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Abstract In various scientific communities dealing

with formal analysis, software competitions have

emerged and contributed to fostering progress in state

of the art and providing insight into the evolution of

the involved technologies. The Model Checking Con-

test (MCC) is one of them; it focuses on asynchronous

concurrent systems.

This paper reports what the organizers have ob-

served over five editions of the MCC between 2015 and

2019. It shows the evolution of state-of-the-art model

checking tools in performing large and difficult verifica-

tion tasks by improving existing techniques or designing

new and innovative (combinations of) techniques. This

paper also shows the impact of such an event on the

corresponding scientific community.
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1 Introduction

Concurrent asynchronous systems, in which several pro-

cesses run simultaneously, are now widely spread. They

range from smartphone applications to connected (soon

autonomous) vehicles and affect our daily life. However,

model checking the safety and security of such complex

and interacting asynchronous systems remains a chal-

lenge. The scientific community is currently tackling

this issue, both from theoretical and practical points

of view – by developing and testing tools. Thus, from

the theoretical and practical perspectives, community-

driven contests allow the assessment of tools’ readiness

by evaluating them against substantial and acknowl-

edged benchmarks.

The overall goal is to identify the theoretical ap-

proaches that are the most fruitful in practice when ap-

plied to various examples and to figure out approaches

that best handle specific types of systems. Community-

driven contests also favor the emergence of systematic,

rigorous, and reproducible ways to assess the capabili-

ties of verification tools on complex (realistic and syn-

thesized) benchmarks.

Since 2011, the Model Checking Contest [51] (MCC)

is such an event. It focuses on the model checking of

asynchronous and concurrent systems. To model such

systems, we use Petri Nets [36], and their standardized

ISO/IEC 15909-2 XML-based representation [44] as the

input format.

Other communities in the area of formal verifica-

tion self-organized to establish similar events. For ex-

ample, the Hardware Model Checking competition [16]



2 F. Kordon et al.

focuses on synchronous systems, while the MCC essen-

tially considers asynchronous ones. The Rigorous Ex-

amination of Reactive Systems (RERS) [46] competi-

tion evaluates researchers’ ability to harness the syn-

ergy of different tools and methodologies to tackle ver-

ification problems. RERS does not address tool per-

formance as the MCC does. However, RERS also ad-

dresses asynchronous systems as well as the MCC. Ver-

ifyThis [30] focuses on verification problems encoded

by experts in formal or programming languages of their

choice, then checked with the help of a verification tool,

generally over one day.

Similar to competitions like SAT [8,2], SMT [9],

QBF [62] or CASC [69], the MCC emphasizes auto-

matic tools. It aims at evaluating how tools’ strategies

can automatically cope with complex verification prob-

lems. These competitions have a rather similar process:

researchers submit their tools that the competition or-

ganizers evaluate against a common benchmark on a

set of powerful computers.

All these contests are themselves becoming studied

objects. As an example, in February 2019, a Lorentz

Workshop [55] was dedicated to this topic. Then, in

April 2019, 16 verification competitions gathered at

TOOLympics [13], a side event of the 25th TACAS con-

ference; this conference mainly focusses on verification

tools and theories.

This paper reports the MCC organizers’ empirical ob-

servations of the MCC’s five editions from 2015 to 2019.

Our objective is to analyze the data collected over these

five years to perceive which techniques turn out to

be better than others or, more interestingly, if some

new techniques (or combination of techniques) have

emerged.

The 2015 edition is the first studied edition because,

in that year, we developed a standard way to represent,

as a table (stored in a CSV file), the results of all the

executions of the participating tools. These five editions

gather about half a million tool executions on various

specifications of hardware or software systems, commu-

nication protocols, biological processes, and many other

systems.

According to acknowledged practices of empirical

studies, our approach is similar to an exploratory case

study [66]. This paper covers the main steps related

to i) setting up objectives and research questions, ii)

selecting the cases, iii) preparing the data, iv) collecting

the data, v) analyzing the data, and vi) reporting our

observations.

We are aware that, most often, competing tools have

been tuned for the contest. Moreover, we also continu-

ously tune the benchmark and verification tasks. There-

fore, this paper does not make definitive claims. It in-

stead reports observed trends and seeks new insights

into the evolution of model checking techniques and

tools. Thus, from the perspective of highlighting the

progress of state-of-the-art techniques in model check-

ing, we believe that our analysis reports valuable in-

sights.

This paper is structured as follows. Section 2 defines

the Model Checking Contest’s main concepts. Section 3

presents the techniques tools have reported and that are

discussed in later sections. Then, Section 4 shows how

the reported techniques have evolved over the years,

also focusing on the most efficient tools (i.e., those on

the podiums) compared to all participating tools. Sec-

tion 5 presents some key measures about the evolution

of reported techniques over the years by considering the

verification tasks’ hardness. Section 6 evaluates the ob-

served benefits when exploiting structural information

(mainly hierarchy) about the processed specifications.

Section 7 outlines the impact of the MCC on the de-

sign of tools and their techniques and on generating

hard verification formulas, while Section 8 briefly out-

lines the impact of the MCC on its targeted community.

Finally, Section 9 ends this paper with concluding re-

marks.

2 Concepts used in the MCC

The MCC is an annual competition of software tools

for model checking concurrent systems. Tools process a

benchmark of increasing size – with new models gath-

ered from the whole community added each year – and

deal with various examinations, i.e., different sets of

problems that they are requested to solve on a given

specification.

This section briefly provides general background

about how this event operates. We describe the exam-

inations and the benchmarks, composed of models and

formulas. More details are provided in [50,51].

2.1 Examinations, runs, and values

An examination is a set of one or several verification

tasks required from competing tools. A verification task

is a query requiring a single answer such as, for example,

“what is the maximum number of tokens in a place?”,

or “does the model have a deadlock?”, or a single CTL

formula. A query may thus be a generic question, or a

formula.

Tools carry out examinations through runs where

they compute and return values. A run is a single exe-

cution of a tool on a model for a given examination. A
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value is the result of a query which is a generic question

or a formula.

In 2019, the MCC was proposing six examinations:

– State space generation, in which tools must gener-

ate the state space of the system and provide four

numeric values: the number of states, the number

of transitions, the maximum number of tokens per

marking, and the maximum number of tokens in a

place;

– Deadlock detection1, where tools are requested to

provide a Boolean value stating if the system has a

deadlock or not;

– Upper bounds computation2, where tools are re-

quested to provide 16 numeric values, each one stat-

ing the maximum number of tokens in a place or a

set of places determined by a formula;

– Reachability, in which tools have to provide 16

Boolean values, each corresponding to a reachability

formula or invariant;

– CTL, in which tools have to provide 16 Boolean val-

ues, each corresponding to a computation tree logic

formula;

– LTL, in which tools have to provide 16 Boolean val-

ues, each corresponding to a linear-time temporal

logic formula.

In 2019, a total of 91 619 runs (6 126 runs per tool)

were performed on 5 clusters or multi-core machines to

compute all the results, accumulating about 4 years, 11

months, and 17 days of CPU.

2.2 Benchmark

All the tools participating in a given edition of the MCC

are evaluated on the same benchmark suite, which

the community incrementally updates every year. The

benchmark suite consists of models and formulas.

The models. Each model corresponds to a particular

academic or industrial problem. Models come from var-

ious authors using different modeling strategies, and

1 From 2015 to 2018, Deadlock detection was part of the
reachability examination. It moved into a dedicated category
that requested only deadlock detection in 2019, but groups
several generic properties in 2020. To be consistent with the
2019 presentation scheme, we only refer in this paper to
“deadlock”, while detailed results in [51] are provided dif-
ferently or as a part of other examinations.
2 In 2015, Upper bounds computation was part of the reach-

ability examination, but became a distinct one in 2016. To be
consistent with the 2019 presentation scheme, we only refer
in this paper to “Upper bounds”, while detailed results in [51]
are provided as a part of another examination in 2015.

dealing with very different problems such as distributed

algorithms, hardware protocols, mutual exclusion algo-

rithms, biological processes, and many other types of

systems. We receive between 4 and 15 new models each

year, which gives an average of 10 models per year over

the period from 2015 to 2019.

The models may be parameterized by one or more

scaling parameters representing quantities, such as the

number of agents in a concurrent system, the number

of messages exchanged, etc. The parameterized mod-

els yield as many instances (so far, between 2 and 25)

as there are different combinations of parameter val-

ues. The non-parameterized models have only a single

associated instance.

For the 2019 edition of the MCC, 93 models were

generating 1018 instances. There were 193 colored Petri

nets containing high-level information (types in tokens),

and 825 Place/Transition (P/T) nets. There is actually

one run per instance of a model for a given examination.

Each model author reports a set of fifteen structural

(e.g., simple free choice, nested units) and four behav-

ioral properties (e.g., safe, reversible) in the model sub-

mission form. These properties take their value from

the set {true, false, unknown}. We double-check these

properties for each model instance using caesar.bdd3,

with a time-out of a few minutes. In case of disagree-

ment with the model author over the value of a prop-

erty, or uncertainty on both sides, the property is set

to unknown. We then extract these properties and their

value in an XML file that competing tools may (care-

fully) reuse to their advantage.

Each year, the models from the previous years be-

come the “known” ones, along with the “new” models

introduced by the community for the current year. The

new models award a higher score per instances pro-

cessed than known models.

The formulas. While state space generation and dead-

lock detection are generic questions, we need to produce

formulas for the other examinations. So, every year, we

propose newly generated formulas for every model in

the benchmark. We produce “fresh” formulas for known

models every year, thus leading to different results. In

2019, we produced 65 344 formulas in total for upper

bounds, reachability, CTL, and LTL.

We try to produce the most “intelligent” possible

formulas using random generators and a filtering sys-

tem that selects complex ones. Section 7.3 discusses

the main aspects of this challenge. A more precise de-

scription of the formula generation process is provided

in [50].

3 https://cadp.inria.fr/man/caesar.bdd.html
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Type Tools with this type of execution
Sequential Cunf, enPAC, GreatSPN-Meddly, LoLA

(2015-2016), MARCIE, MCC4MCC,
PeCAN, pnmc, PNXDD, smart, Spot,
TINA, ydd-pt

Parallel LTSMin
Portfolio ITS-Tools, LoLA (2017-2019), MCC4MCC,

StrataGEM, TAPAAL

Table 1: Classification of tools according to their type

of execution.

3 Reported techniques

This section lists the techniques that the participating

tools report after carrying out each examination during

the MCC. To enhance clarity, we classify the techniques

into four categories, described in the remainder of this

section:

– Type of execution,

– Support of high-level information,

– Type of model checking,

– Additional techniques.

3.1 Type of execution

This category distinguishes three types of model check-

ers: (1) sequential ones using only one core, (2) con-

current ones that implement parallel algorithms, and

(3) portfolio ones that may operate several techniques

simultaneously and in parallel.

Table 1 reports the type of execution for participat-

ing tools in the five editions of the MCC from 2015 to

2019. Note that LoLA has changed its execution model

in 2017 (from sequential to portfolio). We note there are

few concurrent algorithms face to portfolio ones, mostly

relying on diversification.

3.2 Support of high-level information

This category distinguishes the way tools support the

high-level information provided in some models. In the

MCC, there are two types of high-level information:

– data management thanks to typed tokens in colored

Petri nets (the semantics of Symmetric nets [22,43]

has been chosen for the contest);

– structural information on models thanks to Nested-

Unit Petri Nets [34], (NUPN) that encode hierar-

chically nested units.

Data management with colored Petri nets (“Unf. to.

P/T”). So far, only StrataGEM and ITS-Tools na-

tively support typed tokens of colored nets. Some other

tools capture this information thanks to a transforma-

tion into an equivalent P/T net, also called “unfolding”

in the literature [39]. This unfolding is a preprocessing

operation that generates an equivalent P/T net, po-

tentially much larger than the original one, and that is

semantically equivalent to the original colored one. The

model checking tool then uses the equivalent P/T net

instead of the colored one.

Nested-Unit Petri Nets (“NUPN”). This structural

information (see Section 6.1) was introduced in some

models in 2015: not all models contain NUPN infor-

mation but numerous ones coming from high-level and

structured specifications carry traces of the structure of

the original specification.

3.3 Type of model checking

This category classifies model checkers by the type of

model checking they support:

Explicit model checking (“Explicit”). This technique

enumerates states explicitly. It is often associated to

other optimization techniques such as partial order re-

duction, or various compression mechanisms.

Model checking based on decision diagrams (“Dec.

Diag.”). In this case, decision diagrams encode the

configurations of the system, and the operations act on

sets of states. The most emblematic example of deci-

sion diagrams is BDD [19,21]. The tools participating

in the MCC often use more sophisticated variants such

as MDD [6], SDD [27] or LDD [28].

Exploiting symmetries of the system (“Symmetries”).

The MCC focuses on the model checking of asyn-

chronous systems. Such systems often express symme-

tries. For example, systems built on peer-to-peer archi-

tectures, where processes are interchangeable because

they have similar behaviors, often exhibit symmetries.

Systems with client/server or master/agent architec-

tures where clients or agents are easily permutable, also

exhibit symmetries. Some techniques [22,40,26] capture

and use symmetries to increase the performance of the

model checking, which can yield gains of orders of mag-

nitude in favorable cases.
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Technique Short name Short description

Abstractions Abstractions Perform abstract reasoning on the model so that a decision about the
expected result can be taken rapidly (e.g., Bounded model checking, K-
induction).

Compression Compression Replace a state space S with another (simplified) state space S′ such that
S and S′ are related in a way (e.g., simulation, bisimulation).

Linear Programming LP-approx. Use linear programming to answer or reduce some queries without exploring
the state space.

Unfolding into a prefix graph Unfolding Provide a very efficient representation of the state space generated by a Petri
net model using a variant on the same notation.

Partial order reduction Partial Order Reduce the size of the state space, by exploiting the commutativity of con-
currently executed transitions.

Query reduction Query Red. Reduce the size of a query without the need of explicitly searching through
the state-space, for example using state equations.

Satisfiability SAT/SMT Use satisfiability for the optimization of the transition relations or of the
formula to be checked in order to speed up the model checking.

Structural reductions Struct. reduc. Perform structural reductions on the input specification before performing
the model checking itself. Preserve the properties to be checked.

Topological analysis Topological. anl. Extract structural information from the model (e.g., traps/deadlocks, state
equation) and use that information to speed up the analysis or over-
approximate the state space.

Table 2: Overview of the “Additional techniques”. Appendix A fully describes them (with bibliographic references).

Short names of techniques are those used in the diagrams of the following sections.

3.4 Additional techniques

Competing model checkers usually combine the above

approaches with other techniques (such as heuristics or

optimizations) in order to reduce CPU usage and mem-

ory footprint. This category further classifies model

checkers according to these other techniques.

Table 2 summarizes the reported techniques in this

category. Column Short name provides the name by

which each technique is refered to in the diagrams in

the remainder of this paper. Appendix A provides a

detailed description of each technique, along with their

appropriate bibliographic references.

Examination Relevant runs Runs with results
state space 51 834 29 273 (56.5%)

deadlocks 40 540 26 063 (64.3%)
upper bounds 48 837 30 383 (62.2%)

reachability 92 228 60 243 (65.3%)
CTL 70 541 37 058 (52.5%)
LTL 44 946 27 401 (61.0%)

Table 3: Distribution of the 348 926 relevant runs over

the examinations from 2015 to 2019. The second col-

umn shows the total number of runs dedicated to a

given examination and the last column only those that

provided at least one value.

4 Reported techniques over the years, a tool

perspective

This section reports on how tools uses the techniques

presented in Section 3 between 2015 and 2019. We also

bring a focus on the tools that were on the podium

one or several years. This is a way to identify the tech-

niques they activate and which probably gave them an

advantage.

All the data in Sections 4 to 6 are provided by tools,

together with their results. Indeed, they are expected

to report the techniques used for solving the considered

examination when providing the results.

4.1 General information on the raw data

Between 2015 and 2019, there were a total of 561 837

runs. However some tools were not participating at all

to some examinations, thus always returning “do not

compete”. After having discarded these runs, there re-

main 348 926 relevant ones. Table 3 shows how these

runs are spread over the various examinations.

Four examinations request tools to return Boolean

values: only one for deadlock detection, and 16 for each

of reachability, CTL, and LTL (i.e., 16 formulas must

be processed for each of them). Table 5 shows how the

values are distributed in B.

These values are computed by tools and represent

only a subset of the total number of evaluated formu-

las between 2015 and 2019. For example, some of the

65.32% runs dedicated to reachability formulas may
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2015 2016 2017 2018 2019
State space generation

BVT 100.00% BVT 100.00% BVT 100.00% BVT 100.00% BVT 100.00%
Gold MARCIE 83.11% ITS-Tools 73.96% GreatSPN 87.40% GreatSPN 90.95% TINA 93.22%
Silver pnmc 69.29% MARCIE 72.47% TINA 78.28% TINA 85.04% GreatSPN 87.22%
Bronze ITS-Tools 59.48% pnmc 56.36% ITS-Tools 67.87% ITS-Tools 69.25% ITS-Tools 62.02%

Deadlock detection
BVT 100.00% BVT 100.00% BVT 100.00% BVT 100.00% BVT 100.00%

Gold TAPAAL 74.96% TAPAAL 88.25% LoLA 93.74% TAPAAL 89.62% TAPAAL 86.16%
Silver LoLA 74.47% LoLA 84.58% TAPAAL 77.79% ITS-Tools 84.01% ITS-Tools 82.51%
Bronze MARCIE 62.16% MARCIE 56.17% ITS-Tools 43.35% LoLA 82.17% LoLA 71.26%

Upper bounds
BVT 100.00% BVT 100.00% BVT 100.00% BVT 100.00% BVT 100.00%

Gold LoLA 68.23% MARCIE 74.12% GreatSPN 80.02% LoLA 96.70% TAPAAL 96.56%
Silver MARCIE 64.71% LoLA 51.87% ITS-Tools 71.70% TAPAAL 67.45% LoLA 88.67%
Bronze TAPAAL 45.43% ITS-Tools 42.61% MARCIE 57.79% GreatSPN 66.41% ITS-Tools 61.86%

Reachability formulas
BVT 100.00% BVT 100.00% BVT 100.00% BVT 100.00% BVT 100.00%

Gold LoLA 91.10% LoLA 93.53% LoLA 99.49% TAPAAL 97.77% TAPAAL 97.28%
Silver TAPAAL 75.29% TAPAAL 71.19% TAPAAL 75.10% LoLA 91.93% LoLA 90.50%
Bronze MARCIE 43.03% ITS-Tools 53.95% ITS-Tools 55.50% ITS-Tools 69.29% ITS-Tools 68.44%

CTL formulas
BVT 100.00% BVT 100.00% BVT 100.00% BVT 100.00% BVT 100.00%

Gold MARCIE 100.00% LoLA 65.93% LoLA 81.37% TAPAAL 90.99% TAPAAL 91.41%
Silver — TAPAAL 62.97% TAPAAL 65.70% LoLA 77.60% LoLA 81.32%
Bronze — MARCIE 46.77% ITS-Tools 34.29% ITS-Tools 42.94% ITS-Tools 46.70%

LTL formulas
BVT 100.00% BVT 100.00% BVT 100.00% BVT 100.00% BVT 100.00%

Silver — LTSMin 95.35% LoLA 100.00% LoLA 98.45% LoLA 94.04%
Silver — LoLA 79.84% LTSMin 71.87% LTSMin 83.08% ITS-Tools 76.55%
Bronze — ITS-Tools 34.56% ITS-Tools 50.46% ITS-Tools 71.91% enPAC 3.50%

Table 4: Tools on the podium between 2015 and 2019 (details are available in [51]). BVT corresponds to a “best

virtual tool” returning the union of all the values computed by all tools for a given examination in a given

edition [75]. We use it to estimate the number of values that some tools on the podium could not compute while

at least one other tool did. As an example, the winner of the state space generation examination is getting closer

to the total number of computed values every year. In 2015, only one tool was ranked for CTL and no tool

participated in LTL.

have only computed some of the 16 proposed formu-

las in the examination.

The next subsections report an analysis of this large

amount of data. First, we have a look at the way com-

peting tools reported the techniques presented in Sec-

tion 3 between 2015 and 2019. Then, we deal with the

Computed
Examination values True False

deadlocks 26 063
11 016 15 047
42.3% 57.7%

reachability 683 887
339 589 344 298
49.7% 50.3%

CTL 380 012
169 361 210 651
44.6% 55.4%

LTL 341 531
76 332 265 199
22.4% 77.7%

Table 5: Distribution of values computed by tools in B
for deadlocks, reachability, CTL, and LTL, from 2015 to

2019. The second column shows all the computed val-

ues for the corresponding examination while the third

and fourth columns display the number of satisfied and

unsatisfied formulas. State space generation and upper

bound computation are not reported because expected

values are integers.

evolution of such techniques as reported by podium

tools over the same period in order to understand if

some techniques have emerged or disappeared.

4.2 The podium tools

Every year, there is a podium for every examination,

highlighting the best three tools. Such tools are con-

sidered to be the most efficient since the higher their

score is, the more values they have computed. This is a

way to identify the most efficient techniques that were

operated for the benchmark. So, we will regularly focus

on these tools in the next sections.

Table 4 reports the nine tools (out of 17) that were

on a podium between 2015 and 20194. A tool may par-

ticipate with several variants in one edition of the MCC.

However, we only consider the best of these variants for

4 Results are globally expressed in the 2019 way. For in-
stance, deadlock detection was part of the reachability ex-
amination before 2019 so the corresponding data are not ex-
plicitly displayed on the MCC web site. Similarly, in 2015,
computation of upper bounds was also part of the reachabil-
ity examination and thus not noted explicitly on the MCC
web site.
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the podium, to avoid any bias when comparing the tech-

niques podium tools have activated, with respect to the

others.

Let us introduce an interesting notion inspired from

the SAT competition in 2012 [7] : the best virtual

solver [75]. For the MCC, we call it best virtual tool

(BVT). It is a model checker capable of computing the

union of the values computed by all the participating

model checkers. BVT’s score can be computed as for

other tools and the gold medal’s score can be compared

to the one of BVT.

In Table 4, the score distance to BVT has been nor-

malized to a percentage: every year, both grading and

the benchmark change so numeric values are not rel-

evant. Consequently, we cannot draw conclusions in

terms of tools’ progression: regularly, we introduce new

techniques to generate harder formulas and the com-

munity proposes more complex models. This explains

why the progression of percentages is not monotonous.

However, the “distance” between the gold medal

and BVT indicates the complementarity between tools

by highlighting the ratio of values the gold medal could

not compute. We can observe from Table 4 that, for

the later editions of the MCC, the gold (and silver too)

medal tools cover a larger part of all the values com-

puted by all tools together (i.e., the “distance” to BVT

becomes smaller).

4.3 Multi-year observations from 2015 to 2019

Figure 1 aggregates all the data gathered between 2015

and 2019. For each selected technique, we consider how

it was reported by all tools (black bars in the charts),

and also by tools on the podium (red – or gray in B&W

– bars in the charts). The goal is to find out if some tech-

niques are reported more often by the “winning tools”

rather than the others, thus providing a clue about their

efficiency.

We normalize the appearance of techniques to a per-

centage. We then measure how frequently such tech-

niques appear. Note that the sum of all techniques in

some of the categories presented in Section 3 is not

100%:

– type of execution: it is unfortunately not always re-

ported by tools precisely and it cannot be automati-

cally deduced from the number of cores allocated to

tools; when 4 cores are required, it can be a portfolio

or a concurrent algorithm (this may vary according

to the examination);

– support of high-level information: it only concerns a

subset of the participating tools;

– additional techniques: usually, several techniques

are operated simultaneously. Indeed, since the be-

ginning of the MCC, we have observed that tools

activate more and more techniques simultaneously

in the same run.

We have defined a 30% threshold in Figure 1 to out-

line the most reported techniques. Although this value

is arbitrary, we have chosen it as an indicator of the

“popularity” of a given technique. We note in Figure 1

that, for a given technique, the black bar (all tools)

and the red/gray bar (podium tools) are frequently

in the same part of the threshold. We observe that

SAT/SMT techniques bring a more significant advan-

tage for Reachability (Fig. 1d), CTL (Fig. 1e) and LTL

(Fig. 1f) because the black bar is below the threshold

while the red one is above.

Let us now discuss what we observe from the charts of

Figure 1.

Type of execution. For state space generation, concur-

rent or portfolio approaches do not bring any advantage

(Fig. 1a). This is probably related to the intensive use

of decision diagrams and topological analysis (to find

an appropriate encoding) which are more difficult to

operate in parallel.

It is the opposite for LTL where almost no sequen-

tial tool participates (Fig. 1f). We note that LTSMin,

which proposes concurrent algorithms is on the podium

from 2016 to 2018 (it was not participating in 2015

and 2019). Since it is the only fully concurrent tool,

it is worth noticing because the corresponding bars in

the diagram are underestimated and the ratio between

portfolio and concurrent is the lowest of all examina-

tions.

Figures 1b to 1e show a trend: sequential is less rep-

resented than portfolio in podium tools w.r.t. all tools

(remember that tools do not always report it appropri-

ately).

Support of high-level information. Unfolding into P/T

nets increases a bit for all examinations, especially

for podium tools, mainly because in 2015 and 2016,

these tools have increased their support of colored nets,

thanks to a library shared between several developers.

The use of NUPN information only gives a marginal

advantage in some situations. However, since this no-

tation was gradually adopted by tools, a more precise

study focusing on the exploitation of the model hierar-

chical structure is presented in Section 6.

Type of model checking. We consider here explicit

model checking, compression techniques based on de-

cision diagrams, and the use of symmetries.
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(a) State Space generation
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(b) Deadlock detection
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(c) Upper bounds
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(d) Reachability
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(e) CTL
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(f) LTL

Fig. 1: Techniques as expressed by the tools between 2015 and 2019. Black bars denote the percentage of techniques

claimed by all tools while red (or gray in B&W) bars correspond to those claimed by the tools being on the podium.

A threshold of 30% is also outlined in these charts. Charts are split in four areas (dotted vertical lines): type of

execution, handling of high-level information, the type of model checking, and additional properties.

We clearly observe that the use of symmetries is

marginal in all examinations and not even mentioned

in CTL or LTL (Fig. 1e and 1f). We note that deadlock

detection is probably the examination which benefits

the most from their use (Fig. 1b).

Except for state space generation where the use

of decision diagrams is intensively reported (Fig. 1a),

there is no big difference in their use with respect to

explicit techniques. In some cases explicit model check-

ing appears to bring an advantage to podium tools

(upper bounds, Fig. 1c, reachability, Fig. 1d, CTL,

Fig. 1c) while in some others, decision diagrams do

(LTL, Fig. 1f). In all situations, the advantage is no-

ticeable but marginal.

Sometimes, ITS-Tools is able to mix decision dia-

grams and symmetry management, in order to mutu-
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ally increase the potential gain provided by exploiting

each of these approaches.

Additional techniques. The threshold of 30% is partic-

ularly interesting for reporting about these techniques:

– state space reports only one popular technique in

this category: topological analysis (Fig. 1a);

– deadlock detection can be computed thanks to many

techniques since 5 are reported to be “popular”:

compression, partial order, SAT/SMT, structural

reduction – black bar – and topological analysis

(Fig. 1b);

– for other examinations, the three same techniques

are “popular”: compression, partial order, and topo-

logical analysis. SAT/SMT is also popular when for-

mulas are involved but for podium tools only.

Of course, other techniques are reported more

marginally in many examinations (except for state

space which mentions only four). Among the “less pop-

ular” reported techniques, structural reductions do not

bring a significant advantage since the red/gray bar is

lower than the black one. In all other cases, the acti-

vation of the reported techniques brings an advantage

to podium tools. We also observe that the use of a pre-

fix graph is extremely rare in the participating tools.

In fact, only Cunf [65] implements this technique and

was only participating in 2015 in the deadlock detection

examination.

These charts clearly show that tools operate several

techniques simultaneously:

– when computing deadlocks, TAPAAL [47] is some-

times able to operate simultaneously in a run the

four main techniques reported in the chart: topo-

logical analysis, partial order, SAT/SMT and com-

pression;

– ITS-Tools [70] and LoLA [74] are able to operate

at least two of these techniques simultaneously in a

run. However, they do not report structural reduc-

tions with another technique;

– when computing upper bounds, TAPAAL is

able to simultaneously activate query reduction,

SAT/SMT, structural reductions, partial order

and compression. LoLA also reports using to-

gether SAT/SMT, partial order and compression,

or SAT/SMT and topological analysis;

– when computing LTL formulas, ITS-Tools is able to

operate three techniques simultaneously in a run :

topological analysis, partial order and SAT/SMT.

Runs with Runs involving
Examination results podium tools

State space 29 273 12 337 (42.14%)
Deadlocks 26 063 14 736 (48.50%)

Upper bounds 30 383 17 012 (65.27%)
Reachability 60 243 38 059 (48.50%)

CTL 37 058 23 414 (63.18%)
LTL 27 401 21 425 (78.19%)

Total 210 394 126 983 (60.35%)

Table 6: Distribution of runs executed by podium tools

among the various examinations from 2015 to 2019. The

second column shows the total number of runs provid-

ing at least one result for the given examination (third

column of Table 3) and the last one those corresponding

to podium tools.

4.4 Evolution of techniques for podium tools from

2015 to 2019

The data presented in the previous section does not

capture how tools have progressed from 2015 to 2019.

The objective of this section is to have a closer look at

the evolution of reported techniques over the years.

We focus on the techniques podium tools reported

from 2015 to 2019. Since these tools seem to have ben-

efited from using these techniques, we study how their

use has evolved over the years. Moreover, the core of 9

podium tools during the period 2015-2019 is relatively

stable (see Table 4), thus increasing relevancy of these

observations.

To simplify the right part of each chart in Fig. 2, we

focus on the “additional techniques” which passed the

30% threshold presented in Section 4.3. For discarded

techniques, the visibility is smaller and yearly variations

are thus less significant.

Because we consider podium tools only, we used a

subset of the 210 421 runs studied in Section 4.3. Table 6

shows the distribution of the 126 983 selected runs with

results provided by podium tools. We note that 60.35%

of runs with results are computed together by podium

tools globally (details per examination are in Table 6).

One could think that podium tools are better than oth-

ers. The data in Table 4 correlate this observation: the

gold medal is often very close to the best virtual tool

(i.e., the virtual one that computes the union of the

values computed by all tools), and we note a significant

gap between the gold medal, on the one hand, silver

and bronze on the other hand. The other tools being

behind.

The analysis performed in this section considers

these runs only.

Similarly to Table 5, Table 7 shows how Boolean

values are distributed over these 126 983 selected runs.
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This distribution is relatively similar to the one for val-

ues computed by all tools. So, apparently, results should

be consistent.

Let us now discuss what we observe from the charts of

Figure 2.

Type of execution. Except for state space generation

(Fig. 2a), the use of parallelism increases over the years.

For parallel tools, portfollio remains the most popular

approach.

Support of high-level information. The use of high-

level information increases over the years. Indeed, more

tools are able to support colored nets, and the exploita-

tion of hierarchical information (via NUPN) also in-

creases.

Type of model checking. The use of decision diagrams

decreases, compared to explicit techniques (strongly as-

sociated to some of the “additional techniques”).

Additional techniques. It is more difficult to conclude

but the use of compression and partial order reduction

globally increases strongly for almost all examinations.

The use of SAT/SMT solvers varies but increases dra-

matically in some cases (Fig. 2b to 2d).

4.5 Observed trends

The tracking of techniques over these five editions of

the model checking contest shows some trends.

For state space generation, the set of used tech-

niques remains rather stable and reduced. It shows

that decision diagrams-based methods are prevalent

over other techniques. Therefore, additional techniques

Computed
Examination values True False

Deadlocks 14 736
7 027 7 709
47.7% 52.3%

Reachability 444 055
224 461 219 594
50.6% 49.5%

CTL 248 832
111 906 136 926
45.0% 55.0%

LTL 260 238
59 092 201 146
22.7% 77.3%

Table 7: Distribution of values computed by podium

tools in B for Deadlocks, Reachability, CTL, LTL, from

2015 to 2019. State space generation and upper bound

computation are not reported because expected values

are integers. The second column shows all the computed

values while the third and fourth columns display the

number of satisfied and unsatisfied formulas.

mainly aims at providing better orders for the encoding

of the system.

For examinations involving formulas, we observe

that the variety of techniques used aims at two goals:

– they perform a preliminary analysis whose outputs

can either feed another optimization of the state

space exploration, or even solve the query;

– they help optimize the state space traversal to com-

pute whether a property is true or not.

These observations confirm that alongside the tra-

ditional state space exploration, emerging techniques

as such as SAT/SMT, structural analysis, Linear Pro-

gramming, etc. prove to be useful, and even successful.

5 Reported techniques over the years, a

formula perspective

This section provides another perspective to the results

presented in Section 4. The approach is to consider the

techniques with respect to the difficulty of the formu-

las, i.e., the difficulty to give a correct truth value for

the formula). For that, we focus on the examinations

for which the tools are evaluated on several formulas

(in practice 16 formulas per examination): Reachabil-

ity, CTL, and LTL.

Our general methodology consists in comparing the

techniques used by the tools that correctly gave the

truth value of formulas that we consider of medium dif-

ficulty (we call them Type 1 formulas) to the techniques

used by the tools that correctly gave the truth value

of formulas that we consider of high difficulty (Type

2 formulas). Type 2 formulas are a subset of Type 1

formulas.

More precisely, we call formulas of Type 1 those

formulas for which at least one tool gave a correct truth

value and at least one tool did not. All tools together,

on such formulas, 155 182 correct answers were given

for Reachability, 95 067 for CTL, and 48 085 for LTL.

We call formulas of Type 2 those formulas for which

at least one tool gave a correct truth value and at least

half of the participating tools did not. This corresponds

to 101 306 correct answers for Reachability, 70 988 for

CTL, and 34 444 for LTL.

Figure 3 presents the results obtained for formulas

of Type 1 (left) and of Type 2 (right). For each ex-

amination and each technique, the reported percentage

gives the proportion of computed values obtained using

this technique among all computed values that were

successfully obtained in the considered examination. In

principle, we consider that, if a technique is more rep-

resented in Type 2 formulas (right) than in Type 1 for-

mulas (left), then it means that this technique has a
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(a) State Space generation
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(b) Deadlock detection
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(c) Upper bounds
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(d) Reachability
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(e) CTL (only one participant in 2015)
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(f) LTL (no participant in 2015)

Fig. 2: Yearly evolution of the main techniques reported for state space generation over 2015-2019. For LTL

formulas (figure 2f), in 2015 no tool did participate in this examination so no bars are reported this year.

positive impact on the capacity of tools to solve com-

plex verification tasks. With that in mind, we can state

the following observations.

Portfolio tools. Section 4 reported an increase in the

use of portfolio tools. The results obtained here seem

to confirm that these tools are of interest. This obser-

vation is particularly true for CTL verification where

portfolio tools are much more represented among cor-

rect results on Type 2 formulas than Type 1 formulas

(for example in 2019, 90% against less than 65%). It is

however also true for LTL verification, and, to a lesser

extent for Rechability verification, with the only signif-

icant difference between Type 1 and Type 2 being in

2019.

NUPN. We expected that the use of the more accurate

information on the structure of the nets provided by

NUPN would help tools to deal with verification tasks

more easily. However, at the moment, this is not re-
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(a) Reachability: Type 1 on the left and Type 2 on the right
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(b) CTL: Type 1 on the left and Type 2 on the right
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(c) LTL: Type 1 on the left and Type 2 on the right

Fig. 3: Techniques used by tools for solving moderately difficult (Type 1) and difficult formulas (Type 2).

ally something that we can observe from our results. It

seems to be a reasonable choice for dealing with Reach-

ability (no significant difference in the proportions of

tools using it between Type 1 and Type 2) and LTL

(tools using it more represented for formulas of Type 2

than Type 1, with the exception of the 2018 edition).

For CTL verification, the use of NUPN can be ques-

tioned: the proportion of tools using it for solving Type

1 formulas is generally greater or equal than the pro-

portion of tools using it for solving Type 2 formulas.

Compression and partial orders. The use of these tech-

niques looks very efficient for reachability and CTL ver-

ification: it is reported to be used by a significantly

larger proportion of tools solving Type 2 formulas than

tools solving Type 1 formulas. For LTL verification, no

clear impact can be observed as the results really differ

depending on the considered year.

Additional techniques. Unfolding to P/T nets seems to

bring a significant impact for reachability analysis. One

can also notice that topological analysis, while being

used by many tools, does not appear to be that effi-
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cient for CTL and LTL verification. Finally, the results

obtained for the other techniques have a lot of variabil-

ity across the years, so it is difficult to get a clear insight

about them.

6 Using structural information on models

This section reports two interesting findings regarding

the use of structural information in model checking.

Here, we focus on two types of information: hierarchical

structure of the original specification, and a maximum

number of tokens in subsets of places. These are carried

out thanks to Nested-Unit Petri Nets in the MCC.

6.1 Background

When derived from real problems (e.g., industrial case

studies) specifications are usually modular and hierar-

chically structured. However, standard (low-level) Petri

nets do not provide satisfactory means to express such

a modular structure. This problem has fueled research

for decades on: (i) the decomposition of Petri nets into

state machines that execute concurrently [54], and (ii)

the design of many high-level extensions of Petri nets,

which enables one to capture the modularity of sys-

tems [33,72,40].

Exploiting the specification’s structure is a quite ac-

tive research topic, and there have been recent contri-

butions to high-level extensions. As an example, [27]

proposes a way to hierarchically encode hierarchically

structured models using decision diagrams, which later

proved practical efficiency on regular models in [71].

Another approach, the Nested-Unit Petri Nets (NUPN)

proposed in [34,35], introduces “recursively nested

units” to describe modular and hierarchical systems us-

ing Petri nets.

NUPN also brings additional information for 1-safe

nets: each nested unit is 1-safe. This allows tools to

use dedicated compression mechanisms. Tools like ITS-

Tools [70] (dedicated 1-safe reductions), LoLA [74] (one

# values # values more
Tool no NUPN NUPN values (in %)

GreatSPN 7 312 7 807 +6.8%
ITS-Tools 14 832 16 483 +11%

LoLA 23 879 23 874 -0.2%
LTSMin 2 224 2 660 +20%

TINA 584 680 +16%
Total 48 831 51 504 +5.5%

Table 8: Total number of computed values with and

without the use of NUPN. This was computed on the

21 510 runs processed to evaluate the interest of NUPN.

bit per nested unit special encoding), or LTSMin [49]

(dedicated mechanisms for the encoding into decision

diagrams) exploit this characteristic.

However, despite clear successes, the benefits of us-

ing such information remains a question since it could

be related to a given tool or to a few problems only.

6.2 Dedicated experimentation

In the setting of the MCC, NUPN provides structural

information. A significant part of the models has been

produced from complex case studies and their modu-

lar, hierarchical structure is provided as a NUPN “tool-

specific” section in the PNML of the models. This is re-

ferred to as “high-level information” in Section 3. Given

that many tools competing in the MCC’2019 claim to

exploit the NUPN information, this section evaluates

the benefits, in terms of performance, of using such in-

formation. The variety of our benchmark on the one

hand, the number of tools and their diverse techniques

on the other hand, let us assume that no implementa-

tion or benchmark bias should be expected.

To study the impact of structural information on

model checking, we used the subset of 239 instances

of models from the MCC benchmark (23.4% of the to-

tal) that contain the NUPN information. We considered

the tools able to use such information in 2019 (using

their latest implementations): GreatSPN-Meddly [4],

ITS-Tools [70], LoLA [74], LTSMin [49] and TINA [12].

We have reprocessed these tools twice, for all ex-

aminations in the conditions of the MCC in 2019, for

the benchmark subset: once with models containing the

NUPN information, and once without. This dedicated

analysis resulted in 21 510 runs for a total of almost 417

days of CPU. These extra experiments were processed

on a machine lent to us by the University of Twente

(it is also one of the machines used for the MCC): a 96

physical cores @ 2.2GHz with 2048 GB of memory.

6.3 Impact of NUPN on computed values

Table 8 reports the number of values computed when

the NUPN information is present, compared to when it

is not (namely, on the same MCC models obtained after

erasing all NUPN information). The average increase is

of about 5.5% more values computed with NUPN than

without. However, this increase really depends on tools.

For one tool (LoLA), there is no significant difference

(a few values less out of almost 29 000). For the other

tools, up to 20% extra values are computed when the

NUPN information is used.



14 F. Kordon et al.

#values #values time (mn) time (mn) faster #NUPN #NUPN
Examination #runs (no NUPN) (NUPN) (no NUPN) (NUPN) comput. faster slower

GreatSPN
State space 157 623 623 278 245 +14% 28 129

Deadlock 92 92 92 283 240 +18% 17 75
Upper bounds 140 2240 2240 294 237 +24% 27 113
Reachability 140 2 192 2 192 514 444 +16% 29 111

CTL 138 2 165 2 165 603 555 +9% 32 106
Globally 667 7 312 7 312 1 972 1 721 +14% 133 534

ITS-Tools
State space 115 345 345 224 68 +231% 75 40

Deadlock 184 184 184 107 103 +4% 104 80
Upper bounds 112 1 792 1 792 221 86 +156% 71 41
Reachability 178 2 864 2 864 751 350 +114% 108 70

CTL 159 2 065 2 087 1 377 735 +87% 120 39
LTL 250 3 889 3 934 2 149 1 461 +47% 184 66

Globally 998 11 139 11 206 4 829 2 803 +72% 662 336
LoLA

Deadlock 176 176 176 80 58 +34% 93 83
Upper bounds 237 3 528 3 528 2 802 2 803 0% 128 109
Reachability 473 6 957 6 962 9 605 9 607 0% 242 231

CTL 472 6 027 6 020 21 849 21 789 0% 236 236
LTL 475 7 170 7 169 9 063 9 120 -1% 239 236

Globally 1 833 23 858 23 855 43 399 43 377 0% 938 895
LTSMin

State space 103 412 412 507 293 +73% 74 29
Upper bounds 239 1 808 2 192 7 973 6 636 +20% 141 98

Globally 342 2 220 2 604 8 480 6 929 +22% 215 127
TINA

State space 145 584 584 1 298 485 +167% 119 26
Globally 145 584 584 1 298 485 +167% 119 26

Table 9: Evaluation of the variation (without and with NUPN) for cases where no time-out is reported, neither for

instances including NUPN, nor those without. Remember that some tools do not participate in all examinations.

#values #values time (mn) time (mn) faster #NUPN #NUPN
Examination #runs (no NUPN) (NUPN) (no NUPN) (NUPN) comput. faster slower
State space 375 1 380 1 380 2 307 1 091 +111% 177 198

Deadlock 452 452 452 470 403 +17% 214 238
Upper bounds 873 9 952 10 336 11 291 9 763 +16% 486 387
Reachability 791 12 013 12 018 10 870 10 403 +4% 379 412

CTL 769 10 257 10 272 23 828 23 078 +3% 388 381
LTL 725 11 059 11 103 11 212 10 582 +6% 423 302

Globally 3 985 45 113 45 561 59 978 55 387 +8% 2 067 1 918

Table 10: Average benefit of the use of NUPN information for each examination category when considering Great-

SPN, ITS-Tools, LoLA, LTSMin and TINA on a subset of execution were no time-out is observed neither for

models with NUPN information nor models without NUPN information.

The tools that benefit from the use of hierarchical

structural information are those that rely on decision

diagrams, even if this technique is not always used at

each execution (another technique may find a solution

earlier).

6.4 Impact of NUPN on execution performances

The analysis of Section 6.3 must be completed by an

evaluation of the execution time required to compute

such values. To do so, we selected a subset of 3 985

runs from the initial 21 510 processed for this experi-

ment where, for a given model instance and examina-

tion, no time-out occurred, neither for instances includ-

ing NUPN nor for those without. By doing so, our com-

parison is free from biases arising from such time-outs

that would hinder a precise measure of the speed-up.

Section 6.5 reports how NUPN also reduces the num-

ber of time-outs, thus allowing the computation of more

values.

Table 9 gives the detailed results for the considered

tools. For each examination we report: the number of

considered runs, the number of values computed (with

and without NUPN), the total execution time (with and

without NUPN), and how much faster the execution
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was (expressed as a percentage) deduced from:

time without NUPN

time with NUPN

between these runs. We also report how many times the

runs with NUPN were faster (second to last column)

or slower (last column) than the corresponding runs

without NUPN.

Table 10 shows a summary of the progress for each

MCC examination (state space generation, deadlock

detection, upper bounds, reachability, CTL, LTL). It

shows the same columns as Table 9.

Tables 9 and 10 clearly exhibit a faster computation

when the NUPN information is present.

Tools’ perspective. Table 9 outlines a great variety

of the performance increase. Unsurprisingly, tools (like

LoLA) that do not use decision diagrams exhibit lower

performances globally (except for deadlock detection).

For tools like ITS-Tool, LTSMin or GreatSPN-meddly,

which strongly rely on decision diagrams, the NUPN in-

formation clearly brings an advantage by helping them

deduce better encodings of the input specification.

TINA also relies on decision diagrams, and a newly

introduced technique to count states in [11] clearly ben-

efits from structural information.

GreatSPN is usually slower with NUPN, but how-

ever overall faster with that additional information.

Only 133 runs are sped up (out of 667), however signif-

icantly enough to make an impact. So, for GreatSPN,

exploiting NUPN information on a single specification

is probably a bet.

Let us finally note that in only two cases (LoLA

for CTL and LTL), the number of computed formula

decreases. For other tools, the use of the NUPN infor-

mation only increases the number of processed values.

Examinations’ perspective. Unsurprisingly, we note a

great variance, depending on tools and examinations.

State space examination is the one which benefits

the most of the use of structural information with an ex-

ecution performance of +111% (and even up to +231%

for ITS-Tools).

In some situations, deadlock detection also bene-

fits from structural information: we observe a compu-

tation performance of +15% for GreatSPN and +25%

for LoLA. In fact, this is the only examination where

the NUPN information seems to make a difference for

LoLA, keeping in mind that LoLA globally computes

more results than the other tools.

For other examinations, it is difficult to conclude

because only a very few tools are involved:

– for upper bounds, some gain is also observed (up to

156% for ITS-Tools); in that case, the 1-safety of

NUPN is the characteristic that helps;

– the average execution performance for reachability

analysis and CTL is quite low, even if the implemen-

tation provided by ITS-Tools again takes significant

advantage of the NUPN information (respectively

+61% and +57%).

We note that 448 more values are computed with

NUPN in Table 10, while Table 8 reports 2 673 more

values. It means that if NUPN brings an advantage to

the processing time, it also brings an advantage in the

number of computed values. Exploiting the NUPN in-

formation probably helps reducing the situation where

time-out occurs, which cannot be observed in Tables 9

and 10 that discard runs with time-out.

A surprising result when comparing how frequently

NUPN is reported between moderately difficult formu-

las and difficult formulas (Fig. 3) is that it brings a

similar benefit to both levels of difficulty. Thus surpris-

ingly, NUPN does not help more to solve difficult for-

mulas than easier ones.

6.5 Summary

The total number of computed values increases by 5.5%,

of which a majority of about 4.5% is associated to runs

exhibiting time-outs when NUPN was not present (i.e.,

the difference found between Tables 8 and 10). Second,

despite the variety of tools and models, we observe an

average gain of time of about 8%, with several peaks

far over 100% for some tools on some examinations.

So, our analysis shows a globally positive effect of

structural information as provided by NUPN on tools

taking advantage of it. This is not a surprise, since the

MCC focuses on asynchronous parallel systems where,

due to the interleaving of concurrent sequential pro-

cesses, the notion of locality is important: it helps to re-

duce the number of firings tools must perform when ex-

ploring the state space (thanks to firing caches). NUPN

also helps to compress the representation of markings

by allowing to reduce the number of bits or variables

required to encode markings.

7 Impact of the MCC on tools, techniques and

formulas

Since its first edition in 2011, the MCC has become

an important regular event in the community of tool

developers, as have several other competitions involv-

ing research tools. This section reports the impact the
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Tool Country 2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

2
0
1
9

Cunf [65] FR
enPAC [1] CN

GreatSPN-Meddly [4] IT
ITS-Tools [70] FR

LoLA [74] DE
LTSMin [49] NL

MARCIE [42] DE
MCC4MCC [20] CH

PeCAN [56] VN
pnmc [41] FR

PNXDD [45] FR
smart [23] US
Spot [29] FR

StrataGEM [58] CH
TAPAAL [47] DK

TINA [12] FR
ydd-pt [64] CH

Table 11: All the 17 tools which participated over the

five editions of the Model Checking Contest considered

in this study. Colors help distinguish lines.

MCC has had on tools’ performances, model checking

techniques, and on formulas over the observed period

2015-2019.

7.1 Long-term tool design and improvement

Every year, discussions with tool developers bring new

issues and improvements. The MCC had thus fostered

successful new research directions, such as the method

to count the size of the state space in TINA [11], which

won them the gold medal in 2019.

Table 11 shows the participating tools between 2015
and 2019, together with a recent reference to a pub-

lication describing them. We note that among those

17 participating tools, eight participated three times

or more, and six participated once only. Unfortunately,

three tools are discontinued, often due to the move of

the leading developer out of academia: MARCIE, pnmc,

and PNXDD (these were on podiums). The existence of

long-lasting tools, as well as experimental ones (usually

related to a thesis) is one evidence of the long term im-

plication in tool design the MCC has helped to sustain.

7.2 Steady confidence rate increase

Developers sometimes present several variants of their

tools to evaluate some alternative algorithms or heuris-

tics. They also share some interesting components such

as a library commonly developed and debugged to pro-

vide the support of colored nets thanks to the unfolding

technique.

2015 2016 2017 2018 2019
35.82% 51.91 % 52.91 % 60.40 % 65.50 %

Table 12: yearly percentage of runs in which tools pro-

vide at least one value among all the processed runs (all

examinations together), after having discarded those

where tools reported no participation. Only common

models from 2015 to 2019 are considered.

Since 2015, we measure a confidence rate for every

participating tool. It relies on a subset of trusted values.

A trusted value is the one computed by a significant

majority of at least 3 tools that agree on it. For this

subset, we compute for each tool the following ratio:

# trusted values computed correctly

# trusted values computed

Tools below a given ratio (0.98 = 98% confidence in

2019) do not score any point if they are the only ones

to compute a value.

Figure 4 shows how the average confidence rate of

tools evolves between 2015 and 2019. In 2019, a new

tool had a notable low confidence rate, probably due

to some bugs in the formula converter, thus decreas-

ing the average. The eight core participating tools have

increased their confidence rate over the years, some of

them reaching 100% confidence (others being very close

to it).

Table 12 shows the yearly percentage of runs in

which tools provide at least one value among all the

processed runs (all examinations together), after hav-

ing discarded those where tools reported no participa-

tion. We use in this table data coming from the set

of common models from 2015 to 2019 only. The diffi-

culty of formulas also increased (for formula-based ex-

aminations) between 2015 and 2019. So, we think that

Table 12 illustrates the growing performances of partic-

ipating tools. There are two reasons for this increase: (i)

tools participate in more examinations, and (ii), within

86 %
88 %
90 %
92 %
94 %
96 %
98 %

100 %

20
15

20
16

20
17

20
18

20
19

89,65 %

94,2 %

97,34 %

99,97 %
98,55 %

Fig. 4: Average confidence rate of tools between 2015

and 2019. In 2019, a new tools was participating, with

some bugs in the formula translation ; this explains the

decrease between 2018 and 2019.
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an examination, tools compute more values, i.e., solve

more problems.

7.3 Improving harder formulas generation

Generating challenging examinations is an issue that is

shared by most contests, with different solutions. For

instance, in [67] the problem of controlling the hard-

ness of 3-SAT formula is addressed, while [3] deals with

the complexity of QSAT formula. In the RERS chal-

lenge, a strategy has been elaborated to create complex

benchmarks respecting some given properties so that

the resulting problem is both difficult to verify and has

predictable properties [68].

In the MCC, we of course face this challenge; in

our case, it means generating complex formulas. The

community produces harder models but we also have

to generate harder formulas for examinations requir-

ing such formulas: upper bounds, reachability analysis,

CTL, and LTL. The growing complexity of generated

formulas can be observed when looking at the percent-

age of runs returning at least one value, after having

discarded those where tools reported no participation.

We restricted ourselves to a subset of the largest in-

stances of models that were part of the competition

during the five editions (see the list of selected models

in Appendix B).

Table 14 shows this rate between 2015 and 2019 for

the examination using formulas.

– In 2015 the 20% for CTL can be explained by the

fact that only one tool was competing in this ex-

amination (and none for LTL the same year, see

Table 4);

– In 2016, though, more tools entered the competition

to achieve a performance around 60% for CTL and

nearly 75% for LTL;

– The performance in CTL for 2019 (nearly 74%) has

to be confirmed in the next few years. Reachabil-

ity, deadlock detection, and CTL are examinations

in which tools really improved and perform, now,

really well;

– We observe significative improvement of tools from

2015 to 2019, although from one year to another,

the set of proposed formulas has changed for upper

bounds, reachability, CTL, and LTL examinations.

We have regularly improved the way formulas were

generated for the MCC. In 2018 LTL formulas were

more evenly dispatched in the supported categories of

the Manna&Pnueli LTL hierarchy [59]5; this may ex-

5 Until 2019, the formula generation did not support the
categories Reactivity and Obligation in the Manna&Pnueli
classification [59].

plain the drop of 9% in 2019 compared to 2018 in Ta-

ble 14. The same year the number of explored states for

the bounded model checker, used to assert CTL formula

hardness when preparing the contest, doubled; this may

explain the drop of 7% in 2018 compared to 2017 in Ta-

ble 14.

So far, we use bounded model checking for upper

bounds, reachability, and CTL, asserting that proper-

ties are not “too trivial”, while we ensure a minimal

number of formulas belonging to each category of the

Manna&Pnueli LTL hierarchy. We are currently look-

ing to further improve the process.

8 Impact of the MCC on its community

We present in this section the impact the MCC has had

on its community over the observed period 2015-2019.

8.1 A reference benchmark

A large benchmark regularly used and cited in papers6

is enriched by the community every year. It provides a

neutral way to evaluate tools and techniques because

models come from various authors and describe differ-

ent types of systems. This reduces the chances of hav-

ing some “benchmark effect” that could benefit to some

specific techniques only.

8.2 A way to promote collaboration

The MCC promotes collaboration between the partic-

ipants. As mentioned earlier, several tool developers

have shared the unfolder from coloured nets to P/T

nets. They have also shared some oracles, to help them

correct bugs. Finally, they have also experimented some

interesting combinations of tools; for example, the in-

tegration and activation of some LTSMin techniques in

ITS-Tools [70] in a portfolio.

As for some other competitions having specific

needs, we have built a dedicated execution environ-

ment: BenchKit [52]. This environment has similar fea-

tures as BenchExec [14] (used in the SV-COMP)

which also measures energy consumption [15]. Another

well known execution environment is StarExec [17]; it is

used by numerous competitions like Confluence Com-

petition (COCO7), the MaxSAT evaluation8, the QBF

evaluation9 or the SAT competition10.

6 https://mcc.lip6.fr/bibliography.php#references
7 http://project-coco.uibk.ac.at
8 https://maxsat-evaluations.github.io
9 http://www.qbflib.org/index_eval.php

10 http://www.satcompetition.org
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Examination 2015 2016 2017 2018 2019
Upper bounds 26.9% 28.2 % 39.7 % 48.2 % 63.0 %

Reachability 56.5% 67.6 % 63.7 % 75.8 % 74.8 %
CTL 20.51% 59.6 % 54.4 % 47.6 % 73.6 %
LTL — 74.3 % 76.4 % 78.6 % 69.8 %

Table 13: yearly percentage of runs in which tools provide at least one value among all the processed runs for

examinations requiring a formula on a set of instances that were part of the MCC competition from 2015 to 2019.

We consider runs where at least one value was computed after having discarded those where tools reported no

participation.

Examination 2015 2016 2017 2018 2019
Upper bounds 26.9% 28.2 % 39.7 % 48.2 % 63.0 %

Reachability 56.5% 67.6 % 63.7 % 75.8 % 74.8 %
CTL 20.51% 59.6 % 54.4 % 47.6 % 73.6 %
LTL — 74.3 % 76.4 % 78.6 % 69.8 %

Table 14: yearly percentage of runs in which tools provide at least one value among all the processed runs for

examinations requiring a formula on a set of instances that were part of the MCC competition from 2015 to 2019.

We consider runs where at least one value was computed after having discarded those where tools reported no

participation.

9 Conclusion

In this paper, we present a comprehensive report of

the data gathered during the five editions of the Model

Checking Contest (MCC) from 2015 to 2019. Such anal-

ysis can now happen because, since 2015, we publish all

results and summaries obtained from running the com-

petition in a standard format. The analysis highlights

some trends in model checking-based verification.

Main observations. After an overview of the reported

techniques over the considered period, our observations

first show that the most efficient tools, i.e., those that

reach the podium several times during that period, im-

plement several techniques, sometimes simultaneously

activated. They can do so thanks to software archi-

tectures inspired from modern compilers: a front end

feeds several backends implementing different verifica-

tion techniques, sometimes in a portfolio mode suitable

for concurrent execution [53].

Aside from a concurrent execution in the portfo-

lio approach of activating several algorithms to solve a

given verification problem, new concurrent algorithms

also emerge. It is mainly the case of LTSMin that was

on the LTL verification podium several times between

2015 and 2019.

Decision diagram-based techniques used to be

prominent. However, they are now challenged by ex-

plicit techniques, combined with additional techniques

such as partial order and/or structural analysis. We also

discovered that an increasing part of model checking

problems is often solved without exploring the state

space. It is particularly the case of deadlock detection

for tools like LoLA or ITS-Tools. However, this point

might be specific to the nature of the specification of

problems, Petri nets, for which state equations can be

used for structural analysis.

According to the type of verification task (e.g.,

reachability, CTL, or LTL analysis), a different subset

of techniques appears to be more efficient than others.

This is also true when considering more difficult formu-

las, solved by less tools.

Tools benefit from information describing the struc-

ture of the specification. Our analysis shows the capa-

bility of some tools to successfully exploit such data

to speed up the analysis. In the MCC, the NUPN [34]

information associated with some models derived from

large industrial specifications allows tools to provide

more results faster, even if implementation concerns

seem to play a non-negligible role in the measured per-

formances.

Note that information about the structure of the

specification benefits to symbolic model checking (tools

like GreatSPN or ITS-Tools) as well as to explicit model

checking (tools like LoLA or TAPAAL).

Validity. We follow the four main concepts to assess

the validity of our analysis as defined in [66] for ex-

ploratory case studies.

Construct validity: 2015 was already the fifth edi-

tion of the MCC, and by then, there was already a

common understanding by tool developers of the MCC

concepts and model checking techniques presented in

sections 2 and 3.

Internal validity: this study does not compare any

performance aspects; we only deal with their causal ef-
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fect on the ranking, as well as techniques tools have

reported. Since each edition is a standalone consistent

event, there is no bias in having such a multi-year anal-

ysis because only factual and reproducible data is pro-

cessed.

External validity: the way we run the MCC is simi-

lar to several competitions with similar objectives, like

SAT [8,2], SMT [9], QBF [62] or CASC [69]. There is a

common understanding on the way such studies must

be carried out. So, we believe the MCC’s findings are

relevant to other people investigating model checking

techniques and tools.

Reliability: experiments can be reprocessed (not on

the exact same machines but in a similar situation)

since submitted tools in their virtual machines are still

available on the MCC web site [51]. If some local mea-

sures could change according to computers’ character-

istics, we evaluate computed results of examinations

(computed values, claimed techniques) that should not

change.

Future work. The Model Checking Contest will con-

tinue to challenge tools in upcoming editions. It will

propose new examinations and more difficult problems

to solve, in order to push forward the state of the art of

model checking-based verification of asynchronous and

concurrent systems.
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14. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmark-
ing: requirements and solutions. Int. J. Softw. Tools
Technol. Transf. 21(1), 1–29 (2019). DOI 10.1007/
s10009-017-0469-y

15. Beyer, D., Wendler, P.: CPU Energy Meter: A Tool for
Energy-Aware Algorithms Engineering. In: Tools and Al-
gorithms for the Construction and Analysis of Systems,
Lecture Notes in Computer Science, vol. 12079, pp. 126–
133. Springer (2020)

16. Biere, A., van Dijk, T., Heljanko, K.: Hardware model
checking competition 2017. In: FMCAD, p. 9. IEEE
(2017)

17. Bjørner, N., Benney, E., Gupta, A., Horrocks, I.,
Iannni, G., Le Berre, D., Wakdmann, J.: Starexec
(2020). URL https://www.starexec.org/starexec/

public/about.jsp

18. Bønneland, F., Dyhr, J., Jensen, P.G., Johannsen, M.,
Srba, J.: Simplification of CTL formulae for efficient
model checking of petri nets. In: 39th International Con-
ference on Application and Theory of Petri Nets and Con-
currency, Lecture Notes in Computer Science, vol. 10877,
pp. 143–163. Springer (2018)

19. Bryant, R.: Graph-based algorithms for boolean function
manipulation. IEEE Transactions on Computers 35(8),
677–691 (1986)

20. Buchs, D., Klikovits, S., Linard, A., Mencattini, R.,
Racordon, D.: A Model Checker Collection for the Model
Checking Contest Using Docker and Machine Learning.
In: 39th International Conference on Application and
Theory of Petri Nets and Concurrency, Lecture Notes
in Computer Science, vol. 10877, pp. 385–395. Springer
(2018)



20 F. Kordon et al.

21. Burch, J., Clarke, E., McMillan, K.: Symbolic model
checking: 1020 states and beyond. Information and Com-
putation (Special issue for best papers from LICS90)
98(2), 153–181 (1992)

22. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.:
A symbolic reachability graph for coloured Petri nets.
Theoretical Computer Science 176(1–2), 39–65 (1997)

23. Ciardo, G., Miner, A.S., Wan, M.: Advanced features in
SMART: the stochastic model checking analyzer for reli-
ability and timing. SIGMETRICS Performance Evalua-
tion Review 36(4), 58–63 (2009)

24. Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded
model checking using satisfiability solving. Formal Meth-
ods in System Design 19(1), 7–34 (2001)

25. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.:
Counterexample-guided abstraction refinement. In: 12th
International Conference on Computer Aided Verification
– CAV, Lecture Notes in Computer Science, vol. 1855,
pp. 154–169. Springer (2000)

26. Colange, M., Hillah, L.M., Kordon, F., Parutto, P.: Ex-
treme Symmetries in Complex Distributed Systems: the
Bag-Oriented Approach. In: 17th Monterey Workshop
: Development, Operation and Management of Large-
Scale Complex IT Systems, Revised Selected Papers, Lec-
ture Notes in Computer Science, vol. 7539, pp. 330–352.
Springer, Oxford, UK (2012)

27. Couvreur, J., Thierry-Mieg, Y.: Hierarchical decision di-
agrams to exploit model structure. In: 25th International
Conference on Formal Techniques for Networked and Dis-
tributed Systems – FORTE, Lecture Notes in Computer
Science, vol. 3731, pp. 443–457. Springer (2005)

28. van Dijk, T., van de Pol, J.: Multi-core decision diagrams.
In: Y. Hamadi, L. Sais (eds.) Handbook of Parallel Con-
straint Reasoning., pp. 509–545 (2018)

29. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud,
T., Renault, E., Xu, L.: Spot 2.0 - A framework for LTL
and ω-automata manipulation. In: 14th International
Symposium on Automated Technology for Verification
and Analysis – ATVA, Lecture Notes in Computer Sci-
ence, vol. 9938, pp. 122–129 (2016)

30. Ernst, G., Huisman, M., Mostowski, W., Ulbrich, M.:
Verifythis - verification competition with a human fac-
tor. In: Tools and Algorithms for the Construction and
Analysis of Systems – 25 Years of TACAS: TOOLympics,
Lecture Notes in Computer Science, vol. 11429, pp. 176–
195. Springer (2019)

31. Esparza, J., Hoffmann, P.: Reduction rules for colored
workflow nets. In: 19th International Conference on Fun-
damental Approaches to Software Engineering – FASE
(ETAPS), Lecture Notes in Computer Science, vol. 9633,
pp. 342–358. Springer (2016)
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A – Detailed description of additional

techniques reported in section 3

Abstractions. This technique denotes a family of methods
that perform abstract reasoning on the model so that a de-
cision about the expected result can be taken rapidly. Typ-
ical examples of abstractions are: Bounded model checking,
K-induction, and counterexample-guided abstraction refine-
ment (CEGAR).

Bounded model checking [24] deals with the encoding of
the system and its properties into a satisfiability problem
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which is then processed, typically by a SAT or SMT solver.
Usually, the transition relation is encoded up to a certain
bound with the hope of finding a counterexample. It is a
semi-decision algorithm often coupled with K-induction.

K-induction is a SAT-based analysis technique [57] per-
formed in two steps. First, the analyzed property must hold
for any sequence of K steps starting from the initial state;
then, the SAT solver is used to verify that any path with the
property satisfied for K consecutive states, always leads to a
K+1 state, that also satisfies the property.

CEGAR [25] consists in checking the property of a system
at a coarse (imprecise) abstraction level. If a counterexample
is found, the tool checks for its feasibility (e.g., checks if the
violation is due to the imprecision of the abstraction or not).
If the counterexample is not feasible, then the abstraction
must be refined to exclude the false counterexample and then
the property must be checked again.

Compression. This technique denotes a family of methods
that replace a state space S with another (simplified) state
space S′ such that S and S′ are related in a way (e.g., sim-
ulation, bisimulation) so that results obtained for S′ imply
validity of the results in S [48]. We distinguish decision dia-
grams and structural reductions from compression.

Linear Programming. This technique denotes the use of
linear programming to answer or reduce some queries without
exploring the state space.

Unfolding the system into a prefix graph [60]. This
technique provides a very efficient representation of the state
space generated by a Petri net model using a variant on the
same notation. It allows to represent infinite state spaces in a
finite way and is also quite useful for very large systems [32,
31].

Partial order reduction. This technique denotes a family
of methods that reduce the size of the state space [37], by
exploiting the commutativity of concurrently executed tran-
sitions. Usually, such commutativity generates a large number
of paths from a given state s to another one s′ in the state
space. Among the partial order techniques, there are stub-
born set [73] and ample sets [63].

Query reduction. This technique denotes a family of meth-
ods that reduce the size of a query without the need of explic-
itly searching through the state-space, for example using state
equations, detecting tautologies, and formula rewriting [18,5].

Use of satisfiability. This technique denotes the use of
satisfiability for the optimization of the transition relations
or of the formula to be verified in order to speed up the model
checking. A typical example is the use of SMT solvers in the
context of linear-programming. It is also useful to check for
the deadlock freeness of a specification.

Structural reductions. Some tools perform structural re-
ductions on the input specification before performing the
model checking itself. Berthelot’s reductions [10] or Haddad’s
reductions [38] are typical examples of such transformations.
Of course, such reductions must happen in situations where
they preserve the properties to be checked.

Topological analysis. Structural information may be ex-
tracted from the model (e.g., traps/deadlocks, state equa-
tion) and used to speed up the analysis or over-approximate
the state space [61].

A good example and application of topological analysis
is variable reordering when dealing with the encoding of the
model, for example into decision diagrams [45]. It is also men-
tioned as a way to optimize state compression techniques.

Petri net properties like invariants, siphons or traps, as
well as NUPN information or the definitions of types in col-
ored Petri nets are typical topological information considered
by tools in the MCC.

B – Instances of models used in the MCC

Benchmark to evaluate the hardness of the

verification tasks (section 7.3)

The following instances of model have been selected for the
analysis presented in section 7.3:

– ARMCacheCoherence-PT-none
– Angiogenesis-PT-50
– BridgeAndVehicles-COL-V80P50N50
– BridgeAndVehicles-PT-V80P50N50
– CSRepetitions-COL-10
– CSRepetitions-PT-10
– CircadianClock-PT-100000
– CircularTrains-PT-768
– DatabaseWithMutex-COL-40
– DatabaseWithMutex-PT-40
– Dekker-PT-200
– Diffusion2D-PT-D50N150
– DrinkVendingMachine-COL-98
– DrinkVendingMachine-PT-10
– ERK-PT-100000
– Echo-PT-d02r19
– Echo-PT-d05r03
– EnergyBus-PT-none
– Eratosthenes-PT-500
– FMS-PT-500
– GlobalResAllocation-COL-11
– GlobalResAllocation-PT-05
– HypercubeGrid-PT-C3K4P4B12
– HypercubeGrid-PT-C5K3P3B15
– IBM319-PT-none
– IBM5964-PT-none
– IBM703-PT-none
– IBMB2S565S3960-PT-none
– IOTPpurchase-PT-C12M10P15D17
– Kanban-PT-1000
– LamportFastMutEx-COL-8
– LamportFastMutEx-PT-8
– MultiwaySync-PT-none
– NeoElection-COL-8
– NeoElection-PT-8
– ParamProductionCell-PT-5
– Parking-PT-864
– PermAdmissibility-COL-50
– PermAdmissibility-PT-50
– Peterson-COL-7
– Peterson-PT-7
– PhaseVariation-PT-D30CS100
– Philosophers-COL-100000
– Philosophers-PT-010000
– PhilosophersDyn-COL-80
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– PhilosophersDyn-PT-20
– Planning-PT-none
– PolyORBLF-COL-S04J06T10
– PolyORBLF-COL-S06J06T08
– PolyORBLF-PT-S04J06T10
– PolyORBLF-PT-S06J06T08
– PolyORBNT-COL-S10J80
– PolyORBNT-PT-S10J80
– ProductionCell-PT-none
– QuasiCertifProtocol-COL-32
– QuasiCertifProtocol-PT-32
– Raft-PT-10
– Railroad-PT-100
– ResAllocation-PT-R003C100
– ResAllocation-PT-R100C002
– Ring-PT-none
– RwMutex-PT-r2000w0010
– SafeBus-COL-80
– SafeBus-PT-20
– SharedMemory-COL-100000
– SharedMemory-PT-000200
– SimpleLoadBal-PT-20
– SmallOperatingSystem-PT-MT8192DC4096
– Solitaire-PT-EngCT7x7
– Solitaire-PT-EngNC7x7
– Solitaire-PT-FrnCT7x7
– Solitaire-PT-FrnNC7x7
– Solitaire-PT-SqrCT5x5
– Solitaire-PT-SqrNC5x5
– SquareGrid-PT-130613
– SwimmingPool-PT-10
– TokenRing-COL-500
– TokenRing-PT-050
– UtahNoC-PT-none
– Vasy2003-PT-none


