification of biomarkers of response. These topics were the focus of the virtual Immunother-
apy Bridge (December 2nd–3rd, 2020), organized by the Fondazione Melanoma Onlus, Naples, Italy, in collaboration 
with the Society for Immunotherapy of Cancer and are summarised in this report.
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Introduction
Over recent years, a substantial research effort has 
improved our understanding of tumor immunology and 
enabled the development of novel treatments that har-
ness the immune system and prevent immune escape. 
Through numerous clinical trials and real-world experi-
ence, evidence of the potential for long-term survival 
with immunotherapy agents has accumulated in various 

types of malignancy. These studies have highlighted 
several recurring observations with immuno-oncology 
agents, including their potential for clinical application 
across a broad patient population across tumor types, 
both conventional and unconventional response patterns, 
durable responses, and immune-related adverse events. 
However, a significant proportion of patients are still 
failing to benefit from current immunotherapy options, 
and ongoing preclinical and clinical research is focused 
on transforming non-responders to responders, through 
the development of novel treatments, new approaches to 
combination therapy, adjuvant and neoadjuvant cancer 
immunotherapy, and the identification of biomarkers of 
response.
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Biomarkers, drivers of immune response and trends in 
immunotherapy were the focus of the virtual Immuno-
therapy Bridge (December 2nd–3rd, 2020), organized by 
the Fondazione Melanoma Onlus, Naples, Italy, in collab-
oration with the Society for Immunotherapy of Cancer.

SITC session—Biomarkers
Multiplex immunofluorescence assay development: 
current status and future directions
Technologies are now available that allow for the simul-
taneous targeting of multiple proteins in formalin-fixed 
paraffin-embedded tissue samples, commonly referred 
to as multiplex immunohistochemistry (IHC) or immu-
nofluorescence (IF). These approaches can distinguish 
between different cell types expressing the same protein 
and can characterize the density and spatial distribu-
tion of specific cells within the tumor microenvironment 
(TME). IF also has the benefit of being able to character-
ize a large dynamic range of expression on a cell-by-cell 
basis.

Consideration needs to be given to assay validation, 
especially with the increasing ‘plex’ of assays. Multiplex 
IF panel development is the consolidation of multiple 
monoplex IF protocols into a single protocol. Robust 
in  situ assessment of intensity of biomarker expression, 
e.g., programmed death-1 (PD-1) and programmed 
death ligand-1 (PD-L1), in a reproducible manner is also 
desirable.

Best practice guidelines for multiplex IF assays have 
been developed [1]. One key standard is that the multi-
plex assay should be equivalent to the monoplex IF/IHC 
for each individual marker. Multiplex IF assays may show 
lower levels of marker detection than their individual 
assay components due to steric hinderance between the 
multiple markers, signal interference between the fluors, 
or different reagent properties. For example, we found in 
the development of a multiplex IF assay that the IF was 
less sensitive than chromogenic IHC for key markers 
such as PD-L1. Additional amplification using an alterna-
tive horseradish peroxidase (HRP) polymer maximized 
sensitivity of the IF and resulted in comparable sensitiv-
ity to chromogenic IHC. Final panel validation showed 
that the combined multiplex IF panel was similar to the 
monoplex IF for each marker. Such optimized assays have 
been shown to be reproducible in multi-institutional 
studies [2]. For example, a six-plex multiplex IF assay was 
shown to have high inter-site concordance for percent 
PD-L1 co-expression within different cell types. Proxim-
ity of different cell types was also shown to be reproduc-
ible with high inter-center concordance. Additional study 
is underway to assess whether higher-‘plex’ assays are 
comparable to their single-plex components and whether 
they are reproducible across multiple laboratories.

Further gains in multiplex IF accuracy and reproduc-
ibility can be achieved through considered cell seg-
mentation and controlling for potential batch-to-batch 
variations. Cell segmentation is the process that image 
analysis algorithms use to identify the cell compartments 
of the membrane, cytoplasm, and nucleus. In immuno-
oncology, where immune cells and tumor cells are often 
in close proximity, errors in cells segmentation often 
result in the membrane expression of an immunoactive 
marker being mistakenly attributed to a neighboring cell. 
Additionally, cell size is often a key component in the 
image analysis algorithms, and many algorithms struggle 
when there is a wide variation in cell sizes. We found that 
when we were trying to identify larger cells (tumor cells 
and macrophages) at the same time as smaller cells (lym-
phocytes), the accurate segmentation of lymphocytes led 
to over-segmentation (and thus over-counting) of the 
tumor cells and macrophages. We found that this could 
be corrected if the cells bearing each marker were seg-
mented individually, rather than attempting to simulta-
neously segment cells displaying all markers [3]. Another 
important consideration is batch-to-batch staining vari-
ation, in particular when assessing intensity of expres-
sion. This can be controlled for by including a tissue 
microarray of control tissue with each batch, facilitating 
correction of marker expression intensity across batches; 
for example, normalizing to tissue controls can reduce 
the coefficient of variation in PD-1/PD-L1 expression 
intensity between batches from 10–15% to ~ 5%. Care-
ful optimization of multiplex staining, cell segmentation, 
and correction for batch-to-batch variation allows for 
more accurate and robust assessments of marker inten-
sity in  situ and associated immuno-oncology biomarker 
development.

Integrating multiomics in the practice of diagnostic 
pathology
Deep insights into the biology of cancer, combined with 
rapid advances in our understanding of the molecular 
biomarker landscape, are transforming the practice of 
oncology and are enabling the growth of personalized 
treatment indications, as illustrated by the ever-growing 
list of Food and Drug Administration (FDA) approved 
targeted therapies and in immuno-oncology by the recent 
pan-cancer approval of pembrolizumab in patients with a 
tumor mutational burden (TMB) ≥ 10 mut/Mb. Despite 
this progress, we still struggle to consistently translate 
this knowledge into clinical outcomes, as many patients 
often fail to receive appropriate therapies, with evidence 
coming from the non-small cell lung cancer (NSCLC) 
experience suggesting that less the half of eligible patients 
for biomarker driven personalized medicine ever receive 
a targeted therapy.



Page 3 of 16Ascierto et al. J Transl Med          (2021) 19:238  

Multiple factors underly these disparities in clini-
cal delivery. Among them, a significant role is played by 
the persistent failure to tightly integrate comprehensive 
genomic profiling into routine clinical diagnostic pathol-
ogy workflows, and by the frequent persistence in clini-
cal practice, of a narrow single or small panel gene reflex 
testing approach, where diagnostic targets are tested 
sequentially in a step-wise fashion, a process which con-
sumes precious time and often also precious tissue, and is 
neither sustainable nor cost-efficient, and often does not 
enable the delivery of the correct treatment in a timely 
fashion.

This is despite the continuous progress in next gen-
eration sequencing technologies, nowadays enabling the 
comprehensive assessment of TMB, microsatellite insta-
bility (MSI) and somatic variants in over 500 cancer-
related genes in a single workflow of more than 30,000 
patients/year on a single high throughput sequencing 
platform. At the Providence Cancer Institute (Portland, 
OR, USA) comprehensive genomic profiling is integrated 
as a standard of care in routine diagnostic practices and 
executed automatically as early as possible (i.e., at the 
time of an initial tumor diagnosis by a pathologist) under 
an institutional review board-approved clinical improve-
ment protocol. The implementation of such a program 
has resulted in a significant increase in the number of 
patients with detected actionable markers, leading to an 
increased enrolment in targeted therapy driven clinical 
trials and to an increased number of patients qualifying 
for immunotherapies because of a high TMB or MSI sta-
tus. Importantly, beyond treatment selection, the tight 
coupling of genomics and pathology can benefit diag-
nostic workflows by informing also tumor classification, 
staging and diagnosis.

Despite the significant progress made in integrating 
this process into clinical routine, translating the gained 
knowledge into better treatments for patients remains 
an ongoing challenge. In particular, biomarker based 
clinical trial matching remains a challenge to scale and 
timely execute. Attempts to improve in these aspects by 
developing an ecosystem that empowers the utilization 
of genomics results are virtual molecular tumor boards, 
which involves the integration of genomics, imaging, 
electronic health records and clinical trial matching, 
and the use of natural language processing and machine 
learning at scale on electronic medical records to auto-
mate the real time identification cohorts of patients eli-
gible for clinical trial participation. Beyond genomics 
biomarkers, the TME is also a key factor in driving out-
comes and therapies, and urgently needs to be integrated 
into routine pathology workflow, using technologies 
such as multiplex IHC and IF. In this context, the use of 
machine learning via deep convolutional neural networks 
to enable the multiplex IHC/IF-based reverse engineer-
ing of hematoxylin and eosin (H&E) images could enable 
the systematic scaling of the assessment of the tumour 
microenvironment to large population cohorts and ena-
ble to overcome throughput issues existing in current 
multiplexed staining technological implementations [4, 
5] (Fig. 1).

Leveraging other genomes as potential response 
biomarkers: the microbiome
Unlike the germline or tumor genome, the gut microbi-
ome is inherently modifiable and is influenced by factors 
which include diet and medication, as well as anthropo-
metric factors (e.g., body mass index), psychological fac-
tors, and geographical location. The gut microbiome has 

Fig. 1 Comprehensive genomic profiling as a standard of care at the Providence Cancer Institute
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been shown to play a role in the development of mucosal 
and systemic immunity and there is now considerable 
evidence that is can be predictive of response to immu-
notherapy. Several clinical studies have demonstrated 
a strong association between the gut microbiome and 
response to immune checkpoint inhibition across differ-
ent cancer types.

In a study of patients with melanoma undergoing anti-
PD-1 therapy, characteristics of the gut microbiome at 
baseline were associated with response to treatment, with 
alpha diversity scores significantly higher in responders 
compared to non-responders [6]. Microbiome composi-
tional features were also associated with response, with a 
higher relative abundance of bacteria within the Clostrid-
iales order (Ruminococcaceae family, Faecalibacterium 
genus) in responders and a significantly higher abun-
dance of Bacteroidales in non-responders. Bacteria asso-
ciated with response (in the Clostridiales order) were also 
positively correlated with cytotoxic T cells in the TME of 
patients with available baseline tumor samples.

However, there is little overlap between response-
associated taxa across independent cohorts, with stud-
ies in patients with melanoma, renal cell carcinoma, 
and NSCLC demonstrating differential microbiome sig-
natures in responders and non-responders to immune 
checkpoint blockade. These differences may be driven 
in part by technical issues, including processing (i.e., 
sample collection, preservatives, sample storage, DNA 
extraction) and the sequencing platform used. This may 
be overcome by the use of whole genome sequencing 
and metagenomic methods. However, it may also be that 
a favorable microbiome is in part dependent on con-
text. Habitual diet is a key factor, with a plant-based diet 
resulting in a microbiome with different characteristics 
to that seen with a meat-based diet. The microbiome is a 
complex ecosystem and the function of the microbiome, 
which is largely shaped by diet, may be more important 
than its composition.

Defining a microbiome as favorable or otherwise to 
stratify and select patients for intervention is challeng-
ing. Large-scale cohorts are needed with the selection 
of appropriate patients and donors critical but complex. 
Diet should be assessed in all observational microbiome 
cohorts and both habitual diet and baseline microbiota 
may influence response to microbiome modulation inter-
ventions. The method used to modulate the microbiome 
and plans for maintenance may result in differences in 
engraftment or durability of engraftment and ultimately 
response. Another consideration is that the fecal micro-
biome may not be the most useful read-out, and changes 
in the fecal microbiome as a biomarker of response to 
intervention may be misleading. Integrated analysis of 
ongoing microbiome modulation trials will be critical to 

inform ideal donor characteristics for fecal microbiota 
transplantation studies (host vs complete response donor, 
microbiome profile, etc.), predictors of effective microbi-
ome modulation/engraftment (e.g., baseline microbiome 
profile, host characteristics) and microbiome changes 
that correlate with an immune and disease response.

Emerging data have also demonstrated that there are 
intratumoral bacteria in some cancers and that these 
show distinct composition depending on histology [7]. In 
patients with pancreatic adenocarcinoma (PDAC), long-
term survivors had distinct tumor microbiomes, with an 
intratumoral microbiome signature highly predictive of 
survival [8]. The tumor microbiome can also be modu-
lated, with fecal microbiota transplantation from PDAC 
patients affecting tumor growth in a murine model, indi-
cating cross-talk with the gut microbiome.

CD26: a new biomarker?
CD26 is a surface glycoprotein expressed on various cell 
types, including immune cells, that has several proper-
ties that might affect T cell function, including cleavage 
of chemokines that regulate migration, T cell co-stim-
ulation via caveolin-1, binding of extracellular matrix 
proteins, and adenosine conversion. CD26 expres-
sion correlates with specific CD4 + T cell subsets, with 
 CD26high CD4 + T cells having distinct antitumor and 
molecular properties relative to other helper subsets. 
These cells co-secrete effector cytokines, including inter-
leukin (IL)-17, interferon (IFN)-γ, IL-22, and IL-2, pro-
duce cytotoxic molecules, and have enhanced memory 
(long-term persistence and Bcl2 expression).  CD26high T 
cells also persist and regress tumors to a greater extent 
than other CD4 + T cells in  vivo and represent a dis-
tinct CD4 + helper population with potent antitumor 
properties [9]. Better antitumor responses also corre-
late with an increased presence of CD26 + T cells in the 
tumor, suggesting a possible significance of this marker 
in cancer immunotherapy. It has been postulated that 
CD26 expression may correlate with productive immune 
responses after checkpoint blockade.

Treatment options for oral cavity squamous cell car-
cinoma (OCSCC) are limited with 5-year survival of 
advanced disease of 35–45%. Among patients with plat-
inum-refractory, recurrent squamous-cell carcinoma of 
the head and neck (HNSCC), treatment with nivolumab 
resulted in longer overall survival (OS) than treatment 
with standard, single-agent therapy [10]. Given this, 
exploring the use of PD-1 therapy in alternate settings 
for head and neck cancer, such as OCSCC, is warranted 
and an ongoing phase II trial (NCT03021993) is assess-
ing nivolumab as neoadjuvant therapy for patients with 
treatment-naïve OCSCC. The first stage of this trial 
included nine patients with stage II-IVA OSCC and 
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reported a 44% response rate. There was no difference in 
CD4 and CD8 frequencies between responders and non-
responders but a strong trend of more  CD26high T cells 
in responders [11]. Similar trends with  CD26high tumor-
infiltrating lymphocytes (TILs) have been observed in 
an ongoing neoadjuvant trial in patients with melanoma. 
In ten patients with resectable stage IIIB-D melanoma, 
neoadjuvant nivolumab and pepinemab, a monoclo-
nal antibody to semaphorin 4D that has demonstrated 
immune cell-dependent, antitumor activity, resulted in a 
38% major response rate and increased T cell infiltration 
[12]. Patients responsive to treatment had more  CD26high 
CD4 + and  CD26highCD8 + TILs.  CD26high CD4 + may 
have a role as next-generation adoptive cell transfer ther-
apy for non-responders to immune checkpoint blockade 
(Fig. 2).

Best of SITC for clinical development and trials
The effects of targeting CD47 and PD-L1 were investi-
gated through syngeneic triple-negative breast cancer 
(TNBC) murine models and tumor organoid platforms 
[13]. Targeting CD47 alone or in combination with anti-
PD-L1 resulted in decreased tumor burden and increased 
intratumoral granzyme B secreting CD8 + T cells in a 
TNBC murine model. Targeting CD47 within organoids 

increased IFN-γ and granzyme B expression, indicat-
ing enhanced CD8 + T cell cytolytic capacity. These 
data indicate that CD47 targeted monotherapy or com-
bination with anti-PD-L1 may enhance TNBC patient 
response.

In patients with surgically resectable stage I-IIIA 
NSCLC, neoadjuvant platinum doublet chemotherapy 
with nivolumab achieved a more robust tumor and over-
all pathological downstaging effect and clinically mean-
ingful lower probability of upstaging compared with 
neoadjuvant nivolumab alone or nivolumab plus ipili-
mumab [14]. Longer follow-up will be needed to assess 
whether the downstaging effect results in improved 
survival. In another trial in the neoadjuvant setting, 
nivolumab in combination with the virus-like particle-
encapsulated toll-like receptor (TLR)-9 agonist CMP-
001 had acceptable toxicity and promising efficacy in 30 
patients with regionally advanced melanoma [15]. Patho-
logical responses were seen in 70% of patients, with 50% 
having a complete pathological response (pCR), and was 
associated with increased CD8 + tumor-infiltrating lym-
phocytes (TILs) and intratumoral CD303 + plasmacytoid 
dendritic cells (DCs). In an update to the first clinical trial 
of an approved oncolytic viral immunotherapy as a neo-
adjuvant treatment in advanced melanoma, neoadjuvant 

Fig. 2 CD26: a new biomarker?
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talimogene laherparepvec (T-VEC) plus surgery resulted 
in 3-year recurrence-free survival (RFS) of 46.5% vs 
31.0% with immediate surgery (hazard ratio [HR] 0.67, 
P = 0.043) in resectable stage IIIB-IVM1a melanoma [16]. 
Three-year OS rates were 83.2% for T-VEC plus surgery 
and 71.6% for surgery alone (HR 0.54, P = 0.061). These 
data indicate a durable treatment effect of neoadjuvant 
T-VEC on advanced resectable melanoma.

Eganelisib is a selective PI3K-γ inhibitor that repro-
grams macrophages and myeloid-derived suppressor cells 
(MDSCs) from an immunosuppressive to an immune-
activating phenotype. In 21 patients with HNSCC treated 
with eganelisib in combination with nivolumab, overall 
response rate (ORR) was 10%, the disease control rate 
(DCR) was 45%, and the clinical benefit rate was 25%; 
these values were 20%, 30%, and 40%, respectively, in 
patients that received ≤ 2 lines of prior systemic ther-
apy [17]. The combination of eganelisib and nivolumab 
also had an acceptable safety profile. AMG 757, a half-
life extended bi-specific T-cell engager, binds to DLL3 
on tumor cells and CD3 on T cells, resulting in T cell-
dependent killing of tumor cells. In an ongoing phase I 
study in 31 patients with relapsed/refractory small-cell 
lung cancer (SCLC), AMG 757 had an acceptable safety 
profile and showed antitumor activity [18]. Overall, 
16.1% of patients had grade ≥ 3 treatment-related adverse 
events. Cytokine release syndrome was the most com-
mon adverse event (35.5% of patients), but was mostly 
grade 1–2, occurred within 24  h of the first or second 
dose and was reversible. Confirmed partial responses 
occurred in 16% and stable disease in 26% of all patients. 
All responders remained on treatment with duration of 
response (DOR) ranging from 2.0 + to 7.4 + months.

Bemcentinib is a selective AXL kinase inhibitor that 
has been shown to enhance checkpoint inhibitor effi-
cacy in pre-clinical models. A phase II single-arm study 
of bemcentinib and pembrolizumab for stage IV NSCLC 
reported that, among 15 patients who progressed on 
prior immunotherapy, clinical benefit was shown in 
6/7 (86%) AXL-positive patients and none of five AXL-
negative patients [19]. Median progression-free survival 
(PFS) was 4. 7  months in AXL-positive and 1.9  months 
in AXL-negative patients. The combination was well-tol-
erated. Transcriptional analysis of pre-treatment biopsies 
revealed a distinct gene profile correlating with clinical 
benefit from treatment.

Angiosarcoma is a rare cancer of endothelial cells, a 
subset of which is characterized by high TMB. In a phase 
II trial of ipilimumab plus nivolumab which included 16 
patients with metastatic or unresectable angiosarcoma, 
ORR was 25% [20]. Subgroup analysis revealed that 3 of 
5 patients with primary cutaneous tumors of the scalp 
or face had a confirmed objective response. Six-month 

PFS rate was 38%. The combination of ipilimumab and 
nivolumab was well tolerated and further investigation in 
angiosarcoma is warranted.

The benefit of immune checkpoint blockade in patients 
with leptomeningeal metastases (LMM) is unknown. In a 
phase II trial in 13 patients with LMM from solid tumors, 
the majority of which were traditionally responsive to 
immunotherapy, pembrolizumab resulted in a 38% cen-
tral nervous system response rate and was well tolerated 
[21].

Trends in immunotherapy
Breast cancer immunotherapy: biomarkers and clinical 
benefit
TNBC was chosen as the first breast cancer subtype to 
prioritize for immunotherapy based on a significant 
unmet clinical need and higher likelihood of tumors 
being immune-activated. In the IMpassion130 trial, 902 
patients with untreated metastatic TNBC were rand-
omized to atezolizumab plus nab-paclitaxel or placebo 
plus nab-paclitaxel until disease progression or unac-
ceptable toxicity. In the final overall survival analysis, 
there was no significant improvement in OS with ate-
zolizumab vs placebo in the intent-to-treat population 
(median OS of 21 vs 18.7 months; HR: 0.87 [0.75, 1.02]; 
P = 0.077) [22]. In patients with PD-L1 immune cell-
positive tumours (≥ 1% PD-L1 expression), median OS 
was 25.4 months with atezolizumab vs 17.9 months with 
placebo; the HR was 0.67 but statistical significance was 
not formally tested as per the prespecified testing hierar-
chy. Three-year OS rates were 36% vs 22%, respectively. 
The combination of atezolizumab plus nab-paclitaxel 
remained safe and tolerable with no new safety signals, 
and these results support a positive benefit-risk profile in 
patients with PD-L1 immune cell-positive TNBC.

In a second trial, IMpassion 131,651 patients with 
metastatic or unresectable locally advanced TNBC were 
randomized to first-line atezolizumab plus paclitaxel 
or placebo with paclitaxel. In contrast to the OS ben-
efit shown for atezolizumab plus nab-paclitaxel in the 
IMpassion130 trial, PFS was not significantly improved 
by atezolizumab plus paclitaxel vs paclitaxel with pla-
cebo in either the PD-L1-positive (6.0 vs 5.7  months; 
HR = 0.82; P = 0.20) or the intent-to-treat population (5.7 
vs 5.6 months; HR = 0.86; significance not formally tested 
due to the hierarchical statistical analysis plan) [23]. OS 
was also not improved with atezolizumab, either in the 
PD-L1–positive (HR = 1.12) or the intent-to-treat patient 
populatiosn (HR = 1.11). Potential reasons for the differ-
ence in results between IMpassion 130 and IMpassion 
131 require further exploration.

In an exploratory biomarker analysis of IMpassion 130, 
PFS and OS were evaluated based on PD-L1 expression 
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on immune cells and tumor cells, intratumoral CD8, 
stromal TILs, and BRCA1/2 mutations [24]. The major-
ity of patients with PD-L1 expression in tumor cells were 
included within the PD-L1 immune cell-positive popu-
lation. Consistent clinical benefit of atezolizumab plus 
nab-paclitaxel was seen for PD-L1 immune cell-positive 
patients using different cut-off values, provided those 
cells occupied at least 1% or more of the tumor area 
(Table  1). Intratumoral CD8 and stromal TIL positivity 
were associated with PD-L1 immune cell-positive status 
and only predicted a benefit with treatment in patients 
who were also PD-L1 immune cell-positive. PD-L1 
immune cell-positive patients benefited from treatment 
regardless of BRCA1/2 mutation status.

Pembrolizumab has also been assessed in combination 
with chemotherapy in the KEYNOTE 355 trial, in which 
847 patients with metastatic TNBC were randomized 
to pembrolizumab plus chemotherapy (nab-paclitaxel, 
paclitaxel, or gemcitabine plus carboplatin) or placebo 
plus chemotherapy [25]. The addition of pembrolizumab 
was associated with a significant improvement in PFS 
in patients with PD-L1 expression (combined positive 
score ≥ 10), suggesting a clinically meaningful role for 
pembrolizumab in combination with chemotherapy as 
first-line treatment.

Immunotherapy for human papillomavirus‑related head 
and neck cancer
In patients with HNSCC, high density of tumor-infil-
trating CD8 T cells in the TME is associated with better 
survival. Human papillomavirus (HPV)-positive HNSCC 
is more likely to exhibit an immunologically active TME 
with more PD-1-positive CD8 T cells than HPV-negative 
disease, highlighting the potential for improved activ-
ity in this population. Acute and longer-term toxicity is 
increasing in a younger group of HPV-positive HNSCC 
patients, which warrants re-evaluation of the conven-
tional chemoradiation-based therapeutic approach in 
this cohort.

In the CheckMate 141 trial, patients with platinum-
refractory, recurrent HNSCC treated with nivolumab 
had improved OS compared to patients treated with 
standard, single-agent therapy of methotrexate, doc-
etaxel, or cetuximab [10]. Long-term OS was similar in 
patients with and without PD-L1 expression, although 
responses occurred earlier in PD-L1-positive patients 
[26]. OS was also similar irrespective of HPV status, with 
an approximately 40% reduction in risk of death in HPV-
positive and HPV-negative patients. However, responses 
were more frequent and again occurred earlier in HPV-
positive patients.

In a neoadjuvant setting, treatment with two doses of 
nivolumab resulted in tumor reduction in HPV-positive 
and HPV-negative patients in the CheckMate 358 trial. 
HPV-positive patients had better RFS than HPV-nega-
tive patients, with 2-year survival of over 90%, which is 
typical for this cohort. Pre-operative immunotherapy 
could potentially reduce the extent of surgery while post-
operative adjuvant use could improve RFS and replace 
chemotherapy.

Assessment of transcriptional profiles of single cells 
from peripheral and intratumoral immune populations 
from patients with HNSCC showed that TILs from 
HPV-positive tumors had distinct features and unique 
receptor-ligand interactions, especially in T follicular 
helper cells and germinal center B cells [27]. In addition, 
a higher elastic cancer-associated fibroblast score was 
significantly associated with worse OS in HPV-positive 
patients and this is an area of further research. These 
emerging unique features of HPV-positive HNSCC may 
help explain better prognosis but are not yet predictive 
for immunotherapy.

In the placebo-controlled JAVELIN Head and Neck 
100 trial, 697 patients with histologically confirmed, 
previously untreated HNSCC of the oropharynx, 
hypopharynx, larynx, or oral cavity were randomized to 
concurrent chemoradiation with or without avelumab. In 
an interim analysis, PFS and OS were both in favor of the 

Table 1 Exploratory biomarker analysis of IMpassion 130

A total of 902 patients were enrolled and randomized equally to receive either A + nP or P + nP. 40.8% of patient enrolled in the trial were PD-L1 immune cell-positive, 
defined as PD-L1-positive immune cells occupying at least 1% of the tumor area as determined by the Ventana SP142 assay. Data from Emens JNCI 2021

HR hazard ratio, A atezolizumab, nP nab-paclitaxel, P placebo, PFS progression-free survival, mPFS median progression-free survival, OS overall survival, mOS median 
overall survival, PD-L1 programmed death ligand-1, CI confidence interval, mo months

Biomarker Number of subjects HR PFS
A + nP vs P + nP

mPFS HR OS
A + nP vs P + nP

mOS

PD-L1 immune cell 
expression ≥ 1% 
and < 5% (low)

243/902(26.9%) 0.61 (95% CI 0.46–0.80)
p < 0.005

7.4 mo 0.68 (95% CI 0.48–0.94)
p = 0.02

22.6 mo

PD-L1 immune cell 
expression ≥ 5% (high)

125/902 (13.9%) 0.71 (95% CI 0.48–1.05)
p = 0.09

9.3 mo 0.76 (95% CI 0.46–1.26)
p = 0.29

28.9 mo
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chemoradiation alone group, with the addition of ave-
lumab providing no benefit regardless of HPV status [28]. 
In an ongoing trial, concurrent chemoradiation and pem-
brolizumab is being compared with sequential chemo-
radiation followed by pembrolizumab. In another trial, 
nivolumab is being combined with de-escalated radiation 
in patients with intermediate risk p16 + oropharyngeal 
cancer.

Targeting the cGAS‑STING pathway 
within tumor‑associated macrophages to enhance immune 
responsiveness in prostate cancer
Multiple mechanisms of intrinsic resistance to immu-
notherapy in prostate cancer include paucity of immune 
cell infiltrate, which is primarily composed of myeloid 
immunosuppressive cells, a highly immunosuppressive 
cytokine milieu, low TMB, downregulation of major his-
tocompatibility complex (MHC) class I, and compensa-
tory feedback immune checkpoint expression in response 
to checkpoint inhibitor treatment.

In recent years, the DNA sensing cGAS/STING path-
way has emerged as a therapeutic strategy to treat can-
cer. Furthermore, reprogramming of myeloid suppressive 
cells, such as macrophages and myeloid-derived suppres-
sor cells, have been investigated in preclinical murine 
prostate cancer models. Given the multiple mechanisms 
of resistance to immunotherapy in prostate cancer, 
rational immuno-oncology combination strategies that 
activate both innate and adaptive immunity in prostate 
cancer, with a focus of on activation of c-GAS/STING 
signaling within the tumor microenvironment, carries 
the potential to enhance therapeutic efficacy.

Adaptive metabolic rewiring of the tumor 
microenvironment impedes efficacy of IDO blockade 
in ovarian cancer
Indoleamine 2,3-dioxygenase (IDO) is a potent mecha-
nism of immune tolerance through its involvement in 
tryptophan catabolism, which leads to T-cell anergy and 
apoptosis and has an important role in suppressing anti-
tumor immune responses in cancer. IDO results in local 
depletion of tryptophan, and accumulation of tryptophan 
catabolites, including kynurenine and its derivatives, 
depending on the presence of downstream enzymes in 
the kynurenine pathway. IDO functional activity has 
been associated with worse outcomes in patients with 
ovarian cancer, suggesting reduced IDO enzyme activ-
ity might be associated with clinical benefit. In a murine 
model, tumor-derived IDO was associated with poor OS 
and a reduction in intratumoral CD8 + T cells. These 
data suggest that IDO inhibition may potentially syner-
gize with PD-1 inhibition. The first-in-human study with 
the IDO1 inhibitor epacadostat did not result in objective 

responses in patients with advanced solid tumours; how-
ever, when combined with nivolumab or pembrolizumab, 
approximately 60–65% of patients had an objective 
response. In a subsequent phase III trial, no significant 
survival advantage was observed with the addition of 
epacadostat to pembrolizumab in patients with advanced 
melanoma [29]. One potential reason for this lack of effi-
cacy may be adaptive metabolic rewiring.

To assess whether IDO1 inhibition might decrease 
immune suppression and increase CD8 + TILs, a pilot 
study in which patients with epithelial ovarian, fallopian 
tube or primary peritoneal carcinoma received neo-
adjuvant epacadostat was conducted. Treatment with 
epacadostat resulted in a decrease in kynurenine and 
the kynurenine:tryptophan ratio in both plasma and the 
TME, indicating treatment was effective in reducing 
tryptophan catabolism. Metabolic adaptation beyond 
blockade of kynurenine was observed, with increases in 
metabolites in several pathways, including nicotinamide, 
serotonin, purine, and others. This indicates a meta-
bolic switch in the TME with the emergence of alterna-
tive pathways for tryptophan catabolism following IDO 
blockade. Epacadostat also drove changes in the tran-
scriptional signature indicating enrichment of trypto-
phan catabolism alternative pathways.

Together, alteration of the kynurenine:tryptophan ratio 
in the TME by epacadostat induces a unique gene and 
metabolic signature, that may explain the lack of addi-
tional benefit of IDO inhibition with immune checkpoint 
blockade in phase III trials. These data provide a ration-
ale to explore concomitant inhibition of local suppressive 
metabolites and IDO1, in order to overcome the detri-
mental metabolic switch in the TME.

Immunotherapy in GI Cancer
Colorectal cancer is a highly heterogenous disease and 
an active immune response is limited to subgroups of 
patients. Currently, the only effective immunotherapies 
are obtained in molecularly selected MSI-high (MSI-
H) or mismatch repair-deficient (dMMR) tumours. The 
question is whether it is possible to activate immune 
competence in microsatellite-stable (MSS) tumours.

Clinical studies have shown that mismatch-repair defi-
ciency predicted clinical benefit of immune checkpoint 
blockade with pembrolizumab in treatment-refractory 
patients with colorectal cancer and across several other 
tumor types [30, 31]. First-line treatment with nivolumab 
in combination with low-dose ipilimumab also resulted 
in durable responses and disease control in patients 
with MSI-H/dMMR metastatic colorectal cancer in the 
phase II CheckMate 142 trial [32]. In an updated analy-
sis of this study with a median follow-up of 13.8 months, 
the combination resulted in an ORR of 64%, a complete 
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response rate of 9%, and a DCR of 84%, indicating signifi-
cant antitumor activity [33]. Treatment- was well toler-
ated with treatment-related grade 3–4 toxicities reported 
in 20% of patients and only two patients (4%) discontinu-
ing therapy because of a treatment-related adverse event. 
Pembrolizumab also showed improved efficacy as first-
line treatment vs chemotherapy in a phase III trial of 307 
patients with metastatic MSI-H/dMMR colorectal cancer 
[34]. Patients receiving pembrolizumab had a median 
PFS of 16.5  months vs 8.2  months with chemotherapy 
(HR = 0.60; p = 0.0002). Pembrolizumab was also asso-
ciated with fewer grade ≥ 3 treatment-related adverse 
events, which occurred in 22% of patients compared to 
66% of the chemotherapy group.

In the phase III IMblaze 370 trial, 363 patients with 
unresectable locally advanced or metastatic colorec-
tal cancer and disease progression or intolerance to at 
least two previous systemic chemotherapy regimens 
were treated with atezolizumab plus cobimetinib, ate-
zolizumab monotherapy or the multi-kinase inhibitor 
regorafenib [35]. Patients with MSI-H tumors were lim-
ited to approximately 5% of the cohort. The trial failed to 
reach its primary endpoint of improved OS with atezoli-
zumab plus cobimetinib or atezolizumab vs regorafenib 
(median OS of 8.8 months with atezolizumab plus cobi-
metinib, 7.1 months with atezolizumab, and 8.5 months 
with regorafenib). Lack of clinical activity may be due to 
the immune-excluded phenotype of metastatic colorectal 
cancer, and simultaneous PD-1 blockade and mitogen-
activated protein kinase (MAPK)-mediated immune sup-
pression may not be sufficient to generate antitumour 
immune responses in immune-excluded tumours. Effi-
cacy in MSI-high disease could not be estimated due to 
low patient numbers.

Another trial has assessed a rechallenge strategy with 
avelumab plus the epidermal growth factor receptor 
inhibitor cetuximab. Given that cetuximab enhances 
antibody-dependent cellular cytotoxicity (ADCC) and 
promotes expression of MHC class II molecules on DCs, 
combining with avelumab may be a relevant rechal-
lenge strategy in RAS wild-type metastatic colorectal 
cancer. Preliminary analysis of the single-arm phase II 
CAVE mCRC study suggested avelumab plus cetuximab 
as a rechallenge strategy is effective and well tolerated 
in patients with chemorefractory RAS/BRAF wild-type 
metastatic colorectal cancer [36].

Merkel cell carcinoma
Merkel cell carcinoma (MCC) is a rare aggressive skin 
cancer linked to ultraviolet light exposure and the Mer-
kel-cell polyomavirus (MCPyV) that is associated with 
poor survival. Although chemosensitive, responses are 
rarely durable.

In a preliminary phase II trial, first-line therapy with 
pembrolizumab in 26 patients with advanced MCC 
resulted in an ORR of 56% [37]. This study was subse-
quently expanded to 50 patients; ORR was also 56% and 
median DOR was not reached after a median follow-
up of 15 months [38]. Two-year PFS and OS rates were 
48.3% and 68.7%, respectively, and OS was favorable 
compared with historical chemotherapy controls. Nei-
ther PFS nor OS correlated with MCPyV status. Durable 
responses were also observed with nivolumab in a phase 
II trial of 25 treatment-naïve or treatment-experienced 
patients [39].

The anti-PD-L1 avelumab was associated with durable 
responses and was well tolerated in the phase II JAVE-
LIN Merkel 200 trial of patients with chemotherapy-
refractory, advanced MCC [40]. After a median follow-up 
of 40.8  months, ORR was 33.0 and median DOR was 
40.5  months [41]. Median OS was 12.6  months and the 
42-month OS rate was 31%. There was a trend towards 
higher ORR in patients with a higher TMB and, among 
high TMB patients, the highest response rates were in 
patients who were PD-L1-positive or MCPyV-nega-
tive. High MHC class I expression was also associated 
with trends for improved ORR and OS. Avelumab also 
resulted in good response rates when used as first-line 
therapy in patients with metastatic MCC [42]. Data from 
these trials suggest PD-1/PD-L1 inhibition may represent 
a new standard of care in advanced MCC. The avelumab 
expanded access program for patients with metastatic 
MCC demonstrated efficacy and safety in a real-world 
setting, with an ORR of 47% in 240 evaluable patients and 
no new safety signals [43].

Trials in the neoadjuvant and adjuvant setting in 
patients with MCC are ongoing. In the first neoadjuvant 
trial of checkpoint inhibitors in MCC, nivolumab admin-
istered approximately 4 weeks before surgery was gener-
ally well tolerated and induced pCRs and radiographic 
tumor regressions in 17 of 36 treated patients [44]. 
Responses were observed regardless of tumor MCPyV, 
PD-L1, or TMB status.

Another possible development is combination therapy. 
Durable remission after rechallenge with ipilimumab and 
nivolumab has been reported in metastatic MCC refrac-
tory to avelumab [45, 46]. The class I histone deacetylase 
(HDAC) inhibitor domatinostat exerts direct antitumoral 
effects and restores human leukocyte antigen (HLA) 
class I surface expression on MCC cells [47], which 
may increase reverse resistance to immunotherapy. The 
MERKLIN2 trial of domatinostat in combination with 
avelumab in patients with advanced MCC who have pro-
gressed on anti-PD-(L)1 is currently recruiting. Finally, 
the combination of avelumab with low to moderate-dose 
chemotherapy and an immune enhancer such as IL-15 
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superagonist N-803 resulted in a complete response in an 
MCC patient in whom avelumab monotherapy was inef-
fective [48].

Drivers in immune responses
Mechanisms of immunotherapy response and resistance
The efficacy of immunomodulatory agents depends on 
the presence of a baseline adaptive immune response 
and pre-existing immunity being utilized via inhibition of 
checkpoint receptors on T cells. Tumors may be catego-
rized as hot, altered (immune-excluded or immuno-sup-
pressed) or cold, based on their immune contexture [49]. 
Hot immune tumours have high Immunoscore, check-
point activation or otherwise impaired T cell functions. 
Altered-immunosuppressed immune tumours have an 
intermediate Immunoscore, and the presence of soluble 
inhibitory mediators, immune suppressive cells (MDSCs 
and regulatory T cells), and T cell checkpoints. Altered-
excluded immune tumours have no T cell infiltration 
inside the tumour bed, intermediate Immunoscore, acti-
vation of oncogenic pathways, epigenetic regulation and 
reprogramming of the TME, aberrant tumour vascula-
ture and/or stroma, and hypoxia. Cold immune tumours 
have low Immunoscore and failed T cell priming [50].

A key question is whether adoptive cellular therapy can 
overcome failed spontaneous T cell priming and convert 
cold into hot tumours [51, 52]. The ZUMA-1 trial dem-
onstrated a high rate of durable response and a managea-
ble safety profile with axicabtagene ciloleucel (axi-cel), an 
anti-CD19 chimeric antigen receptor (CAR) T-cell ther-
apy, in patients with refractory large B-cell lymphoma 
[53]. Univariate and multivariate analyses indicated that 
rapid CAR T-cell expansion commensurate with pre-
treatment tumor burden (influenced by product T-cell 
fitness), the number of CD8 and CCR7 + CD45RA + T 
cells infused, and host systemic inflammation, were the 
most significant determining factors for durable response 
[54]. Tumor immune microenvironment-mediated sup-
pression may also have been an important factor in deter-
mining response and pre-existing T cell-involved features 
of the TME (high Immunoscore, High Immunosign) may 
be associated with a response to CAR-T cell therapy. In 
analysis of TME factors, CAR T cell therapy responders 
had elevated pretreatment TME Immunosign21 scores 
compared to non-responders [55]. Higher pretreatment 
Immunoscore and pretreatment intra-tumor densities 
of CD3 + and CD8 + T cells were all positively associ-
ated with a complete response [56]. TME gene expres-
sion analysis suggested a pan-inflammatory profile, 
including myeloid- and DC-related gene expression, in 
patients who achieved a complete response with higher 
 Immunosign® 21 and Immunoscore. These data indicate 
that a stronger immune contexture predicts an increased 

likelihood of response, supporting the idea that CAR-T 
cell therapy alone may not be sufficient to treat patients 
with cold tumours, other than in a subset of patients with 
low disease burden. These findings support the need for 
the development of anti-CD19 CAR T cell treatment 
optimizations designed to overcome an immune-detri-
mental TME.

Breast cancer, radiation and immunotherapy
Radiation results in immunogenic cell death and facili-
tates tumor neoantigen presentation and cross-priming 
of tumor-specific T cells, turning the irradiated tumor 
into an in situ vaccine. However, established tumors have 
in place multiple immune escape mechanisms that gener-
ally offset the capacity of radiotherapy alone to result in 
a systemic response of metastatic disease sites (abscopal 
effect). Moreover, radiation also elicits immune suppres-
sive signals, like activation of transforming growth fac-
tor (TGF) β. Various strategies have been used to try and 
shift the balance from immunosuppressive to pro-immu-
nogenic signals of radiation, either by offsetting negative 
effects (e.g., by blockade of cytotoxic T-lymphocyte-
associated antigen [CTLA]-4, transforming growth fac-
tor [TGF]-β, CD73, PDL-1, or VISTA) or be enhancing 
positive effects (e.g., by using TLR agonists, DC growth 
factors, IFN inducers, IL-15, etc.).

An alternative approach is to attempt to optimize the 
immunogenicity of radiation when combined with chem-
otherapy or endocrine therapy. There is data to suggest 
that the aromatase inhibitor letrozole may have an indi-
rect antitumor mechanism of action through reducing 
regulatory T lymphocytes (Tregs) in breast tumors [57] 
and that cyclin-dependent kinase 4/6 (CDK4/6) inhibi-
tors have multiple immunological effects in estrogen 
receptor (ER) + breast cancer [58]. Thus, the beneficial 
effects on survival in breast cancer reported with aro-
matase inhibitors and the CDK4/6 inhibitors palboci-
clib and ribociclib is likely to also be mediated by their 
respective immune effects. We hypothesized that these 
immune-modulating effects could be enhanced by radia-
tion and investigated preclinically whether survival could 
be improved by combining radiation therapy with aro-
matase inhibitors and CDK4/6 inhibitors.

In a novel syngeneic preclinical model of ER + mam-
mary carcinoma [59] efficacy of radiotherapy combined 
with CDK4/6 inhibitor palbociclib and tamoxifen were 
investigated in various doses and therapeutic schedules 
[60]. In vitro, radiotherapy and palbociclib administered 
as standalone agents had partial cytostatic effects, cor-
relating with suboptimal tumor control in  vivo. How-
ever, while palbociclib + tamoxifen delivered before focal 
radiation provided minimal benefit compared with each 
treatment alone, delivering palbociclib + tamoxifen after 
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focal radiotherapy mediated superior therapeutic effects, 
with mice receiving radiotherapy followed by palboci-
clib + tamoxifen having the best survival outcomes. Pre-
liminary single cell analysis experiments demonstrate 
different immunological profiles in the different sequenc-
ing groups and suggest that radiation followed by palbo-
ciclib + tamoxifen reduces immunosuppressive barriers. 
This data was translated to a prospective randomized 
trial in metastatic ER + breast cancer patients, comparing 
etrozole + palbociclib to the same regimen preceded by 
stereotactic body radiation therapy to up to five metasta-
ses (NCT04563507).

Immunotherapy of lymphomas
Antibodies targeting CD20 have likely reached a plateau 
in efficacy, with newer generation anti-CD20 antibodies 
having generally similar efficacy to rituximab. In patients 
with relapsed follicular non-Hodgkin lymphoma (NHL), 
obinutuzumab, which is engineered for enhanced ADCC 
and pro-apoptotic activity, did not improve PFS vs rituxi-
mab [61]. CD19 antigen represents another target and 
tafasitamab, a humanized anti-CD19, demonstrated 
clinical activity as a monotherapy in relapsed or refrac-
tory B cell NHL and in combination with lenalidomide 
in patients with relapsed or refractory diffuse large B cell 
lymphoma (DLBCL) [62, 63].

Checkpoint inhibitors in NHL are typically associated 
with low response rates, with PD-1 blockade only appear-
ing to be useful in rare NHL subtypes, including primary 
mediastinal B cell lymphoma, NK/T cell lymphoma, or 
Richter transformation of chronic lymphocytic leuke-
mia. The highest response rates to PD-1 blockade are 
in refractory Hodgkin lymphoma. Among patients with 
recurrent classical Hodgkin lymphoma who failed to 
respond to autologous stem-cell transplantation and had 
either relapsed after or failed to respond to brentuximab 
vedotin, nivolumab resulted in a 66% ORR [64]. Simi-
larly, pembrolizumab resulted in a high response rate in 
patients with relapsed or refractory classical Hodgkin 
lymphoma [65]. However, most lymphoma patients ulti-
mately have disease progression after PD-1 blockade. 
The combination of dual PD-1 and CTLA-4 blockade 
(nivolumab plus ipilimumab) in patients with relapsed 
or refractory lymphoid malignancies had no meaningful 
improvement in efficacy vs single-agent nivolumab [66].

Three anti-CD19 CAR T cell therapies are now 
approved for use in NHL, the 41BB-containing tisagenle-
cleucel and the CD-28 based axicabtagene ciloleucel and 
lisocabtagene ciloleucel. These therapies have achieved 
high response rates in DLBCL, ranging from 52% with 
tisagenlecleucel to 82% with axicabtagene ciloleucel, and 
these responses can be durable [53, 67, 68]. However, 
CD28 CAR T cells appear more toxic than 41BB CAR 

T cells, but both carry risk of neurotoxicity and more 
studies are needed to address this question. Side effects 
of CAR T cell therapy can be severe, life-threatening, 
and limits who is eligible to receive this therapy, with 
up to one-third of patients requiring intensive care unit 
admission. Mechanisms of anti-CD19 CAR T resistance 
include loss of CD19 and antigen escape (CD19 alterna-
tive splicing, CD19 mutation) and impaired T-cell fitness 
(e.g., due to the apheresis and/or CAR T product, host 
environment or TME). Various strategies to improve the 
efficacy of CAR T therapy in B-cell malignancies through 
targeting multiple antigens (e.g., CD19-CD22 or CD19-
CD20 CAR T) and improving T-cell fitness are under 
investigation. In a recent trial, CD19 CAR T therapy was 
also shown to be active in mantle-cell lymphoma, with 
treatment resulting in durable remissions in a majority of 
patients with relapsed or refractory disease [69].

Another approach involves bispecific antibod-
ies targeting CD20.These are antibody-based mol-
ecules engineered to bind two different epitopes, one 
targeting tumor cells and the other one effector cells, 
usually T-lymphocytes. Examples of these include bli-
natumomab, mosunetuzemab, and REGN1979. These 
off-the-shelf agents may be useful for patients who are 
unable to tolerate, wait for, or afford CAR T cell therapy.

Revolt of the T cell system against anti‑PD‑1 
immunotherapy
Patients who respond to PD-1 checkpoint blockade are 
generally those with either high immune T cell infiltra-
tion or those with high TMB, both of whom have primed 
or activated CD8 T cells. This raises the question of 
whether resistance can be reversed with proper priming 
of T cells. In anti-PD-1-resistant models, simultaneous 
anti-PD-1 and cancer vaccine therapy reversed resist-
ance with reduced tumor volume and improved sur-
vival. However, PD-1 blockade prior to antigen priming 
with cancer vaccine results in impaired antigen-specific 
CD8 + T cells tumor-infiltration and abrogates the anti-
tumor immune effect [70]. PD-1 blockade prior to anti-
gen priming results in apoptosis of CD8 + T-cells and 
prevents CD8 + T-cell activation.

Blockade of PD-1 leads to a significant decrease in 
phosphorylation of SHP2 and release of downstream 
signaling. Blockade of PD-1 before peptide stimula-
tion led to a significant decrease in phosphorylation 
of SHP2 while enhancing phosphorylation of Lck and 
tyrosine-protein kinase ZAP-70 (Zap70). Despite further 
decreases in phophosphorylated-SHP2, Lck and Zap70 
phosphorylation was significantly reduced with the sub-
sequent addition of anti-PD-1. Moreover, the kinase 
activity of Zap70 was significantly reduced when cells 
were treated with anti-PD-1 before peptide stimulation. 
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Thus, simultaneous treatment with anti-PD-1 and anti-
gen priming induces T cells that maintain their func-
tional status. However, PD-1 blockade before priming 
drives T cells into a non-responsive state. LAT and Akt 
do not get phosphorylated, leading to dysfunctional CD8 
T cell production.

These dysfunctional CD8 T cells express both PD-1 and 
CD38. PD-1 +  CD38hi CD8 + T cells fail to respond to 
antigenic stimulation and do not elicit effector functions. 
PD-1 blockade before antigenic priming led to a signifi-
cant increase in the number of PD-1 +  CD38hi total and 
antigen-specific CD8 + T cells. However, simultaneous 
PD-1 blockade and cancer vaccine resulted in a signifi-
cant decrease in the number of PD-1 +  CD38hi CD8 + T 
cells. PD-1 +  CD38hi cells induced as a result of PD-1 
blockade pretreatment were dysfunctional since they 
failed to upregulate CD40L and did not produce IFN-γ 
after antigenic restimulation. PD-1 blockade on sub-
optimally primed CD8 + T cells induced dysfunctional 
PD-1 + CD38 CD8 + T cells both in  vivo and in  vitro. 
Opposing cytokines were upregulated in PD-1 +  CD38hi 
CD8 cells, with both inflammatory and inhibitory 
cytokines being released. Consensus hierarchical analysis 
also showed a distinct clustering of genes related to both 
cell exhaustion and effector functions.

In baseline or post-treatment tumor biopsies and 
peripheral blood mononuclear cells (PBMCs) from met-
astatic melanoma patients, numbers of PD-1 +  CD38hi 
CD8 + T cells correlated with the anti-PD-1 therapeutic 
response, High numbers of dysfunctional CD8 + T-cells 
in the tumors and PBMCs served as a predictor of fail-
ure of anti-PD-1 therapy. Anti-CD38 antibody treatment 
may prevent induction of dysfunctional PD1 +  CD38hi 
CD8 + T-cells in the TME and may reverse anti-PD-1 
resistance.

Transcriptional imprints of inherited T‑cell regulome 
modulating immunotherapy outcomes
Several biomarkers have been suggested for predict-
ing response to immune checkpoint inhibitor therapy. 
However, the predictive capacity of current biomarkers 
is limited, with significant heterogeneity of outcomes at 
the level of the individual patient, and there is a need for 
more personalized biomarkers.

Germline genetics effects host immunity, with genetic 
factors explaining the large variance in the abundance 
and activation state of multiple immune cell types, 
including CD4 + and CD8 + T cells, immunomodula-
tory molecules, and immune-related genes. In fact, > 70% 
of T-cell specific variation may be explained by cis-
acting inherited genetic variation [71]. As such, ger-
mline genetic factors impact on the efficacy and toxicity 
of checkpoint inhibitor therapy and offer potential as 

personalized biomarkers. Genetic risk loci for auto-
immune and inflammatory diseases have been identi-
fied in genome-wide association studies. These have also 
revealed that specific immune-cell phenotypes, such as T 
helper cells, CD4 + and CD8 + T cells, have a consistent 
enrichment for autoimmunity risk variants [72].

Despite considerable effort, evidence supporting the 
biological relevance of associated germline variants 
remains elusive, as they map almost exclusively in non-
coding regions. Findings from genome-wide association 
studies estimate that 88% of disease/trait-associated ger-
mline variants are non-coding. Genetic variants iden-
tified to date for associations with melanoma risk or 
prognosis almost entirely map to non-coding regions 
with unknown biological impact. As such, the non-
coding regulome may be important in cytotoxic CD4 
and CD8 T cell status and immune checkpoint inhibitor 
response.

Assessment of immunoregulatory pathways using 
genome-wide maps of expression quantitative trait loci 
(eQTL) revealed lymphocyte-specific eQTLs that were 
associated with better OS in patients with cutaneous 
melanoma [73].

A non-coding genetic variation that is associated with 
melanoma survival is enriched in open chromatin and 
transcriptome in CD8 + T cells in patients treated with 
anti-PD-1 antibodies. Our data indicate the CD8 + spe-
cific signatures of 36 genes controlled by seven tran-
scription factors, significantly enriched by autoimmune 
genetic susceptibility. By developing a novel platform 
that integrates transcriptomics, open chromatin assess-
ment and whole genome sequencing data, the genetic 
underpinning of transcriptional regulatory networks 
of CD8 + T cells associated with immune checkpoint 
inhibitor response, efficacy and toxicity was identified. 
Extensive analysis based on well-curated specimens and 
clinical trial data is ongoing.

T cell differentiation states in the irradiated tumor 
microenvironment that drive responses to CTLA‑4 
blockade
Pre-clinical and clinical evidence supports the ability of 
focal tumor radiotherapy to enhance responses to immu-
notherapy. In murine tumor models, a key mechansism 
underlying the ability of radiation to induce local and 
systemic responses to anti-CTLA-4 in tumors resistant 
to anti-CTLA4 alone is the induction of IFN type I [74]. 
This effect is achieved through accumulation of cytosolic 
DNA that activates the cGAS/STING pathway and leads 
to the intratumoral accumulation of Batf3-dependent 
DCs and the priming of CD8 + T cells [75]. In patients 
with chemo-refractory metastatic NSCLC, the combina-
tion of radiation therapy and CTLA-4 blockade induced 
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systemic antitumor T cells when anti-CTLA-4 antibodies 
had failed to show efficacy alone or in combination with 
chemotherapy [76]. Increased serum IFN-β after radia-
tion and early dynamic changes of blood T cell clones 
were the strongest predictors of response. Functional 
analysis in one patient with a complete response showed 
the rapid in vivo expansion of CD8 + T cells that recog-
nized a neoantigen upregulated by radiation.

We are currently investigating the characteristics of an 
effective anti-tumor T cell response generated by radia-
tion and anti-CTLA4 in mice. We have previously shown 
that treatment with radiotherapy and anti-CTLA-4 in 
combination increased TIL density and CD8/CD4 ratio 
[77]. Radiation increased the clonality and divergence of 
T cell receptor (TCR) repertoire when used in combina-
tion with anti-CTLA-4, suggesting a diverse TCR rep-
ertoire is required to achieve tumor rejection and may 
underlie the synergy between radiotherapy and CTLA-4 
blockade.

Our recent data from single cell analysis indicate that 
together, radiotherapy and CTLA-4 blockade cause a 
shift in the functional state of tumor-specific CD8 + T 
cells from cytotoxic to cytokine producers (Rudqvist 
et al., submitted), and suggest that the combined activity 
of a range of differentiation states within the T cell com-
partment is required for tumor control.

Conclusions
Immunotherapy is now a critical element in the treat-
ment of an increasing number of tumor types, and in 
many situations has become a new standard of care. 
Many patients who previously had limited treatment 
options are now benefiting from advances in our under-
standing of the TME and immune response with immu-
notherapies that offer durable responses and improved 
survival.

However, immunotherapy remains ineffective or sub-
optimal in many cases and there is a need to further 
expand the range of patients who achieve a durable 
benefit. Various strategies to achieve this goal are being 
explored, including the development of new treatments 
and the combination of these and existing treatments in 
novel combination approaches. The efficacy of immuno-
therapy is largely dependent on the existence of a base-
line adaptive immune response and efforts are focused 
on shifting the balance from an immunosuppressive 
TME to an immuno-activated contexture. The develop-
ment of effective biomarkers to guide immunotherapy 
and better integration of the identification of these into 
current work processes is another focus of research and 
should help ensure that patients are treated with the 
most appropriate option.

Immunotherapy has revolutionized the treatment of 
many cancers and provided a long-term survival benefit 
for many patients. Insights from ongoing research and 
further collaborative efforts, such as those summarized at 
this Immunotherapy Bridge, should help to continue this 
progress.
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